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Preface

Origin of the book

This book originates from research mainly performed at the Bernoulli Institute
for Mathematics, Computer Science and Artificial Intelligence at the University
of Groningen in the period between 2019 and 2025. The goal of this research
has been to establish a unifying framework for a data-based analysis and control
theory. The idea is to analyze system properties and to design controllers for dy-
namical systems, directly from data and without the use of explicit mathematical
models. This is a radical departure from mainstream systems and control theory
where mathematical models are the central objects of study. This book aims at
rewriting parts of systems and control theory by placing time series data at the
forefront. There are several motivations for this work. Due to technological ad-
vancements, modern engineering systems are so complex that obtaining models
from first principles is not feasible. On the other hand, these systems produce
massive amounts of data that can be readily harvested. Given the absence of
mathematical models, the question of how to utilize the data for analysis and
control design is therefore highly relevant. Overall, the development of this book
aligns with a general trend in science and engineering towards the extensive use
of data, as witnessed by the artificial intelligence boom.

Contents of the book

This book intends to provide a comprehensive framework for data-driven system
analysis, control design and modeling. We will focus on discrete-time linear
time-invariant systems and data that can be either noisy or noise-free. The
central concept used within the book is the notion of data informativity. Among
other things, the data informativity framework enables the design of controllers
from data that do not necessarily satisfy restrictive requirements like persistent
excitation. The book begins with a historical perspective in Chapter 1, which is
followed by an introduction to the data informativity framework in Chapter 2.

The main body of the book contains five parts. In Part I, we apply the
informativity framework to deal with a range of data-based system analysis
problems. These problems include deciding on the basis of data whether a
system is, for example, controllable, stabilizable or stable. Part II focuses on
data-driven control design. Here, we study problems like designing stabilizing
and optimal controllers on the basis of data. In Part III, we apply the data
informativity framework to the problem of system identification. First, we will
provide conditions on the data under which the data-generating system can be
uniquely identified. Subsequently, we exploit these conditions to develop online
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experiment design methods. Part IV studies reduced order modeling on the basis
of measured data. This problem is approached from two different angles, namely
balanced truncation and moment matching. Finally, Part V is an appendix and
is devoted to notational conventions, along with a detailed discussion of the
quadratic matrix inequalities used throughout the book. We recommend reading
the basic notation in Section A.1 before reading the chapters in the main body
of this book.

Intended audience and teaching instructions

The intended audience of the book includes researchers who want to deepen their
understanding of data-driven control, and practitioners and engineers interested
in applying data-driven control techniques. The book is also suitable for master
and PhD students in engineering and mathematics programmes.

To use the book as lecture notes for graduate level courses, a selection of
topics can be made. For instance, Chapter 1–2 and a selection of topics from
Parts I and II of this book have been used in a master course on data-based
analysis and control at the University of Groningen. These topics can be covered
in around 30 hours of lecture time.

The required background for the book is a good command of linear algebra
and calculus, and basic linear systems theory. The book aims at a self-contained
treatment of data-driven systems and control, also including a chapter on math-
ematical results and their accompanying proofs.
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1

Introduction and historical perspective

In this chapter we give a general introduction to the topic of data-driven con-
trol by means of a literature overview. In particular, we will follow a timeline
highlighting the main developments in data-driven control. We will also delve
into the details of some methods that are most relevant for this book, including
the fundamental lemma by Willems et al., and its applications like subspace
identification, data-driven simulation and tracking, data-enabled predictive con-
trol, and data-driven stabilization. These examples serve as a motivation for the
material developed in the rest of the book.

1.1 Introduction

In broad terms, systems and control theory deals with the problem of making a
concrete physical system behave according to certain desired specifications. In
order to achieve this desired behavior, the system can be interconnected with a
device, called a controller. The problem of finding a mathematical description
of such a controller is called the control design problem.

To obtain a mathematical description of a controller for a to-be-controlled
physical system, a possible first step is to obtain a mathematical model of the
physical system. Such a mathematical model can take many forms. For exam-
ple, the model could be in terms of ordinary or partial differential equations,
difference equations, or transfer matrices.

There are several ways to obtain a mathematical model for the physical
system. The usual way is to apply the basic physical laws that are satisfied
by the variables appearing in the system. This method is called first principles
modeling. For example, for electro-mechanical systems, the set of basic physical
laws that govern the behavior of the variables in the system (conservation laws,
Newton’s laws, Kirchhoff’s laws, etc.) form a mathematical model.

An alternative way to obtain a model is to do experiments on the physical
system: certain external variables in the physical system are set to take particu-
lar values, while at the same time other variables are measured. In this way, one
obtains data on the system that can be used to find mathematical descriptions
of laws that are obeyed by the system variables, thus obtaining a model. This
method is called system identification.
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The second step in a control design problem is to decide which desired behav-
ior we would like the physical system to have. Very often, this desired behavior
can be formalized by requiring the mathematical model to have certain quali-
tative or quantitative mathematical properties. Together, these properties form
the design objective.

Based on the mathematical model of the physical system and the design ob-
jective, the third, ultimate, step is to design a mathematical model of a suitable
controller. This approach, leading from a model and a design objective (or list
of design specifications) to a controller is an important paradigm in systems
and control, and is often called model-based control. Indeed, many existing con-
trol design techniques rely on a system model, represented by, for example, a
state-space system or transfer matrix.

In this book, we will deal with an approach to control design that circumvents
the step of finding a mathematical model of the to-be-controlled system. This
alternative approach deals with the problem of synthesizing control laws directly
on the basis of measured data, and is called the data-driven approach to control
design. Of course, one can argue that also the combination of system identifi-
cation and model-based control as described above is an instance of data-driven
control design. Indeed, methods using this combination are often called indirect
methods of data-driven control, consisting of the two-step process of data-driven
modeling (i.e., system identification) followed by model-based control.

In addition to the above indirect methods, we distinguish direct methods to
data-driven control design. These direct approaches focus on directly mapping
data to controllers without an intermediate step of system identification. Both
paradigms have different pros and cons. For example, identification might be
expensive and the obtained model may not always be useful for the intended
control design problem. In addition, in many situations unique system identifi-
cation is impossible, for example because the data are corrupted by noise and do
not contain sufficient information about the underlying system. In contrast, di-
rect data-driven control design has the premise of being an end-to-end approach,
requiring less expert knowledge. It could therefore be the preferred choice for
practitioners. However, in comparison to the maturity of system identification,
the theory of direct data-driven control is still very much under development. In
fact, the early 2020s witnessed a surge of research activity in direct data-driven
control. Some of these results have been summarized in survey papers, such
as those in the Control Systems Magazine double special issue on data-driven
control [148,149].

With the current book, we aim at giving a general treatment of direct data-
driven analysis and control design from the unifying perspective of data infor-
mativity. The overarching question that will be studied is how to use only the
data obtained from the unknown system to verify its system-theoretic properties
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and to construct controllers. Interestingly, the data informativity framework
does not only shed light on direct data-driven analysis and control, but also
has consequences for modeling. This will be demonstrated by studying system
identification and reduced order data-driven modeling through the lens of data
informativity.

1.2 Historical perspective

The purpose of this section is to provide a bird’s-eye view of the developments
of data-driven control in the period between 1950 and 2025, following the coarse
timeline in Figure 1.1. We emphasize that this timeline is by no means exhaus-
tive, but it contains many of the main contributions. The high-level discussion
will be followed by five detailed subsections summarizing results that are most
closely related to this book, as well as an overview of further developments.

Early developments in data-driven control mainly include the combination
of system identification (i.e., data-driven modeling) [59], followed by control
design based on the identified model. We mention contributions to prediction
error methods [95, 96] in the 1970s and 1980s, and subspace identification [115,
165, 177, 187] in the late 1980s and 1990s. The analysis and control design
methods developed in this book depart from identification-based approaches, in
the sense that the intermediate modeling step is skipped. Instead, in this book we
design controllers and analyze system properties directly using time series data.
As we will see, this direct data-driven control approach is powerful especially
in situations when the data do not enable unique system identification [175].
Although the direct approach is a radical departure from the indirect one, we
do mention some important parallels with the system identification literature.
First of all, one of the main ingredients of the data informativity framework, used
throughout this book, is the set of all data-consistent systems. This is in line
with set membership identification (SMI) methods [92,110], where sets of data-
consistent systems also play an important role. In SMI, these sets are typically
called feasible system sets. Through the lens of SMI, the main contributions
of this book are to provide easily verifiable conditions on the data under which
all systems in the feasible system set have a certain system-theoretic property,
and when all of these systems can be controlled by a single controller. The
material of this book also resonates well with the development of identification
for control [58, 62, 164] in the late 1980s and 1990s. The main idea of this
movement was to take into account the eventual purpose of the model during
the identification stage. In this way, the identified model is suitable for its
intended application, which is typically control design. In this book we take one
step further: by eliminating the need for intermediate system identification, we
naturally place the intended control design task at the forefront.
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1950s adaptive control
[14, 86]

1976prediction error methods
[95, 96]

1986 identification for control
[62, 164]

1986from time series to linear system
[187]

1989 subspace identification
[115,165,177]

1991set membership identification
[92, 110]

1994 iterative feedback tuning
[72, 73]

2002virtual reference feedback tuning
[34]

2005 fundamental lemma
[190]

2008data-driven simulation and tracking
[104]

2019 data-enabled predictive control
[36]

2020formulas for data-driven control
[44]

2020 data informativity
[175]

Figure 1.1: Coarse timeline of data-driven modeling and control approaches.
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Early developments in direct data-driven control are more scattered than
their indirect counterparts. We mention adaptive control methods [14], for which
both direct and indirect methods exist, and whose origins can already be traced
back to the 1950s [86]. In the 1990s and early 2000s, a number of direct data-
driven control schemes emerged, including iterative feedback tuning (IFT) [72,73]
and virtual reference feedback tuning (VRFT) [34]. These methods both aim at
using data to directly minimize a cost function of the control parameters, with
the notable distinction that IFT is an iterative approach while VRFT is one-shot.

In 2005, the paper [190] was published, whose main result would later be-
come known as the fundamental lemma. Roughly speaking, the result asserts
that all finite-length trajectories of a controllable linear system can be obtained
from a single one whose input is persistently exciting. This result has major
consequences for the subspace identification methods developed in the 1990s,
because it provides conditions on the input data that enable system identifica-
tion. The fundamental lemma was not widely adopted in the years following its
publication, although an early paper is [104] in which the result was used for
direct data-driven simulation and tracking.

It was only around 2018–2019 that direct data-driven control started to gain
a lot of momentum. On the one hand, it is safe to say that the wave of new results
was partially due to a renewed interest in the fundamental lemma, that served
as a source of inspiration for many new developments. On the other hand, the
interest was motivated by the development of low cost sensing devices, meaning
that data were by now widely available. This, combined with an increase in
available computational power to analyze large datasets, fueled the interest in
direct data-driven control.

Because of the importance of the fundamental lemma, we will spend some
time to review it in detail in Subsection 1.2.1. We will then highlight the im-
portance of this result in a number of applications ranging from subspace identi-
fication [115] to data-driven tracking [104], predictive control [36], and feedback
design [44]. Finally, we close this chapter with Subsection 1.2.6 by giving a
summary of further developments within direct data-driven control in the time
period between 2018 and 2025.

1.2.1 The fundamental lemma

In this section we review the fundamental lemma of [190]. To improve the
readability of this chapter, we will introduce some notation on the fly throughout.
See Chapter A in the appendix for a full account of the notation used in this
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book. Consider the linear time-invariant (LTI) system

x(t + 1) = Atruex(t) + Btrueu(t) (1.1a)
y(t) = Ctruex(t) + Dtrueu(t) (1.1b)

where t ∈ Z+ := {0, 1, 2, . . . }, x(t) ∈ Rntrue is the state, u(t) ∈ Rm is the input,
and y(t) ∈ Rp is the output. The true state-space dimension ntrue and the
matrices Atrue ∈ Rntrue×ntrue , Btrue ∈ Rntrue×m, Ctrue ∈ Rp×ntrue and Dtrue ∈
Rp×m are assumed to be unknown. However, an upper bound N on the state-
space dimension is given, i.e., N ⩾ ntrue. The high-level goal is to simulate
and/or control the dynamics of (1.1) using input-output data.

Before we introduce the data, we discuss some preliminaries on trajectories
of (1.1). A sequence

(u(t), x(t), y(t))∞
t=0

is called an input-state-output trajectory of (1.1) if[
x(t + 1)

y(t)

]
=
[
Atrue Btrue
Ctrue Dtrue

] [
x(t)
u(t)

]
for all t ∈ Z+. Since the system (1.1) is linear, sums and scalar multiples of
input-state-output trajectories are also input-state-output trajectories of (1.1)1.
Moreover, by time-invariance of (1.1), we have that

(u(t + τ), x(t + τ), y(t + τ))∞
t=0

is also an input-state-output trajectory of (1.1) for any τ ∈ Z+.
A sequence (u(t), y(t))∞

t=0 is called an input-output trajectory of (1.1) if there
exists x : Z+ → Rntrue such that (u(t), x(t), y(t))∞

t=0 is an input-state-output tra-
jectory of (1.1). Let i, j ∈ Z+ with i ⩽ j. Given an input-state-output trajectory
(u(t), x(t), y(t))∞

t=0, the sequence (u(t), x(t), y(t))j
t=i is called a restricted input-

state-output trajectory (on the time interval [i, j] := {i, i+1, . . . , j}). Restricted
input-output trajectories are defined analogously.

We will identify restricted input-state-output trajectories with the vectors

u[i,j] :=


u(i)

u(i + 1)
...

u(j)

 , x[i,j] :=


x(i)

x(i + 1)
...

x(j)

 , and y[i,j] :=


y(i)

y(i + 1)
...

y(j)

 .

1In fact, the space of all such trajectories is called the behavior of the system [129]. In
order to keep the exposition as simple as possible at this point, we do not use behaviors here.
However, they will be used at a later stage, in Chapter 9.
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We will sometimes also collect restricted trajectories in matrices, which we will
denote by capital letters. For example,

X[i,j] :=
[
x(i) x(i + 1) · · · x(j)

]
and the matrices U[i,j] and Y[i,j] are defined analogously.

Now, as our data set, we consider the restricted input-output trajectory
(u[0,T −1], y[0,T −1]) of (1.1), where T is a positive integer. An important ingredi-
ent of the fundamental lemma is the Hankel matrix of these inputs and outputs.
For a given integer L ∈ [1, T ], let the Hankel matrix of depth L of these inputs
and outputs be given by:

HL(u[0,T −1])
HL(y[0,T −1])

 =



u(0) u(1) · · · u(T − L)
...

...
...

u(L− 1) u(L) · · · u(T − 1)
y(0) y(1) · · · y(T − L)

...
...

...
y(L− 1) y(L) · · · y(T − 1)


. (1.2)

By time-invariance of the system, each column of (1.2) gives rise to a re-
stricted input-output trajectory of (1.1) on the time interval [0, L−1]. Moreover,
by linearity of the system, every linear combination of the columns of (1.2) is
also a restricted input-output trajectory on the time interval [0, L− 1].

The powerful crux of Willems et al.’s fundamental lemma is that every re-
stricted input-output trajectory of length L can be expressed as a linear combi-
nation of the columns of (1.2), assuming that the system (1.1) is controllable,
and u[0,T −1] is persistently exciting of sufficiently high order. In order to state
the result, we first define the concept of persistency of excitation.

Definition 1.1. Let k ∈ [1, T ] be an integer. The input u[0,T −1] is called
persistently exciting of order k if Hk(u[0,T −1]) has full row rank.

Next, we will formulate the fundamental lemma [190].

Theorem 1.2. Assume that the pair (Atrue, Btrue) is controllable. Consider
a restricted input-state-output trajectory (u[0,T −1], x[0,T −1], y[0,T −1]) of (1.1),
where T ⩾ 1. Let L ∈ [1, T ] be an integer. If the input u[0,T −1] is persistently
exciting of order N + L, then the following statements hold:
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(a) The matrix

[
X[0,T −L]

HL(u[0,T −1])

]
=


x(0) x(1) · · · x(T − L)
u(0) u(1) · · · u(T − L)

...
...

...
u(L− 1) u(L) · · · u(T − 1)

 (1.3)

has full row rank.

(b) (ū[0,L−1], ȳ[0,L−1]) is a restricted input-output trajectory of (1.1) on the
time interval [0, L− 1] if and only if[

ū[0,L−1]
ȳ[0,L−1]

]
=
[
HL(u[0,T −1])
HL(y[0,T −1])

]
g (1.4)

for some vector g ∈ RT −L+1.

(c) For i ∈ Z+, (ū[i,i+L−1], ȳ[i,i+L−1]) is a restricted input-output trajectory
of (1.1) on the time interval [i, i + L− 1] if and only if[

ū[i,i+L−1]
ȳ[i,i+L−1]

]
=
[
HL(u[0,T −1])
HL(y[0,T −1])

]
g (1.5)

for some g ∈ RT −L+1.

We note that the condition of persistency of excitation requires a sufficiently
long trajectory, namely

T ⩾ (m + 1)(N + L)− 1. (1.6)

Statement (a) has appeared first in [190, Cor. 2(iii)]. This result is intriguing
since a rank condition on both input and state matrices can be imposed by
injecting a sufficiently exciting input sequence. Statement (b) is a reformulation
of [190, Thm. 1]. We note that the ‘if’ part of this statement simply follows
from the discussion before the theorem. However, the importance of the result
lies in the ‘only if’ part of statement (b), which implies that the image of the
Hankel matrix (1.2) is precisely equal to the space of all restricted input-output
trajectories on the interval [0, L − 1]. Finally, note that statement (c) simply
boils down to statement (b) in the case that i = 0. However, this statement
asserts, in addition, that for any i ∈ Z+, the space of all restricted input-output
trajectories on the interval [i, i + L− 1] coincides with the image of (1.2). This
statement follows from the controllability of (Atrue, Btrue) since, in this case, the
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spaces of restricted input-output trajectories on the intervals [i, i + L − 1] are
equal2 for all i ∈ Z+.

Item (a) of the fundamental lemma is the most involved statement to prove.
However, as we will see, this statement can be obtained as a corollary of the
results in Chapter 11. For this reason, we will postpone the entire proof of The-
orem 1.2 to Chapter 11, see Section 11.8. Instead, at this point we note that the
fundamental lemma has important consequences for subspace identification and
data-driven control applications, which we will review in the next subsections.

1.2.2 Subspace identification

Subspace identification deals with the identification of the state-space dimension
ntrue of the true system (1.1) and the matrices Atrue, Btrue, Ctrue and Dtrue from
data. In this section, we review a subspace identification result by Moonen et al.
that was developed in 1989 in [115]. Although the fundamental lemma emerged
around fifteen years after this publication, it has important consequences for
subspace identification.

The problem of subspace identification is formulated as follows.
Problem 1.3. Consider the system (1.1) and assume that (Atrue, Btrue) is con-
trollable and (Ctrue, Atrue) is observable. Given
(a) an upper bound N ⩾ ntrue on the state-space dimension of (1.1), and

(b) a restricted input-output trajectory (u[0,T −1], y[0,T −1]) of (1.1),
find the state-space dimension ntrue of (1.1), and matrices A ∈ Rntrue×ntrue ,
B ∈ Rntrue×m, C ∈ Rp×ntrue and D ∈ Rp×m such that

A = SAtrueS−1, B = SBtrue, C = CtrueS−1, and D = Dtrue (1.7)

for some nonsingular matrix S ∈ Rntrue×ntrue .
In other words, subspace identification deals with the reconstruction of the

true system matrices up to a similarity transformation, using input-output data
and an upper bound on the state-space dimension. If (1.8) holds for some non-
singular S then we call the systems (A, B, C, D) and (Atrue, Btrue, Ctrue, Dtrue)
isomorphic.

To explain the approach of [115], we start with the following thought exper-
iment. Suppose that, in addition to the input-output data, we also have access
to ntrue and a state sequence x[0,T ] that is consistent with the data, i.e.,[

X[1,T ]
Y[0,T −1]

]
=
[
Atrue Btrue
Ctrue Dtrue

] [
X[0,T −1]
U[0,T −1]

]
. (1.8)

2We note that this is not the case for uncontrollable systems, which may be verified using
the example Atrue = 0, Btrue = 0, Ctrue = 1 and Dtrue = 0.
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If the matrix [
X[0,T −1]
U[0,T −1]

]
has full row rank, then the linear equation (1.8) has a unique solution

(Atrue, Btrue, Ctrue, Dtrue).

In this situation, we can thus uniquely identify the true system from input-state-
output data.

Of course, the state sequence x[0,T ] and its dimension are not part of the
data, so the above approach cannot be applied directly. However, a central
idea3 in the subspace identification literature is to identify a state sequence from
input-output data. Since the data (u[0,T −1], y[0,T −1]) can be produced by any
system that is isomorphic to (Atrue, Btrue, Ctrue, Dtrue), the best we can hope for
is to identify ntrue and SX[0,T ] for some nonsingular matrix S ∈ Rntrue×ntrue ,
i.e., to identify the row space4 of the matrix of states X[0,T ].

To this end, the paper [115] assumes that T ⩾ 2N and considers the following
partitioned input Hankel matrix:

H2N (u[0,T −1]) =



u(0) u(1) · · · u(T − 2N)
...

...
...

u(N − 1) u(N) · · · u(T −N − 1)
u(N) u(N + 1) · · · u(T −N)

...
...

...
u(2N − 1) u(2N) · · · u(T − 1)


=:
[

Up

Uf

]
.

The Hankel matrix H2N (y[0,T −1]) of outputs is partitioned similarly into the
blocks Yp and Yf . The matrices Up and Yp are often referred to as ‘past’ data
matrices, while Uf and Yf are ‘future’ data matrices. This terminology should
be taken with a grain of salt since some inputs (like u(N)) appear in both Up

and Uf . With this terminology in place, we state the main result of [115].

Proposition 1.4 (Theorem 3 of [115]). Assume that (Atrue, Btrue) is control-
lable and (Ctrue, Atrue) is observable. Let (u[0,T −1], x[0,T −1], y[0,T −1]) be a re-
stricted input-state-output trajectory of system (1.1). Assume that the following

3There are also other subspace identification methods that aim at first reconstructing the
observability matrix from data, see [165] for an overview.

4The row space of a matrix M is the space of all linear combinations of the rows of M , and
is denoted by rsp M .
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rank conditions hold:

rank
[
H2N (u[0,T −1])
H2N (y[0,T −1])

]
= ntrue + 2Nm, rank

[
Up

Yp

]
= rank

[
Uf

Yf

]
= ntrue + Nm.

(1.9)
Then X[N,T −N ] has rank ntrue and its row space is given by:

rsp X[N,T −N ] = rsp
[
Up

Yp

]
∩ rsp

[
Uf

Yf

]
. (1.10)

In other words, under the three rank conditions in (1.9), we can obtain the
row space of the state sequence on the time interval [N, T − N ] from input-
output data. At the time of [115], it was not very well-understood how the
rank conditions (1.9) can be verified and/or imposed. In fact, at first glance, it
appears to be impossible to verify (1.9) since ntrue is unknown. Indeed, we recall
that only an upper bound N on ntrue is given. An important consequence of the
fundamental lemma is that (1.9) can be imposed by choosing the input sequence
to be sufficiently persistently exciting, after which ntrue can be extracted from
the data. In fact, the following proposition follows in a straightforward manner
from the fundamental lemma.
Proposition 1.5. Assume that (Atrue, Btrue) is controllable and (Ctrue, Atrue)
is observable. Let

(u[0,T −1], x[0,T −1], y[0,T −1])
be a restricted input-state-output trajectory of system (1.1). If u[0,T −1] is per-
sistently exciting of order 3N then (1.9) holds.

For example, the first rank condition of (1.9) follows from the fact that[
H2N (u[0,T −1])
H2N (y[0,T −1])

]
=
[

0 I
Ω2N Θ2N

] [
X[0,T −2N ]

H2N (u[0,T −1])

]
, (1.11)

where Ω2N and Θ2N are observability and Toeplitz matrices, defined recursively
via

Ω1 = Ctrue, Ωk+1 =
[

Ωk

CtrueAk
true

]
(1.12)

Γ1 = Btrue, Γk+1 =
[
Ak

trueBtrue Γk

]
(1.13)

Θ1 = Dtrue, Θk+1 =
[

Θk 0
CtrueΓk Dtrue

]
, (1.14)

for k ⩾ 1. Since the pair (Ctrue, Atrue) is observable and 2N ⩾ ntrue, the matrix
Ω2N has rank ntrue. As such, the matrix[

0 I
Ω2N Θ2N

]
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has full column rank. We conclude from (1.11) that

rank
[
H2N (u[0,T −1])
H2N (y[0,T −1])

]
= rank

[
X[0,T −2N ]

H2N (u[0,T −1])

]
= ntrue + 2Nm,

where the last equality follows from Theorem 1.2 and the assumption that
u[0,T −1] is persistently exciting of order 3N , and thus also of order ntrue + 2N .
The other two rank conditions in (1.9) can be proven in a similar way.

Now, note that under the condition of persistency of excitation of order 3N ,
Propositions 1.4 and 1.5 allow us to extract ntrue from input-output data as

ntrue = dim
(

rsp
[
Up

Yp

]
∩ rsp

[
Uf

Yf

])
.

Moreover, we can obtain vectors x̄(N), x̄(N +1), . . . , x̄(T −N) ∈ Rntrue from the
input-output data such that the matrix

X̄[N,T −N ] :=
[
x̄(N) x̄(N + 1) · · · x̄(T −N)

]
satisfies

rsp X̄[N,T −N ] = rsp
[
Up

Yp

]
∩ rsp

[
Uf

Yf

]
.

Then, by Proposition 1.4, SX[N,T −N ] = X̄[N,T −N ] for some nonsingular matrix
S ∈ Rntrue×ntrue . We then conclude that[

X̄[N+1,T −N ]
Y[N,T −N−1]

]
=
[
SAtrueS−1 SBtrue
CtrueS−1 Dtrue

] [
X̄[N,T −N−1]
U[N,T −N−1]

]
.

Therefore, if the matrix [
X̄[N,T −N−1]
U[N,T −N−1]

]
has full row rank5, then the system of linear equations[

X̄[N+1,T −N ]
Y[N,T −N−1]

]
=
[
A B
C D

] [
X̄[N,T −N−1]
U[N,T −N−1]

]
has a unique solution (A, B, C, D) and, moreover, A = SAtrueS−1, B = SBtrue,
C = CtrueS−1, and D = Dtrue. This provides a solution to the subspace identi-
fication problem.

There is a lot more that can be said about the topic of subspace identifi-
cation. Our aim in this subsection was only to explain some of the basic ideas

5Also this rank condition can be imposed, in conjunction with (1.9), by choosing u[0,T −2]
to be persistently exciting of order 3N .
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and to make a connection to the fundamental lemma. For further extensions, for
example to the case of noisy data, we refer to the books [165,178]. In the context
of the current book, it is interesting to note that the condition of persistency
of excitation of order 3N is sufficient but not necessary to solve the subspace
identification problem. In fact, it is quite straightforward to see that persistency
of excitation of order 2N + 1 is sufficient, by noting that all input-output tra-
jectories of (1.1) can be obtained from all restricted input-output trajectories
defined on the interval [0, N ]. However, even this condition is not necessary in
general. Necessary and sufficient conditions under which the input-output data
contain enough information to identify the system matrices were described in
the paper [32]. We will come back to this point in Chapter 11, where we treat
such necessary and sufficient conditions in detail.

1.2.3 Data-driven simulation and tracking

A few years after the publication of the fundamental lemma, in [104] a framework
was proposed for data-driven simulation and control based on the parameteriza-
tion of trajectories as expressed by (1.5). In this subsection, we will review some
of the ideas from their paper. We will start with the problem of simulating tra-
jectories of (1.1) using measured input-output data. This problem is formalized
as follows.

Problem 1.6. Consider the system (1.1). Assume that (Atrue, Btrue) is con-
trollable. Let Lini and Lref be positive integers and define L := Lini + Lref .
Given

(a) an upper bound N ⩾ ntrue on the state-space dimension of (1.1),

(b) a restricted input-output trajectory (u[0,T −1], y[0,T −1]) of (1.1) with T ⩾ L,

(c) an initial restricted trajectory (ū[0,Lini−1], ȳ[0,Lini−1]) of (1.1), and

(d) a reference input ū[Lini,L−1] ∈ RmLref ,

find outputs ȳ[Lini,L−1] such that (ū[0,L−1], ȳ[0,L−1]) is a restricted input-output
trajectory of (1.1).

So the problem is to use the data (u[0,T −1], y[0,T −1]) to find (‘simulate’) the
output ȳ[Lini,L−1], given the reference input ū[Lini,L−1] and an initial trajectory
of the system. The reason for including the initial trajectory is to ‘fix’ an initial
state of the system (1.1). Indeed, given only the reference input ū[Lini,L−1], the
output ȳ[Lini,L−1] is not unique, since it also depends on the state of system
(1.1) at time Lini. We will see, however, that by choosing the length of the
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initial trajectory appropriately, there exists a unique output sequence ȳ[Lini,L−1]
which can be readily computed from the data.

We will now outline the approach of [104] to solve Problem 1.6. To this end,
we partition the Hankel matrices of the input-output data in a similar way as in
Section 1.2.2. In particular,

HL(u[0,T −1]) =
[
Up

Uf

]
(1.15)

HL(y[0,T −1]) =
[
Yp

Yf

]
(1.16)

where Up and Yp have mLini and pLini rows, and Uf and Yf have mLref and
pLref rows, respectively. Moreover, we define the lag ℓtrue of (1.1) as the small-
est integer k for which rank Ωk = rank Ωk+1, where we recall that Ωk is the
observability matrix defined in (1.12). With this in mind, we state the following
theorem from [104].

Theorem 1.7. Consider the system (1.1) and assume that (Atrue, Btrue) is con-
trollable. Suppose that u[0,T −1] is persistently exciting of order N +L. Moreover,
consider the restricted input-output trajectory (ū[0,Lini−1], ȳ[0,Lini−1]) of (1.1)
and the reference input ū[Lini,L−1] ∈ RmLref . Then the following statements
hold:

(a) The system of equations Up

Yp

Uf

 g =

ū[0,Lini−1]
ȳ[0,Lini−1]
ū[Lini,L−1]

 (1.17)

has at least one solution g ∈ RT −L+1.

(b) Let g be a solution to (1.17) and define the output ȳ[Lini,L−1] := Yf g. Then
(ū[0,L−1], ȳ[0,L−1]) is a restricted input-output trajectory of (1.1).

(c) If, in addition, Lini ⩾ ℓtrue then the output ȳ[Lini,L−1] in (b) is unique in
the sense that it is the only vector in RpLref for which (ū[0,L−1], ȳ[0,L−1]) is
a restricted input-output trajectory of (1.1).

Theorem 1.7 provides a simple approach to simulate the output of the dynam-
ical system (1.1) by solving a system of equations (1.17), where the coefficient
matrix is constructed directly from a Hankel matrix of input-output data. De-
pending on the application, the initial trajectory (ū[0,Lini−1], ȳ[0,Lini−1]) can be
chosen in different ways. For example, in [104, Sec. 4.5], Theorem 1.7 is used to
simulate the first Lref Markov parameters of the system (1.1), i.e., the matrices
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Dtrue and CtrueAi
trueBtrue for i = 0, 1, . . . , Lref − 2. This is done by simulat-

ing m input-output trajectories, where in each trajectory, ū[0,Lini−1] = 0 and
ȳ[0,Lini−1] = 0. The reference input is selected as an ‘impulse’, i.e., ū(Lini) = ei

and ū(Lini +1) = · · · = ū(L−1) = 0, where ei is the i-th standard basis vector of
Rm for i = 1, 2, . . . , m. This ensures that the i-th simulated output trajectory is
equal to the i-th column of a matrix containing the first Lref Markov parameters
of (1.1), see [104, Prop. 11].

In addition to the simulation problem, [104] also considers data-driven track-
ing. In what follows, we will review this problem in more detail.

Problem 1.8. Consider the system (1.1). Assume that (Atrue, Btrue) is con-
trollable. Let Lini and Lref be positive integers and define L := Lini + Lref .
Given

(a) an upper bound N ⩾ ntrue on the state-space dimension of (1.1),

(b) a symmetric positive semidefinite matrix6

Q =
[
Q11 Q12
Q21 Q22

]
where Q11 ∈ Rm×m, Q12 = Q⊤

21 ∈ Rm×p, and Q22 ∈ Rp×p.

(c) a restricted input-output trajectory (u[0,T −1], y[0,T −1]) of (1.1) with T ⩾ L,

(d) an initial restricted trajectory (ū[0,Lini−1], ȳ[0,Lini−1]) of (1.1), and

(e) a reference signal (v[Lini,L−1], z[Lini,L−1]) ∈ RmLref × RpLref ,

find (ū[Lini,L−1], ȳ[Lini,L−1]) that minimizes the cost function

L−1∑
t=Lini

[
ū(t)− v(t)
ȳ(t)− z(t)

]⊤

Q

[
ū(t)− v(t)
ȳ(t)− z(t)

]
(1.18)

subject to the constraint that (ū[0,L−1], ȳ[0,L−1]) is a restricted input-output
trajectory of (1.1).

The paper [104] focuses on the case that Q is positive definite. In this case,
three solutions are proposed for Problem 1.8. Two of them are indirect methods
that first compute a representation of the system (1.1) in the form of a state-
space model or impulse response matrix. The other one is a direct approach

6A symmetric matrix M ∈ Rn×n is called positive semidefinite if x⊤Mx ⩾ 0 for all x ∈ Rn

and positive definite if x⊤Mx > 0 for all nonzero x ∈ Rn. This is denoted by M ⩾ 0 and
M > 0, respectively.
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that uses concepts from the behavioral approach to systems and control. In this
subsection, we formulate an alternative solution to Problem 1.8 that relies on
elementary concepts like the solution to a constrained least squares problem.

As in the simulation problem, we will consider the partitioned Hankel matri-
ces of the data in (1.15) and (1.16). Now, we note that if u[0,T −1] is persistently
exciting of order N + L, then, by Theorem 1.2, the constraint of the minimiza-
tion problem in Problem 1.8 is equivalent to the existence of g ∈ RT −L+1 such
that 

ū[0,Lini−1]
ȳ[0,Lini−1]
ū[Lini,L−1]
ȳ[Lini,L−1]

 =


Up

Yp

Uf

Yf

 g. (1.19)

We define the matrix

Q̄ :=
[
ILref ⊗Q11 ILref ⊗Q12
ILref ⊗Q21 ILref ⊗Q22

]
(1.20)

where ⊗ denotes the Kronecker product. With this notation in place, the cost
function in (1.18) can be rewritten as∥∥∥∥Q̄

1
2

[
ū[Lini,L−1]
ȳ[Lini,L−1]

]
− Q̄

1
2

[
v[Lini,L−1]
z[Lini,L−1]

]∥∥∥∥2
.

Then, Problem 1.8 can be reformulated as the problem of finding a minimizer
g ∈ RT −L+1 of the optimization problem

minimize
∥∥∥∥Q̄

1
2

[
Uf

Yf

]
g − Q̄

1
2

[
v[Lini,L−1]
z[Lini,L−1]

]∥∥∥∥2

subject to
[
Up

Yp

]
g =

[
ū[0,Lini−1]
ȳ[0,Lini−1]

]
.

(1.21)

Indeed, for any such minimizer g, the trajectory (ū[Lini,L−1], ȳ[Lini,L−1]) defined
by [

ū[Lini,L−1]
ȳ[Lini,L−1]

]
:=
[
Uf

Yf

]
g

is a solution to Problem 1.8. Vice versa, given a solution (ū[Lini,L−1], ȳ[Lini,L−1])
to Problem 1.8, any solution g to (1.19) is a minimizer of (1.21).

Next, we note that (1.21) is a least squares problem with a linear equality
constraint. The following basic lemma discusses conditions under which such a
problem has a solution, and how to find one if it exists. For additional informa-
tion on constrained least squares problems, we refer to [27, Ch. 16].
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Lemma 1.9. Let A ∈ Rn×m, b ∈ Rn, C ∈ Rk×m and d ∈ Rk. Consider the
problem

minimize ∥Ax− b∥2

subject to Cx = d and x ∈ Rm.
(1.22)

Assume that d ∈ im C. Then, the system of equations[
A⊤A C⊤

C 0

] [
x̂
ẑ

]
=
[
A⊤b

d

]
(1.23)

has at least one solution [
x̂
ẑ

]
∈ Rm+k.

Moreover, x̂ is a minimizer of (1.22) if and only if there exists ẑ ∈ Rk such that
(1.23) holds.

Based on Lemma 1.9, we now formulate the following solution to Problem 1.8.

Theorem 1.10. Consider the system (1.1) and assume that (Atrue, Btrue) is
controllable. Suppose that u[0,T −1] is persistently exciting of order N +L. There
exist vectors g ∈ RT −L+1 and h ∈ R(m+p)Lini such that

[
Uf

Yf

]⊤

Q̄

[
Uf

Yf

] [
Up

Yp

]⊤

[
Up

Uf

]
0


[

g

h

]
=


[
Uf

Yf

]⊤

Q̄

[
v[Lini,L−1]
z[Lini,L−1]

]
[
ū[0,Lini−1]
ȳ[0,Lini−1]

]
 .

For such g and h, define [
ū[Lini,L−1]
ȳ[Lini,L−1]

]
:=
[
Uf

Yf

]
g.

Then, (ū[Lini,L−1], ȳ[Lini,L−1]) is a solution to Problem 1.8.

1.2.4 Data-enabled predictive control

In this section we will review the paper [36], in which the fundamental lemma
was applied to develop data-enabled predictive controllers for linear systems7.
The main idea of [36] is to apply data-driven tracking in a receding horizon
manner. This means that, at every time step, a sequence of ‘predicted’ inputs

7We note that the idea of using the fundamental lemma for data-driven predictive control
design has also been used in the paper [196].
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and outputs is computed that solves a finite-horizon tracking problem as studied
in Section 1.2.3. Only the first8 input is applied to the system, after which the
procedure is repeated.

For data-enabled predictive control we require the following ingredients:

(a) an upper bound N ⩾ ntrue on the state-space dimension of (1.1),

(b) positive integers Lini and Lref with Lini ⩾ ℓtrue and L := Lini + Lref ,

(c) a symmetric positive semidefinite matrix

Q =
[
Q11 Q12
Q21 Q22

]
,

where Q11 ∈ Rm×m, Q12 = Q⊤
21 ∈ Rm×p and Q22 ∈ Rp×p,

(d) a restricted input-output trajectory (u[0,T −1], y[0,T −1]) of (1.1), where the
input u[0,T −1] persistently exciting of order N + L,

(e) an initial restricted trajectory (ū[0,Lini−1], ȳ[0,Lini−1]) of (1.1),

(f) a reference signal (v(t), z(t))∞
t=Lini

where v(t) ∈ Rm and z(t) ∈ Rp for t ∈
[Lini,∞).

In [36], the authors further work under the assumptions that Q12 = Q⊤
21 = 0

and v(t) = 0 for all t ∈ Z+. With these ingredients in place, we recall the
data-enabled predictive control algorithm [36, Alg. 2]. Starting from the initial
restricted trajectory (ū[0,Lini−1], ȳ[0,Lini−1]) of (1.1), the algorithm computes the
inputs ū(τ + Lini) in an iterative manner by solving a finite horizon data-driven
tracking problem for every τ = 0, 1, . . . .

1: procedure Data-enabled predictive control
2: require: Positive integers Lini and Lref , positive semidefinite matrix Q,

data (u[0,T −1], y[0,T −1]), initial restricted trajectory (ū[0,Lini−1], ȳ[0,Lini−1]),
and reference signal (v(t), z(t))∞

t=Lini
.

3: for τ = 0, 1, . . . . do
4: Compute

upred(τ + Lini), . . . , upred(τ + L− 1) ∈ Rm

5: and
ypred(τ + Lini), . . . , ypred(τ + L− 1) ∈ Rp

8Alternatively, a number of predicted inputs can be applied to the system before repeating
the procedure [36].



Historical perspective 19

6: that minimize the cost function
τ+L−1∑

t=τ+Lini

[
upred(t)− v(t)
ypred(t)− z(t)

]⊤

Q

[
upred(t)− v(t)
ypred(t)− z(t)

]
(1.24)

7: subject to the constraint that([
ū[τ,τ+Lini−1]

upred
[τ+Lini,τ+L−1]

]
,

[
ȳ[τ,τ+Lini−1]

ypred
[τ+Lini,τ+L−1]

])

8: is a restricted input-output trajectory of (1.1).
9: Apply ū(τ + Lini) := upred(τ + Lini) to (1.1) and measure ȳ(τ + Lini).

10: end for
11: end procedure

The minimization of (1.24) is essentially a finite horizon tracking problem
that can be solved in the same way as in Section 1.2.3. In [36], it was shown that
data-enabled predictive control is equivalent to model predictive control under
the assumptions of the fundamental lemma. More precisely, if (Atrue, Btrue) is
controllable and u[0,T −1] is persistently exciting, the above procedure generates
the same input-output trajectory as an associated (model-based) model predic-
tive control scheme, given the same initial and reference trajectory. In the case
that the data (u[0,T −1], y[0,T −1]) are corrupted by noise, the paper [37] further
proposes robust versions of the basic data-enabled predictive control algorithm,
by adding regularization terms to the objective function in (1.24). We also note
that the paper [19] further studies the stability of data-driven predictive control
schemes with terminal constraints.

1.2.5 Formulas for data-driven control

The paper [44] also approaches data-driven control from the perspective of the
fundamental lemma. In contrast to the results in the previous sections, however,
[44] focuses on the design of state feedback controllers of the form u(t) = Kx(t).
In this subsection, we will review the main idea of [44]. For this, we will focus
on the input-state dynamics (1.1a) and the input-state data u[0,T −1] and x[0,T ],
collected from (1.1a). In this case, the state-space dimension ntrue of (1.1) is
assumed to be known. Define the matrices

X− := X[0,T −1], X+ := X[1,T ], U− := U[0,T −1].

Then we have the following relation between the true system matrices and the
data:

X+ = AtrueX− + BtrueU−. (1.25)
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If (Atrue, Btrue) is controllable and u[0,T −1] is persistently exciting of order ntrue+
1, then we see that

rank
[
X−
U−

]
= ntrue + m (1.26)

by applying Theorem 1.2 with L = 1. Moreover, if (1.26) holds, then for any
matrix K ∈ Rm×ntrue , there exists a G ∈ RT ×ntrue such that[

I
K

]
=
[
X−
U−

]
G. (1.27)

This means that the closed-loop system, obtained from interconnecting (1.1a)
with the controller u(t) = Kx(t) can be expressed as

x(t + 1) = (Atrue + BtrueK)x(t) =
[
Atrue Btrue

] [ I
K

]
x(t)

=
[
Atrue Btrue

] [X−
U−

]
Gx(t) = X+Gx(t).

The idea of [44] is now to impose suitable properties on the closed-loop
system matrix X+G by choosing G appropriately. As long as such a G satisfies
X−G = I, we can retrieve a suitable feedback K as K = U−G, viz. (1.27). In
what follows, we will focus on the specific problem of data-driven stabilization,
with the goal of finding a G such that the closed-loop system

x(t + 1) = X+Gx(t)

is stable, equivalently, the matrix X+G is a stable matrix, meaning that all its
eigenvalues have modulus strictly less than one. With this terminology in place,
we now recall the following theorem from [44, Thm. 3].

Theorem 1.11. Suppose that (1.26) holds. If the matrix Θ ∈ RT ×ntrue satisfies

X−Θ = (X−Θ)⊤ and
[

X−Θ X+Θ
Θ⊤X⊤

+ X−Θ

]
> 0 (1.28)

then the controller
K = U−Θ(X−Θ)−1 (1.29)

is such that Atrue +BtrueK is stable. Conversely, if K is such that Atrue +BtrueK
is stable, then it is of the form (1.29) with Θ a solution to (1.28).

We note that the paper [44] further studies the problem of designing linear
quadratic regulators using data, and also discusses the case in which measure-
ments are corrupted by noise. The approach was further extended to other
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classes of systems in follow-up works, such as the paper [68] on polynomial sys-
tems. Theorem 1.11 is relevant in the context of Section 6.1 of this book. In fact,
as we will show there, the rank condition (1.26) (and persistency of excitation of
the input u[0,T −1]) is in general not necessary to find stabilizing controllers using
data. Using the data informativity framework developed in this book, we will
derive necessary and sufficient conditions on the data under which data-driven
stabilization is possible.

1.2.6 Further developments to data-driven control

In addition to the work treated in the previous subsections, a large number of
contributions to data-driven control have emerged. Central to this book is the
informativity approach to data-driven control [173, 175], which will be intro-
duced in detail in Chapter 2. In contrast to the work discussed above, within
the informativity approach we do not assume that the data are persistently ex-
citing. Instead, we aim at deriving necessary and sufficient conditions under
which models, system properties, and controllers can be obtained from the data.
Such necessary and sufficient conditions provide valuable insight into the relative
merits of direct and indirect methods. For example, in Section 6.1 we will see
that stabilizing controllers may be found from data that do not enable system
identification, thereby highlighting the power of direct data-driven control tech-
niques. The conditions obtained through the informativity framework are also
important in situations where generating persistently exciting inputs is challeng-
ing, for example, because the number of data points are limited or the data are
collected in closed-loop. In the latter scenario, the loss of persistency of excita-
tion is a well-known issue in system identification [163], typically requiring the
addition of external reference inputs. As we will see, the informativity approach
also naturally applies to data that are corrupted by noise. In this situation,
we will provide a plethora of analysis and control design tools allowing us to
ascertain system properties and design robust controllers for all systems that
are consistent with the data.

The topic of noise-corrupted data has received a lot of attention, and various
ways of modeling the noise have been considered. For example, the paper [40]
considers process noise of bounded ℓ∞-norm. This leads to a polytopic set of
systems consistent with the data, to which robust control techniques are applied.
The case that the energy of the process noise is bounded has also been stud-
ied in [18, 44, 169]. The paper [44] uses Young’s inequality to develop sufficient
conditions for data-driven stabilization. Additional sufficient conditions for data-
driven stabilization are provided in [18], based on linear fractional transforma-
tions. The first necessary and sufficient conditions for data-driven stabilization
of linear systems were developed in [169], based on a matrix version of the S-



22 Introduction and historical perspective

lemma (see also Chapter A). These results were further extended in [23] using the
related Petersen’s lemma, and a unification of these results is provided in [168].
Furthermore, data-driven stabilization using measurement noise satisfying an
energy bound has been studied in [24]. The works [121, 122] take a different
approach and quantify uncertainty using a distance between finite-dimensional
subspaces containing restricted trajectories of the system. In addition to these
contributions, also statistical assumptions on the noise have been considered, see
for example the paper [162] that addresses the LQR problem in the setting of
Gaussian noise, [197] that introduces a maximum likelihood framework with ap-
plications to predictive control, and [124] that studies stochastic optimal control
from the perspective of the fundamental lemma.

Yet another line of research involves the extension of data-driven control tech-
niques for discrete-time linear time-invariant dynamics to other system classes.
For example, data-driven control of continuous-time systems has been stud-
ied in [21, 49, 136, 145]. We also point out methods for data-driven (absolute)
stabilization of Lur’e systems [99, 167, 168], i.e., systems that are the feedback
interconnection of a linear system and a static nonlinearity. In addition, data-
driven control of polynomial systems [68, 74, 75, 106] and rational systems [158]
has received attention. Here, the vector field of the system is assumed to be a
linear combination of known polynomials or rational functions. In [4, 5], data-
driven control of a class of feedback linearizable systems was considered. Here,
the linearizing feedback is assumed to be (approximately) equal to a linear com-
bination of known basis functions, and the purpose is to identify the coefficients
of this linear combination using data. Positive linear systems have been tack-
led in [81, 111]. In addition, methods based on Koopman operator theory have
been used in [56, 85, 93, 151], with the idea of lifting the nonlinear dynamics to
an (infinite-dimensional) linear system. Finally, we mention contributions to
data-driven control of linear time-varying [120], linear parameter-varying sys-
tems [112,179], and networked control systems [3, 15,83].

Data-driven stabilization is a prototypical control problem that has been
studied in several papers, including some of the ones mentioned above. However,
there are also many contributions that study additional performance guarantees
such as linear quadratic regulation [44–46, 63, 76, 175], h2 and h∞ performance
[18, 20, 156, 169, 176], and model matching [28, 181]. In addition, data-driven
tracking has been considered in [43,161].

The interest in data-driven control has not only delivered a variety of new
controllers for various classes of systems, but has also led to a revival of interest
in the fundamental lemma. Its original proof was presented in the language
of behavioral theory; an alternative proof for state-space systems was provided
in [172]. The original fundamental lemma works with Hankel matrices of trajec-
tories, but various other matrix structures have been considered such as mosaic-
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Hankel matrices [172], Page matrices [37] and “trajectory matrices” [102]. The
condition of persistency of excitation is sufficient to generate rich data that en-
able the parameterization of all system trajectories. However, it is in general not
necessary. In [103], it was shown that for a class of controllable single-input sys-
tems, persistency of excitation is necessary and sufficient to generate such rich
data for all possible initial conditions. Moreover, in [150] general multi-input
systems were studied and it was shown that persistently exciting inputs precisely
coincide with those inputs that lead to rich data for any initial condition and
any controllable system. Generalizations to uncontrollable systems are presented
in [102, 113, 198] and extensions to continuous-time systems in [97, 98, 133, 134].
Robust and quantitative versions are explored in [17, 38, 39] while frequency
domain formulations have been considered in [52, 109]. Furthermore, the fun-
damental lemma has been generalized to various other model classes such as
descriptor systems [146], flat nonlinear systems [4], linear parameter-varying
systems [180], and stochastic ones [51].





2

The data informativity framework

In this chapter we will introduce the concept of data informativity. This notion
will play a central role in this book. It will be shown to constitute a powerful
framework that can be applied to a large number of data-driven system analysis,
control design, and modelling problems.

2.1 Introduction

As was discussed in the previous chapter, in some situations data obtained from
the physical system contain sufficient information to identify the true system
model uniquely. For the situation that the data are noiseless it was explained
in Subsection 1.2.2 that the true system can be identified from data provided
that the input data are persistently exciting. An important role is played here
by Willems’ fundamental lemma as discussed in Subsection 1.2.1. It is not
surprising that in such situations, analysis and control design can be based on
the data directly. Indeed, Subsections 1.2.3 to 1.2.5 describe examples in which
data-driven analysis and control problems are treated under the assumption that
the input data are persistently exciting. In general however, it is not possible
to uniquely identify the physical system because the input data may not be
persistently exciting, may not contain a sufficient number of samples, or the
data may be corrupted by noise.

Therefore, an intriguing question is the following: is it possible to verify
system properties and/or to obtain controllers from data that do not contain
sufficient information to uniquely identify the true system? In this book we will
address this question. The answer will turn out to depend on the particular
system property or control design problem at hand. For several properties and
problems, we will show the answer to be affirmative. This is remarkable because
it highlights situations in which direct data-driven control is more powerful than
the indirect approach, i.e., the combination of unique system identification and
model-based control. On the other hand, in some situations the answer is neg-
ative. Such a negative answer is also significant, because it reveals situations in
which identifiability of the system is necessary for data-driven analysis/control.

In this book we will restrict ourselves to discrete-time, linear, time-invariant
systems, both in state space form, and in the form of higher order autoregressive
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models. In that context, the informativity approach will be applied to estab-
lish data-based tests for verifying whether an unknown system satisfies certain
system theoretic properties such as, for example, stability, stabilizability and
controllability. If, for a certain system property, the data indeed contain suffi-
cient information to verify that property then we will call the data informative
for this system property. Data informativity will also turn out to provide direct
methods to data driven control design in the context of several classical con-
trol problems, such as, for example, stabilization, the linear quadratic regulator
problem, h2 and h∞ control, and the problem of tracking and regulation. Before
embarking on these concrete system analysis and control design problems, in
the next section we will first introduce the framework of data informativity at a
rather general level.

2.2 Data informativity

In this section we will introduce the concept of data informativity for verifying
a given system property or solving a certain control design problem at a fairly
abstract level. We will then illustrate this abstract setup by means of a series of
concrete data driven analysis and control design problems.

To start with, we fix a certain model class M. This model class is a given
set of systems that is assumed to contain the ‘true’ system (i.e., a mathematical
model of the underlying unknown physical system), denoted by S. We assume
that the true system S is not known but we do have access to a set of data,
D, generated by this system. More concretely, we think of D as the set col-
lecting the data from some input-output experiment applied to the system S.
As explained in the introduction to this chapter, we are interested in assessing
system-theoretic properties of S and designing control laws for it from the data
D. Given the set of data D, we define ΣD ⊆ M to be the set of all systems in
the model classM that are consistent with the data D, i.e., that could also have
generated the same data. In other words, it is impossible to distinguish the true
system S from any other system in ΣD on the basis of the given data D alone.
This will be explained in more detail in several examples below.

We will first focus on data-driven analysis of system theoretic properties.
Let P be some system theoretic property. We will denote the set of all systems
withinM having this property by ΣP . Suppose we are interested in the question
whether our true system S has the property P. Since the only information we
have to base our answer on are the data D obtained from the true system, we can
only conclude from the data that the true system has property P if all systems
consistent with the data D have the property P. If this is the case, we call
the data informative for the system property. More precisely, this leads to the
following definition, see also Figures 2.1 and 2.2.
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Definition 2.1 (Informativity for system analysis). We say that the data D
are informative for property P if ΣD ⊆ ΣP , i.e., all systems that are consistent
with the data have the property.

M

S

M: model class

S: unknown system

D: given data set

ΣD: data consistent systems

ΣP : systems with property P
P: system property

ΣD

ΣP

Figure 2.1: The data are informative for property P as ΣD ⊆ ΣP .

M

S

ΣD

ΣP

Figure 2.2: The data are not informative for property P. Depending on the
situation, either S ∈ ΣP or S ̸∈ ΣP . On the basis of the given data D, it is
impossible to distinguish these two cases.

Example 2.2. For given n and m, let the model classM be the set of all linear
input-state systems of the form

x(t + 1) = Ax(t) + Bu(t)
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where x is the n-dimensional state and u is the m-dimensional input. Let the
true system S be represented by the matrices (Atrue, Btrue).

An example of a data set D arises when considering data-driven problems
on the basis of input and state measurements. Suppose that we collect input
and state samples u(0), u(1), . . . , u(T − 1) and x(0), x(1), . . . , x(T ) on the time
interval [0, T ]. Recall the notation

U[0,T −1] =
[
u(0) u(1) · · · u(T − 1)

]
X[0,T ] =

[
x(0) x(1) · · · x(T )

]
from Chapter 1. Here, in addition, we will use the shorthand notation

U− := U[0,T −1] (2.1a)
X := X[0,T ]. (2.1b)

By defining

X− := X[0,T −1] (2.2a)
X+ := X[1,T ] (2.2b)

we clearly have X+ = AtrueX− + BtrueU− because the true system is assumed
to generate the data.

We then define the data as D := (U−, X). In this case, the set ΣD is equal
to Σ(U−,X) defined by

Σ(U−,X) :=
{

(A, B) ∈M | X+ =
[
A B

] [X−
U−

]}
. (2.3)

Clearly, we have (Atrue, Btrue) ∈ ΣD.
Suppose that we are interested in the system theoretic property P of stabi-

lizability. The corresponding set ΣP is then equal to Σstab defined by

Σstab := {(A, B) ∈M | (A, B) is stabilizable}.

Then, the data (U−, X) are informative for stabilizability if Σ(U−,X) ⊆ Σstab,
that is, if all systems consistent with the input-state measurements are stabiliz-
able. ■

In general, if the true system S can be uniquely determined from the data D,
that is ΣD = {S} and S has the property P, then it is evident that the data D
are informative for P. However, the converse may not be true: ΣD might contain
many systems, all of which have property P. In this book, we are interested in
necessary and sufficient conditions for informativity of the data. Such conditions
reveal the minimal amount of information required to assess the property P. A
natural problem statement is therefore the following:
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Problem 2.3 (Informativity for system analysis). Provide necessary and suf-
ficient conditions on the data D under which these data are informative for
property P.

The above gives us a general framework to deal with data-driven analysis
problems. Such analysis problems will be one of the main subjects of this book.

We will also deal with data-driven control problems. The objective in such
problems is the data-based design of controllers such that the closed loop system,
obtained from the interconnection of the true system S and the controller, sat-
isfies the given control objective. As for the analysis problem, we have only the
information from the data to base our design on. Therefore, we can only guar-
antee that our control objective is achieved if the designed controller achieves
the design objective when interconnected with any system from the set ΣD.

For the framework to allow for data-driven control problems, we will con-
sider a given control objective O (for example, a system theoretic property or a
guaranteed performance of the closed loop system). Denote by ΣO the set of all
systems that satisfy the control objective O. For a given controller K, denote
by ΣD(K) the set of all systems obtained as the interconnection of a system in
ΣD with the controller K. We then have the following variant of informativity:

Definition 2.4 (Informativity for control). We say that the data D are in-
formative for the control objective O if there exists a controller K such that
ΣD(K) ⊆ ΣO.

Example 2.5. In order to illustrate the above formal definition, in this example
we will consider data driven stabilization by state feedback. In that context, for
systems and data like in Example 2.2, we take the control objective O: ‘inter-
connection with a state feedback controller yields a stable closed loop system’.
The set of all systems that satisfy the control objective is then equal to

ΣO = {A ∈ Rn×n | A is stable1}.

For a given state feedback controller K = K ∈ Rm×n, the corresponding set of
closed loop systems consistent with the data is equal to

ΣD(K) = {A + BK | (A, B) ∈ ΣD}.

The data D are thus informative for the control objective O if there exists a
single controller K such that A + BK is stable for all (A, B) ∈ ΣD. ■

Obviously, the first step in any data-driven control problem is to determine
whether it is possible to obtain, from the given data, a suitable controller. This
leads to the following informativity problem:

1We say that a matrix is stable if all its eigenvalues are contained in the open unit disk.
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Problem 2.6 (Informativity for control). Provide necessary and sufficient con-
ditions on D under which the data are informative for the control objective O.

The second step of data-driven control involves the design of a suitable con-
troller. In terms of our framework, this can be stated as:

Problem 2.7 (Data-driven control design). Under the assumption that the
data D are informative for the control objective O, find a controller K such that
ΣD(K) ⊆ ΣO.

Example 2.8. In our previous example, we have considered stabilization using
data obtained from input and state measurements. In the present example we
will illustrate that also output measurements can be taken into account, and
consider data driven stabilization by dynamic output feedback. In that context,
our model class M consists of all systems of the form

x(t + 1) = Ax(t) + Bu(t) (2.4a)
y(t) = Cx(t) + Du(t). (2.4b)

Here, x is the n-dimensional state, u is the m-dimensional input and y is the
p-dimensional output. The dimensions n, m and p are given, fixed, integers. The
unknown, true system S is given by the matrices Atrue, Btrue, Ctrue, and Dtrue.

Suppose that we have collected input-state-output data on the time interval
[0, T ]. Let U−, X, X−, and X+ be defined by (2.1) and (2.2) and let Y− be
defined in a similar way as U− by Y− := Y[0,T −1]. Our data are given by
D = (U−, X, Y−). Since these data are assumed to be generated by the true
system (Atrue, Btrue, Ctrue, Dtrue) we have[

X+
Y−

]
=
[
Atrue Btrue
Ctrue Dtrue

] [
X−
U−

]
.

The set of all systems that are consistent with these data is then given by:

ΣD =
{

(A, B, C, D) |
[
X+
Y−

]
=
[
A B
C D

] [
X−
U−

]}
.

We want to design a stabilizing dynamic controller K of the form

z(t + 1) = Kz(t) + Ly(t) (2.5a)
u(t) = Mz(t). (2.5b)

Here, the controller state z is q-dimensional, where the controller dimension q
needs to be designed as well.
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The design objective O is: ‘interconnection with a dynamic controller yields
a stable closed loop system’. Obviously, the set of all systems satisfying the
control objective is

ΣO = {A′ ∈ R(n+q)×(n+q) | q ∈ N, and A′ is stable}.2

For a given dynamic controller K of the form (2.5), the corresponding set of
closed loop systems consistent with the data is equal to

ΣD(K) =
{[

A BM
LC K + LDM

]
| (A, B, C, D) ∈ ΣD

}
.

The data D are informative for stabilization by dynamic output feedback if
there exists a single controller K such that ΣD(K) ⊆ ΣO, i.e. the controller K
stabilizes all systems inM that are consistent with the data D. The problem is
to find necessary and sufficient under which D satisfies this property and, if so,
to design a suitable controller K. ■

Example 2.9. In some situations state data cannot be obtained, and only
input and output data are available. This means that our data are of the form
D = (U−, Y−), where

U− = U[0,T −1]

Y− = Y[0,T −1].

Assuming that our model class is still given by all systems of the form (2.4)
with dimensions n, m, and p given, the set of all system consistent with the data
becomes

ΣD :=
{

(A, B, C, D) | ∃X ∈ Rn×(T +1) s.t.
[
X+
Y−

]
=
[
A B
C D

] [
X−
U−

]}
.

Again, the data D are informative for stabilization by dynamic output feedback
if there exists a single controller K such that ΣD(K) ⊆ ΣO. If this holds, the
problem is to design a suitable dynamic controller K. ■

As stated in the introduction, in this book we will highlight the strength of
the informativity framework by solving multiple problems. In addition to the
noise-free setting of the previous examples, we will also consider data driven
analysis and control problems where the model class M consists of system mo-
dels with unknown process noise and/or measurement noise. An example of this
is the problem of quadratic stabilization by state feedback as illustrated below.

2We denote by N = {1, 2, ...} the set of natural numbers.
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Example 2.10. For given n and m, consider the model class M consisting of
all discrete-time linear input-state systems with unknown process noise of the
form

x(t + 1) = Ax(t) + Bu(t) + w(t)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input and w(t) ∈ Rn is
an unknown noise term. Suppose we have data (U−, X) given by (2.1). The
noise w is unknown, so w(0), w(1), . . . , w(T − 1) are not measured and hence
are not part of the data. However, as part of the data D we do assume that
we have the following information on the noise during the data sampling period:
the individual noise samples w(0), w(1), . . . , w(T −1) satisfy the pointwise norm
bound

∥w(t)∥2
2 ⩽ ε for t ∈ [0, T − 1] (2.7)

for some known upper bound ε > 0. In other words, the data D consist of
the measurements (U−, X) together with the information that the noise on the
sampling interval satisfies the inequality (2.7). Define

W− := W[0,T −1].

Then we see that the set ΣD is equal to the set of all systems (A, B) explaining
the numerical data (U−, X) together with the information (2.7) on the noise,
i.e., all (A, B) satisfying

X+ = AX− + BU− + W− (2.8)

for some W− satisfying (2.7):

ΣD = {(A, B) | (2.8) holds for some W− satisfying (2.7)}.

We will now formulate a control objective O. Let Q be a given real positive
definite n× n matrix. The control objective O depends on this given matrix Q
and is taken as: ‘interconnection with a state feedback controller yields a stable
closed loop system with Lyapunov function V (x) = x⊤Qx ’. Hence the set ΣO
is given by

ΣO = {A ∈ Rn×n | Q−A⊤QA > 0}.

For a given state feedback controller K = K ∈ Rm×n, the set of closed loop
systems is equal to

ΣD(K) = {A + BK | (A, B) ∈ ΣD}.

In accordance with Definition 2.4, the data D are informative for the control
objective O if there exists a single controller K such that A + BK is stable with
Lyapunov function V (x) = x⊤Qx for all (A, B) ∈ ΣD.
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The informativity problem is now to find necessary and sufficient conditions
on the data D (so on the numerical data (X, U−) and on the positive real number
ε that represent the bound on the noise) under which there exists a positive
definite matrix Q such that the data are informative for the control objective
O. In that case, we will call the data informative for quadratic stabilization. In
addition, we want to find a suitable controller K. ■

In this book, we will extensively study a range of analysis and control design
problems within the data informativity framework, including those illustrated
in the examples of this chapter. As explained before, the main tool for verifying
whether a given system property holds for the unknown system will be to check
whether the property holds for all systems in the model class that are consistent
with the data. Any test for verifying this will always be a test in terms of the given
data set, and such a test will obviously depend on the particular property that
needs to be verified. Once all systems in the set of systems that are consistent
with the data satisfy the given system property, also the true system will.

In the same way, the crucial idea in designing a controller that achieves a
given control objective for the unknown system will be to design a single con-
troller that achieves the design objective for all systems consistent with the data.
Here, the main problem will be to establish necessary and sufficient conditions
for the existence of such controller. These conditions will be in the form of a
test on the data. Once this test confirms that a suitable controller indeed exists,
the problem is to design such controller based on the given data. In the end,
this controller will then achieve the control objective for all systems consistent
with the data.

Note that this setup is reminiscent of the problem of robust control design.
In fact, in robust control one typically considers a nominal system with an un-
certainty set around it. There, the problem is to find controllers that achieve the
design objective for all systems in the uncertainty set. The framework that we
consider in this book circumvents finding a nominal system and an uncertainty
set. Instead, we work directly with the set of consistent systems induced by the
given data. In other words, the ‘system uncertainty’ is determined immediately
by the given data, and no attempt is made to find a nominal system and an
uncertainty description that is suitable for existing methods in robust control
design. The given data are called informative for a given design objective if the
associated robust control problem allows a solution for the system uncertainty
imposed by the data.

Of course, once a model class is given and data have been obtained, the
set of systems consistent with these data will be nonempty, since as a standing
assumption we assume that the unknown true system has generated these data,
and is therefore consistent with the data. In general, this set will contain an
infinite number of systems: all systems that could also have generated the same
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data. We will illustrate this by means of the following example.

Example 2.11. Consider the true (but unknown) system

x(t + 1) = Atruex(t) + Btrueu(t)

where Atrue and Btrue are given by

Atrue =
[
1.5 0
1 0.5

]
, Btrue =

[
1
0

]
.

We collect data from this system on the time interval from t = 0 until t = 2,
which results in the data D = (X, U−) with

X =
[
1 0.5 −0.25
0 1 1

]
, U− =

[
−1 −1

]
.

As model class M we take

M = {(A, B) | A ∈ R2×2, B ∈ R2×1}.

Recall from Example 2.2 that the set of all systems ΣD that are consistent with
the data is given by

Σ(U−,X) =
{

(A, B) ∈M | X+ =
[
A B

] [X−
U−

]}
.

It is easily verified that (A, B) ∈ Σ(U−,X) if and only if

A =
[
1.5 + a1 0.5a1
1 + a2 0.5 + 0.5a2

]
, B =

[
1 + a1

a2

]
for some a1, a2 ∈ R. Thus, Σ(U−,X) is an (infinite) affine subset of R2×2×R2×1.
In fact, it will be shown in Chapter 6 of this book that the data given above
are informative for stabilization by state feedback, meaning that a single state
feedback control law u = Kx exists that stabilizes all systems in Σ(U−,X), so
also the unknown, true system. ■

A particular special case occurs if, for a given model class and a given set of
data, the set of systems consistent with these data is a singleton, i.e. consists of
exactly one system. If this is the case, then this single system must be the true
system. We will then call the data informative for system identification.

Definition 2.12. Let M be a model class and let D be a given set of data.
We say that the data D are informative for system identification if the set ΣD
contains exactly one element.
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The following is then a natural, high level, formulation of the problem of
system identification.

Problem 2.13 (System identification). Find necessary and sufficient conditions
on the data D to be informative for system identification. If so, determine the
unique element of ΣD.

In case the data are informative for identification, then verifying a system
property within the informativity framework amounts to verifying this property
for the unique system consistent with the data (i.e., the true system). On a
conceptual level, this can be done using two different approaches. A first ap-
proach is to actually identify the true system using the data, and subsequently
verify the given property using existing (model based) methods. A second ap-
proach is to directly verify the given system property using a test in terms of
the data. As explained before in this introduction, the first approach is called
indirect, whereas the second approach is called direct. Similarly, in case the data
are informative for identification, we can distinguish between the direct and the
indirect approach to control design.

We will illustrate the distinction between the indirect and direct approach
by means of the following example.
Example 2.14. For given n and m, let the model class M be the set of all
linear input-state systems of the form

x(t + 1) = Ax(t) + Bu(t).

As in Example 2.2, suppose we have collected data (U−, X). The set ΣD is
equal to Σ(U−,X) defined by (2.3). It will be shown later in this book (see
Section 3.1) that the data D are informative for system identification if and only
if the (n + m)× T matrix [

X−
U−

]
(2.9)

has full row rank (i.e., has linearly independent rows). If this is the case, then
the unique element (Atrue, Btrue) of ΣD (which must be the true system that has
actually generated the data) is given by[

Atrue Btrue
]

= X+
[
V1 V2

]
(2.10)

where
[
V1 V2

]
is any right inverse3 of the matrix in (2.9).

Suppose now that we want to check internal stability of our unknown system.
Call this property P. The indirect approach (assuming that we have informa-
tivity for identification) for verifying the property P is now to compute Atrue

3We say that V is a right inverse of a matrix M if MV = I. We denote any such right
inverse by M♯.
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using (2.10) and to apply any standard test for checking whether Atrue is stable
(i.e., has all its eigenvalues inside the unit disc).

Instead, a direct approach is to establish a test in terms of the data directly,
without the intermediate step of identification. Indeed, later on in this book (see
Section 3.3) it will be shown that all system in ΣD have the property P if and
only if the data D satisfy the following conditions: X− has full row rank and it
has a right inverse X♯

− such that U−X♯
− = 0 and X+X♯

− is stable. Clearly, this
test circumvents the identification step and is completely in terms of the data.
It should be noted that the latter test does not even require informativity for
identification. ■

In the previous example, we have discussed informativity for system iden-
tification in the presence of input-state data. A more challenging problem is
identification in the situation where the state of the system is not measured and
its dimension is not given. This is discussed in the following example.
Example 2.15. Given integers m, p ∈ N and N ∈ Z+, consider the controllable
and observable input-state-output system

x(t + 1) = Atruex(t) + Btrueu(t)
y(t) = Ctruex(t) + Dtrueu(t)

where u(t) ∈ Rm, y(t) ∈ Rp, and x(t) ∈ Rntrue with ntrue ⩽ N . Here, the
true system matrices Atrue, Btrue, Ctrue and Dtrue are unknown. Also, the true
state-space dimension ntrue is unknown, but an upper bound N is given. In this
setting, the model class M consists of all controllable and observable systems

(A, B, C, D) ∈ Rn×n × Rn×m × Rp×n × Rm×p

with m inputs, p outputs, and n ⩽ N states. We collect input-output data
(U−, Y−) from the true system. Now, a system (A, B, C, D) ∈ M is consistent
with the input-output data if

X+ = AX− + BU−

Y− = CX− + DU−
(2.11)

holds for some X ∈ Rn×(T +1) with n ⩽ N . The set of all systems consistent with
the data (U−, Y−) is denoted by Σ(U−,Y−). We call the data (U−, Y−) informative
for system identification if all systems in Σ(U−,Y−) have precisely ntrue states,
and any pair of systems in Σ(U−,Y−) is isomorphic, that is,

(A, B, C, D), (Ā, B̄, C̄, D̄) ∈ Σ(U−,Y−)

implies that there exists a nonsingular S ∈ Rntrue×ntrue such that

SAS−1 = Ā, SB = B̄, CS−1 = C̄, and D = D̄.
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In other words, the data (U−, Y−) uniquely determine the true state-space di-
mension ntrue, and the true system matrices Atrue, Btrue, Ctrue and Dtrue up to a
similarity transformation. In Chapter 11 we will provide necessary and sufficient
conditions on the input-output data to be informative for system identification.
■

If our model class M involves systems with process and/or measurement
noise, then in general a set of data D will not be informative for identification,
i.e. the set ΣD will contain infinitely many systems. This can, for example,
be seen from Example 2.10, where ΣD will contain infinitely many elements,
regardless of the algebraic properties of the numerical data (U−, X), due to the
presence of the wide range of noise matrices W− satisfying the inequality (2.7).
This observation highlights the fact that the informativity framework, as it is
dedicated to the direct approach to system analysis and control design, can be
particularly useful in the context of systems with noise.

Although in this book we will be mainly concerned with the direct approach,
in the context of systems without noise a natural question is how to generate
data that are informative for identification. This question touches upon the
problem of experiment design, an issue that will be addressed in Chapter 12 of
this book. This problem is formulated as follows.

Problem 2.16 (Experiment design). Given a model classM, design an exper-
iment to generate data D that are informative for system identification.

We will illustrate the issue of experiment design in the following example.

Example 2.17. For given n and m, consider the model class M consisting of
all controllable linear input-state systems of the form

x(t + 1) = Ax(t) + Bu(t)

where x(t) ∈ Rn and u(t) ∈ Rm. Our aim is to obtain data (U−, X) that are
informative for system identification, equivalently, the matrix in (2.9) has full
row rank. First, note that this matrix is (n + m) × T , where T represents the
length of the sampling interval. Suppose now that we are free to choose T and a
suitable input sequence u[0,T −1]. Choosing this input sequence in an appropriate
way will be our experiment design. It follows immediately from the fundamental
lemma (see Theorem 1.2) that if we choose the input sequence u[0,T −1] to be
persistently exciting of order n + 1, i.e., the Hankel matrix

Hn+1(u[0,T −1]) =


u(0) u(1) · · · u(T − n− 1)
u(1) u(2) · · · u(T − n)

...
...

...
u(n) u(n + 1) · · · u(T − 1)

 (2.12)
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has full row rank, then indeed for any initial state x(0) the resulting data matrix
(2.9) has full row rank. Thus, within the model class of controllable input-state
systems one can always uniquely identify the true system by first applying to the
unknown system a suitable (persistently exciting) finite length input sequence,
followed by ‘harvesting’ a corresponding state sequence. ■

We will conclude this chapter with an example illustrating data informativity
for systems with unbounded noise.
Example 2.18. Consider the linear input-state-output systems with noise given
by

x(t + 1) = Atruex(t) + Bu(t) + Ew(t) (2.13a)
y(t) = Cx(t) + Du(t) + Fw(t) (2.13b)

where u is the m-dimensional control input, x is the n-dimensional state, y the
p-dimensional output, and w r-dimensional unknown noise. In this example, we
assume that the system is only partly unknown, in the sense that the true state
matrix Atrue is unknown and can be any real n × n matrix, but the matrices
B, C, D, E and F are known. The term Ew represents process noise, whereas
Fw represents measurement noise. Thus, our model class M consists of all
systems of the form

x(t + 1) = Ax(t) + Bu(t) + Ew(t) (2.14a)
y(t) = Cx(t) + Du(t) + Fw(t) (2.14b)

parametrized by A ∈ Rn×n.
We assume that we have input-state-output data D = (U−, X, Y−) on a given

finite time interval [0, T ]. A system inM is consistent with the data if and only
if there exists a real r × T matrix W− such that

X+ = AX− + BU− + EW− (2.15a)
Y− = CX− + DU− + FW−. (2.15b)

Hence the set of systems in M consistent with the data can be represented as

ΣD = {A ∈ Rn×n | there exists W− such that (2.15) holds}

As an example, take the property P as: ‘the system is detectable’, i.e., the ‘true’
pair (C, Atrue) is a detectable pair. Then, as before, the data D are informative
for property P if for all A ∈ ΣD the pair (C, A) is detectable. The problem is
to find necessary and sufficient conditions on D for this to hold. Yet another
property could be: ‘the system is controllable’, i.e. the true pair (Atrue, B) is a
controllable pair. The data are informative for this property if for all A ∈ ΣD the
pair (A, B) is controllable. These issues will be discussed in detail in Chapter 5
of this book. ■
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2.3 Notes and references

In this chapter, we have defined a general notion of data informativity for system
analysis and control design. The first paper that studied data informativity in
this context was [175], see also the overview paper [173]. The terminology of
‘data informativity’ finds its roots in system identification [60, 61, 96], where
informativity is usually understood as a condition on the data under which
it is possible to distinguish between different models in a (parametric) model
class. Here, we are not necessarily interested in distinguishing between different
models, but rather want to understand whether it is possible to assess a system-
theoretic property, or to synthesize a controller using the data. As we will see
in later chapters of this book, this is often possible even when the data do not
allow us to distinguish between different (data-consistent) systems.
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3

System properties from data

This chapter deals with data-driven analysis of basic system-theoretic proper-
ties. We will establish tests on the data to be informative for identification,
controllability, stability and stabilizability. This will be done both for systems
with noise and for the noiseless case.

3.1 Informativity for identification

In this section, we will study informativity for identification as defined in Defini-
tion 2.12 and illustrated in Example 2.14. As in Example 2.2, suppose we have
some unknown system S given by

x(t + 1) = Atruex(t) + Btrueu(t) (3.1)

where x is the n-dimensional state and u is the m-dimensional input. The
dimensions n and m are assumed to be known, but the matrices (Atrue, Btrue)
are unknown. We embed the unknown system S into the model classM, which
we take as the set of all discrete-time linear input-state systems (with given state
space dimension n and input dimension m) of the form

x(t + 1) = Ax(t) + Bu(t). (3.2)

Suppose the data set is given by D = (U−, X) with U− and X collecting the
data obtained from the true system (3.1) on the time interval [0, T ], defined by
(2.1) as

U− = U[0,T −1] =
[
u(0) u(1) · · · u(T − 1)

]
X = X[0,T ] =

[
x(0) x(1) · · · x(T )

]
.

The set of all systems inM consistent with these data is then equal to Σ(U−,X)
defined by

Σ(U−,X) :=
{

(A, B) ∈M | X+ =
[
A B

] [X−
U−

]}
(3.3)

with X− and X+ defined by (2.2) as

X− = X[0,T −1]

X+ = X[1,T ].
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By assumption we have (Atrue, Btrue) ∈ Σ(U−,X).
Note that the defining equation of (3.3) is a system of linear equations in

the unknowns A and B. The solution space of the corresponding homogeneous
equation is denoted by Σhom

(U−,X) and is equal to

Σhom
(U−,X) :=

{
(A0, B0) | 0 =

[
A0 B0

] [X−
U−

]}
. (3.5)

Now recall from Definition 2.12 that the data (U−, X) are informative for sys-
tem identification if the set Σ(U−,X) contains exactly one system. If this is the
case, this system is necessarily equal to the unknown system (Atrue, Btrue). The
following theorem gives necessary and sufficient conditions for this to hold:

Theorem 3.1. The data (U−, X) are informative for system identification if
and only if

rank
[
X−
U−

]
= n + m. (3.6)

Now, suppose that (3.6) holds. Then for any right inverse of
[
X−
U−

]
, partitioned

as [
X−
U−

]♯

=
[
V1 V2

]
where V1 ∈ RT ×n and V2 ∈ RT ×m, we have Atrue = X+V1 and Btrue = X+V2.

Proof. Obviously, Σ(U−,X) contains exactly one element if and only if the so-
lution set (3.5) of the homogeneous equation only contains (0, 0). This is the
case if and only if (3.6) holds. For any right inverse

[
V1 V2

]
then, the unique

solution (Atrue, Btrue) of the inhomogeneous linear equation

X+ =
[
A B

] [X−
U−

]
is then given by (Atrue, Btrue) = X+

[
V1 V2

]
. □

Note that this result confirms the claims made in Example 2.14.

3.2 Controllability and stabilizability from data

As we will show in this section, condition (3.6) is not necessary to perform
data-driven analysis in general. Indeed, we will establish data-driven tests for
verifying controllability and stabilizability that do not require the data to be
informative for system identification.
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Recall the well-known Hautus test for controllability: a system (A, B) is
controllable if and only if

rank
[
A− λI B

]
= n (3.7)

for all λ ∈ C. For stabilizability, the Hautus test requires that (3.7) holds for all
λ outside the open unit disc. We refer to [160, Thm. 3.13] for a discussion of
Hautus tests for continuous-time linear systems. For discrete-time systems, the
conditions are analogous, as explained here.

Now recall from Definition 2.1 the definition of informativity of data for a
given system property. In the following we apply this setup to study informa-
tivity of input-state data as introduced in Section 2.2 to the properties P of
controllability and stabilizability. In accordance with Definition 2.1 we have the
following notions of informativity for controllability and stabilizability:

Definition 3.2. We say that the data (U−, X) are informative for controllability
if all systems in Σ(U−,X) are controllable and informative for stabilizability if all
systems in Σ(U−,X) are stabilizable.

The following theorem gives necessary and sufficient conditions on the input-
state data to be informative for these two properties. The result provides tests
on the given data matrices.

Theorem 3.3 (Data-driven Hautus tests). The data (U−, X) are informative
for controllability if and only if

rank(X+ − λX−) = n for all λ ∈ C. (3.8)

Similarly, the data (U−, X) are informative for stabilizability if and only if

rank(X+ − λX−) = n for all λ ∈ C with |λ| ⩾ 1. (3.9)

Before proving the theorem, we will discuss some of its implications. We
begin with computational issues.

Remark 3.4. Similar to the classical Hautus test, (3.8) and (3.9) can be verified
by checking the rank for finitely many complex numbers λ. Indeed, (3.8) is
equivalent to rank(X+) = n and

rank(X+ − λX−) = n

for all λ ̸= 0 with λ−1 ∈ σ(X−X♯
+), where X♯

+ is any right inverse of X+.
Here, we recall that σ(M) denotes the spectrum, i.e. set of eigenvalues of the
matrix M . In order to prove this, note that one direction of this equivalence is
obvious. Conversely, assume that (3.8) does not hold. Then there exists λ ∈ C
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and v ∈ Cn, v ̸= 0 such that v∗(X+ − λX−) = 0. Since X+ has rank n, it has
a right-inverse X♯

+, from which we obtain v∗(I − λX−X♯
+) = 0. Since v ̸= 0 we

have λ ̸= 0 and therefore also v∗(λ−1I−X−X♯
+) = 0. Hence λ−1 is an eigenvalue

of X−X♯
+, which yields a contradiction.

Similarly, (3.9) is equivalent to rank(X+ −X−) = n and

rank(X+ − λX−) = n

for all λ ̸= 1 with (λ − 1)−1 ∈ σ(X−(X+ − X−)♯), where (X+ − X−)♯ is any
right inverse of X+ −X−. The proof of this equivalence is left to the reader.

As announced at the beginning of this section, there are situations in which
we can conclude controllability or stabilizability from the data without being
able to identify the true system uniquely. This is illustrated in the following
example.

Example 3.5. Suppose that n = 2 and m = 1. Assume we collect data on the
time interval [0, T ] with T = 2 to obtain

X =
[
0 1 0
0 0 1

]
and U− =

[
1 0

]
.

This implies that

X+ =
[
1 0
0 1

]
and X− =

[
0 1
0 0

]
.

Clearly, by Theorem 3.3 we see that these data are informative for controllability,
as

rank
[
1 −λ
0 1

]
= 2 ∀λ ∈ C.

Since therefore all systems consistent with the data are controllable, we conclude
that the true system is controllable. Note that the data are not informative for
system identification, because

Σ(U−,X) =
{([

0 a1
1 a2

]
,

[
1
0

])
| a1, a2 ∈ R

}
(3.10)

so the set of systems that are consistent with the data contains infinitely many
elements. ■

Proof of Theorem 3.3. We will only prove the characterization of informativ-
ity for controllability. The proof for stabilizability uses very similar arguments,
and is hence omitted.
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Note that the condition (3.8) is equivalent to the implication:

z ∈ Cn, λ ∈ C and z∗X+ = λz∗X− =⇒ z = 0. (3.11)

Suppose that the implication (3.11) holds. Let (A, B) ∈ Σ(U−,X) and sup-
pose that z∗ [A− λI B

]
= 0. We want to prove that z = 0. Note that

z∗ [A− λI B
]

= 0 implies that

z∗ [A− λI B
] [X−

U−

]
= 0

or equivalently z∗X+ = λz∗X−. This means that z = 0 by (3.11). We conclude
that (A, B) is controllable, i.e., the data (U−, X) are informative for controlla-
bility.

Conversely, suppose that (U−, X) are informative for controllability. Let
z ∈ Cn and λ ∈ C be such that z∗X+ = λz∗X−. This implies that for all

(A, B) ∈ Σ(U−,X), we have z∗ [A B
] [X−

U−

]
= λz∗X−. In other words,

z∗ [A− λI B
] [X−

U−

]
= 0. (3.12)

We now distinguish two cases, namely the case that λ is real, and the case
that λ is complex. First suppose that λ is real. Without loss of generality, z is
real. We want to prove that z = 0. Suppose on the contrary that z ̸= 0 and
z⊤z = 1. We define the (real) matrices

Ā := A− zz⊤(A− λI) and B̄ := B − zz⊤B.

In view of (3.12), we find that (Ā, B̄) ∈ Σ(U−,X). Moreover,

z⊤Ā = z⊤A− z⊤(A− λI) = λz⊤

and
z⊤B̄ = z⊤B − z⊤B = 0.

This means that
z⊤ [Ā− λI B̄

]
= 0.

However, this is a contradiction as (Ā, B̄) is controllable by the hypothesis that
the data (U−, X) are informative for controllability. We conclude that z = 0
which shows that (3.11) holds for the case that λ is real.

Next, we consider the case that λ is complex, say λ = σ + iω with ω ̸= 0. We
write z as z = p + iq, where p, q ∈ Rn. We now distinguish two special cases,
the case that p and q are linearly dependent and, secondly, the case that they
are linearly independent.
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If p and q are linearly dependent, then p = αq or q = βp for α, β ∈ R. If
p = αq then substitution of z = (α + i)q into z∗X+ = λz∗X− yields

(α− i)q⊤X+ = (σ + iω)(α− i)q⊤X−.

Thus, q⊤X+ = (σ−αω)q⊤X−, which means that q = 0 by the special case that
λ is real treated before. Then also p = 0 so we find z = 0. Using the same
arguments, we can show that z = 0 if q = βp.

Now assume that p and q are linearly independent. Since λ is complex, n ⩾ 2.
Therefore, by linear independence of p and q there exist η, ζ ∈ Rn such that[

p⊤

q⊤

] [
η ζ

]
=
[
1 0
0 −1

]
.

We now define the real matrices Ā and B̄ as

[
Ā B̄

]
:=
[
A B

]
−
[
η ζ

] [Re
(
z∗ [A− λI B

])
Im
(
z∗ [A− λI B

])] .

By (3.12) we have (Ā, B̄) ∈ Σ(U−,X). Next, we compute

z∗ [Ā B̄
]

= z∗ [A B
]
−
[
1 i

] [Re
(
z∗ [A− λI B

])
Im
(
z∗ [A− λI B

])]
= z∗ [A B

]
− z∗ [A− λI B

]
= z∗ [λI 0

]
.

This implies that z∗ [Ā− λI B̄
]

= 0. Using the fact that (Ā, B̄) is controllable,
we conclude that z = 0. This completes the proof of the theorem. □

3.3 Informativity for stability

In this section we will study how to check from the data obtained from some
unknown system whether this system is stable. Again assume our model class
M to consist of all systems of the form (3.2) with given state space dimension
n and input dimension m. Our data set is given by D = (U−, X) with U− and
X representing the data on the time interval [0, T ] as given by (2.1). As before,
the set of all systems in M consistent with these data is given by (3.3).

Definition 3.6. We say that the data (U−, X) are informative for stability if
for all (A, B) ∈ Σ(U−,X) the matrix A is stable, i.e. |λ| < 1 for all λ ∈ σ(A).

The following theorem gives conditions on the data to be informative for
stability.
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Theorem 3.7. The data (U−, X) are informative for stability if and only if X−
has full row rank and there exists a right-inverse X♯

− of X− such that X+X♯
− is

stable and U−X♯
− = 0. In that case we have that A = X+X♯

− for all (A, B) ∈
Σ(U−,X), so in particular Atrue = X+X♯

−.

Proof. To prove the ‘if’ statement, let (A, B) ∈ Σ(U−,X). We need to prove
that A is stable. We have X+ = AX− + BU−. Assume that X− has full row
rank and take a right-inverse X♯

− with the properties as stated. Then clearly
X+X♯

− = AX−X♯
− + BU−X♯

− = A, so A is stable.
To prove the ‘only if’ statement, let z ∈ Rn and v ∈ Rm be such that

[
z⊤ v⊤] [X−

U−

]
= 0.

Take a fixed (A, B) ∈ Σ(U−,X). Then for all α ∈ R, the system (A + αzz⊤, B +
αvv⊤) ∈ Σ(U−,X) as well. Hence for all α, A + αzz⊤ is stable. In particular this
implies that | tr(A + αzz⊤)| < n. However, tr(A + αzz⊤) = tr(A) + αz⊤z and
therefore we must have z = 0. Thus,[

z
v

]
∈ ker

[
X⊤

− U⊤
−
]

implies z = 0

equivalently, ker
[
X⊤

− U⊤
−
]
⊆ ker

[
In 0

]
. By taking orthogonal complements,

this yields
im
[
In

0

]
⊆ im

[
X−
U−

]
.

Thus there exists a matrix W such that[
In

0

]
=
[
X−
U−

]
W.

Define X♯
− := W . This is a right-inverse of X− with the property that U−X♯

− =
0. Moreover, X+X♯

− = AX−X♯
− + BU−X♯

− = A is stable.
To prove the remaining statement, note that (A, B) ∈ Σ(U−,X) implies that

X+ = AX− + BU− so X+X♯
− = AX−X♯

− + BU−X♯
− = A. This completes the

proof. □

The above theorem shows that if the data are informative for stability then
they are informative for ‘partial’ identification in the sense that the true system
matrix Atrue is uniquely determined by the data. In general, however, the true
input matrix Btrue is not determined by the data. This is illustrated in the
following example.
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Example 3.8. Suppose our unknown system is (Atrue, Btrue) with

Atrue =
[
0 0
1 1

2

]
and Btrue =

[
2
1

]
.

Assume we have data for t = 0, 1, 2 given by

X =
[
1 0 0
0 1 1

2

]
, U− =

[
0 0

]
.

Then X− =
[
1 0
0 1

]
, X+X−1

− =
[
0 0
1 1

2

]
is stable, and U−X−1

− = 0. It can be
shown that

Σ(U−,X) =
{([

0 0
1 1

2

]
,

[
b1
b2

])
| b1, b2 ∈ R

}
.

■
In the above, we have given necessary and sufficient conditions for informa-

tivity of input-state data for systems with inputs. A relevant issue that remains
is to find conditions for informativity of data for autonomous systems, i.e. sys-
tems without inputs. In that case, the input matrix is absent, and the unknown
system S is of the form

x(t + 1) = Atruex(t) (3.13)
where the state x is n-dimensional. This situation requires a different model
class, namely the model class Maut consisting of all autonomous systems

x(t + 1) = Ax(t) (3.14)

where A ranges over all real n × n matrices. As data we now have state mea-
surements of the system S, collected in the matrix X, again as defined in (2.1).
The set of all autonomous systems consistent with these data is

ΣX := {A | X+ = AX−} .

Definition 3.9. We call the state data X informative for stability if all matrices
A ∈ ΣX are stable.

It turns out that the latter notion of informativity of state data is strongly
related to informativity for stabilizability as studied in Section 3.2. In order to
make this precise, recall the model classM of all input-state systems of the form
(3.2) with given state space dimension n and input dimension m. We have the
following lemma.

Lemma 3.10. Let m be any positive integer. Then the state data X are infor-
mative for stability (in the sense of Definition 3.9) if and only if the input-state
data (0m,T , X) are informative for stabilizability (in the sense of Definition 3.2).
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Proof. We first prove the ‘only if’ statement. Let (A, B) ∈ Σ(0m,T ,X), i.e. (A, B)
is consistent with the input-state data (0m,T , X). We need to prove that (A, B)
is stabilizable. Note that X+ = AX− + B0m,T . Obviously, this implies that
X+ = AX−. Since the state data X are informative for stability, this implies
that A is stable. But then also (A, B) is stabilizable.

Next we prove the ‘if’ statement. Assume that the data (0m,T , X) are in-
formative for stabilizability. Take any A ∈ ΣX . Then X+ = AX− = AX− +
0n,m0m,T , so (A, 0n,m) is consistent with the input-state data (0m,T , X). This
implies that the pair (A, 0n,m) is stabilizable, hence A must be stable. □

Using this lemma, we are now able to characterize informativity of the state
data.

Theorem 3.11. The data X are informative for stability if and only if X− has
full row rank and X+X♯

− is stable for any right inverse X♯
−. In that case the

set ΣX contains exactly one element. This unique system is equal to Atrue and
Atrue = X+X♯

−.

Proof. We first prove the ‘if’ part. Assume that X− has full row rank and
X+X♯

− is stable for any right inverse X♯
−. Let A be in ΣX . Since X+ = AX−,

this immediately yields A = X+X♯
−, so A is stable. This proves that the data

X are informative for stability.
Next we prove the ‘only if’ part. By Lemma 3.10, the (artificial) input-

state data (0m,T , X) are informative for stabilizability, and hence it follows from
Theorem 3.3 that

rank(X+ − λX−) = n for all λ ∈ C with |λ| ⩾ 1. (3.15)

Let z be such that z⊤X− = 0. Take any A ∈ ΣX and λ such that |λ| ⩾ 1. Then
λ is not an eigenvalue of A. Note that

z⊤(A− λI)−1(X+ − λX−) = z⊤X− = 0.

Since rank(X+ − λX−) = n, we may conclude that z = 0. Hence, X− has full
row rank. Therefore, the solution set of X+ = AX−, equivalently the set ΣX ,
contains exactly one element. By informativity this element is stable, and is
equal to X+X♯

− for any right inverse X♯
−, which is therefore stable. Finally, this

unique element must be equal to Atrue. □

Note from Theorem 3.3 that informativity for stability (with respect to the
model class of autonomous systems) implies that the true system can be uniquely
identified from the state data. This is in contrast with the notion of informativity
for stability as defined in Definition 3.6 (defined with respect to the model class
of input-state systems), where identifiability is not necessary, and where only
the true system matrix Atrue is uniquely determined by the data.
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3.4 Systems with noise

So far, we have obtained data-driven tests for verifying stability, controllability
and stabilizability of noiseless input-state systems. We have also established
a test for stability of noiseless autonomous systems. In the remainder of this
chapter we will study data-driven tests for input-state systems with noise and
for autonomous systems with noise. Before embarking on this, in the present
section we will first introduce the model classes of input-state systems with
noise and autonomous systems with noise that we will be using, and discuss the
assumptions that will be made on the noise samples.

We will start off with input-state systems. Suppose that the unknown, true
system is given by

x(t + 1) = Atruex(t) + Btrueu(t) + w(t) (3.16)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input and w(t) ∈ Rn is
an unknown noise term. The matrices Atrue ∈ Rn×n and Btrue ∈ Rn×m denote
the unknown state and input matrices. We embed this unknown system into
the model class M of all input-state systems with unknown process noise, with
fixed dimensions n and m, of the form

x(t + 1) = Ax(t) + Bu(t) + w(t). (3.17)

Suppose that we obtain data from the true system (3.16) on the time inter-
val [0, T ]. These data are given by (U−, X). The noise w is unknown, so
w(0), w(1), . . . , w(T − 1) are not measured, and therefore are not part of the
data. In addition to the data D we do however assume that we have the follow-
ing information on the noise during the data sampling period.

Assumption 3.12. The noise samples w(0), w(1), . . . , w(T − 1), collected in
the matrix

W− := W[0,T −1]

satisfy the quadratic matrix inequality[
I

W ⊤
−

]⊤

Φ
[

I
W ⊤

−

]
⩾ 0 (3.18)

where Φ ∈ Sn+T is a given partitioned matrix

Φ =
[
Φ11 Φ12
Φ21 Φ22

]
(3.19)

with Φ11 ∈ Sn, Φ12 ∈ Rn×T , Φ21 = Φ⊤
12 and Φ22 ∈ ST . Here we assume that

Φ ∈ Πn,T as defined in (A.11), i.e. Φ22 ⩽ 0, Φ |Φ22 ⩾ 0 and ker Φ22 ⊆ ker Φ12.
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In other words, in addition to the data D consisting of the measurements
(U−, X) we know that the noise on the sampling interval [0, T ] satisfies the
inequality (3.18) for a given known partitioned matrix Φ ∈ Πn,T .

As a result, the set of systems consistent with the data is now given by

ΣD = {(A, B) | X+ = AX− + BU− + W− for some W− satisfying (3.18)} .
(3.20)

Of course, an issue is whether the set of noise matrices W− defined by (3.18) is
nonempty, equivalently, whether the set ZT (Φ) associated with the partitioned
matrix Φ (as defined in (A.3)) is nonempty. This issue can be dealt with in The-
orem A.5. Indeed, under the assumption Φ ∈ Πn,T , the set ZT (Φ) is nonempty
and convex. Consequently then, the set of of noise matrices W− satisfying (3.18)
is nonempty and convex.

In order to make the above quadratic inequality constraint on the matrix of
noise samples more concrete, we will now look at a number of special cases.

(a) In the special case Φ12 = 0 and Φ22 = −I, the quadratic inequality (3.18)
reduces to

W−W ⊤
− =

T −1∑
t=0

w(t)w(t)⊤ ⩽ Φ11. (3.21)

The inequality (3.21) can be interpreted as saying that the energy of w
has a given upper bound on the time interval [0, T − 1].

(b) Let Ψ11 and Ψ22 be given positive definite matrices of dimensions T × T
and n × n, respectively, and suppose that the matrices of noise samples
W− satisfy the quadratic inequality

W ⊤
− Ψ22W− ⩽ Ψ11. (3.22)

Note that (3.22) is a ‘transposed version’ of (3.21). This inequality can
be reformulated as an inequality of the original form (3.18). Indeed, using
two Schur complement arguments, (3.22) is equivalent to[

Ψ11 W ⊤
−

W− Ψ−1
22

]
⩾ 0

which, in turn, holds if and only if Ψ−1
22 −W−Ψ−1

11 W ⊤
− ⩾ 0. The latter can

be expressed as [
I

W ⊤
−

]⊤ [Ψ−1
22 0
0 −Ψ−1

11

] [
I

W ⊤
−

]
⩾ 0.
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More generally, consider the noise model[
I

W−

]⊤

Ψ
[

I
W−

]
⩾ 0, (3.23)

where Ψ ∈ Sn+T is partitioned as

Ψ =
[
Ψ11 Ψ12
Ψ21 Ψ22

]
,

where Ψ11 ∈ Sn and Ψ22 ∈ ST . Assume that In(Ψ) = (T, 0, n). Then by
Lemma A.3 the ‘dual noise model’ (3.23) is equivalent to the noise model
(3.18) with

Φ :=
[

0 −IT

In 0

]
Ψ−1

[
0 −In

IT 0

]
,

in the sense that W− ∈ Zn(Ψ) if and only if W ⊤
− ∈ ZT (Φ).

(c) Norm bounds on the individual noise samples w(t) also give rise to bounds
of the form (3.18), although this does introduce some conservatism in
general. Indeed, note that for all t the pointwise norm bound ∥w(t)∥2

2 ⩽ ε
is equivalent to the matrix inequality w(t)w(t)⊤ ⩽ εI. As such, the bound
(3.21) is satisfied for Φ11 = TεI.

(d) In some cases, we may know a priori that the noise w does not directly
affect the entire state-space, but is contained in a subspace, say im E,
with E a known n × d matrix. This prior knowledge can be captured by
the noise model in Assumption 3.12. Indeed, suppose that w(t) = Eŵ(t)
for all t ∈ [0, T − 1], where ŵ(t) ∈ Rd and E ∈ Rn×d is a given matrix
of full column rank. The matrix Ŵ− = ŵ[0,T −1] captures the noise. As
before, Ŵ− is unknown but is assumed to satisfy Ŵ ⊤

− ∈ ZT (Φ̂), where
Φ̂ ∈ Πd,T is such that Φ̂22 < 0. Now, by Theorem A.7, W− = EŴ− for
some Ŵ ⊤

− ∈ ZT (Φ̂) if and only if W ⊤
− ∈ ZT (Φ), where

Φ :=
[
EΦ̂11E⊤ EΦ̂12
Φ̂21E⊤ Φ̂22

]
∈ Πn,T . (3.24)

The conclusion is that Assumption 3.12 also covers the case in which the
noise is constrained to a known subspace, which is captured by the noise
bound (3.18) with Φ in (3.24).

This shows that our noise model as introduced in Assumption 3.12 encompasses
many relevant special cases. This noise model will be adopted in most of the
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data-driven analysis and design problems based on noisy data that will be treated
in the remainder of this book.

In addition to input-state systems we can also consider autonomous systems
with noise. In that case we suppose that the unknown, true system is given by

x(t + 1) = Atruex(t) + w(t)

where x(t) ∈ Rn is the state and w(t) ∈ Rn is an unknown noise term. The ma-
trix Atrue ∈ Rn×n denotes the unknown state matrix. We embed this unknown
system into the model classM of all autonomous systems with unknown process
noise, with fixed dimension n, of the form

x(t + 1) = Ax(t) + w(t). (3.25)

The true system produces data X ∈ Rn×(T +1) on the time interval [0, T ] as
before, under the influence of an unknown sequence of noise samples, captured
in the matrix W− satisfying (3.18). The data D now consist of the state samples
X and the information that the noise satisfies the bound governed by the known
matrix Φ ∈ Πn,T . In this case, the set of consistent systems ΣD is given by

ΣD =
{

A ∈ Rn×n | X+ = AX− + W− for some W− satisfying (3.18)
}

.

3.5 Stability and stabilizability with noisy input-state data

In the present section we introduce the following four notions of informativity for
stability and stabilizability of input-state systems with noise of the form (3.17).
Definition 3.13. Let (U−, X) be data collected from (3.16) with noise matrix
W− satisfying (3.18). Let ΣD be given by (3.20). Then (U−, X) are called

(a) informative for stability if A is stable for all (A, B) ∈ ΣD.

(b) informative for quadratic stability if there exists a real matrix P > 0 such
that P −APA⊤ > 0 for all (A, B) ∈ ΣD.

(c) informative for stabilizability if every (A, B) ∈ ΣD is stabilizable.

(d) informative for quadratic stabilizability if there exists a real matrix P > 0
such that P −APA⊤ + BB⊤ > 0 for all (A, B) ∈ ΣD.

The informativity notion in Definition 3.13 (a) expresses that all systems
consistent with the data are internally stable. Property (b) requires something
more, namely that all of these systems not only are stable, but also have a
common Lyapunov function. Indeed, the linear matrix inequality1 (LMI)

P −APA⊤ > 0
1for a general reference on linear matrix inequalities, we refer to [144].
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holds for P > 0 if and only if P −1 − A⊤P −1A > 0. Thus, (b) means that all
systems in ΣD have the same (quadratic) Lyapunov function x⊤P −1x. Prop-
erty (c) entails that all systems consistent with the data are stabilizable. Lastly,
property (d) is its ‘quadratic’ variant, which we will now explain in more detail.
It turns out that for a single system (A, B), the existence of a P > 0 such that
P − APA⊤ + BB⊤ > 0 is necessary and sufficient for stabilizability. This is
shown in the following lemma.
Lemma 3.14. The system (A, B) is stabilizable if and only if there exists a
matrix P > 0 such that P −APA⊤ + BB⊤ > 0.

Proof. To prove the ‘if’ statement, let v ∈ Cn, v ̸= 0, be such that v∗A = λv
and v∗B = 0. Then (1− |λ|2) v∗Pv > 0 which yields |λ| < 1. Using the Hautus
test this implies that (A, B) is stabilizable.

Conversely, if (A, B) is stabilizable then there exists K ∈ Rm×n such that
A + BK is stable. As a consequence there exists P > 0 such that

P − (A + BK)P (A + BK)⊤ > 0.

By expanding this expression we obtain

P −APA⊤ −B(KPA + 1
2 KPK⊤B⊤)− (A⊤PK⊤ + 1

2 BKPK⊤)B⊤ > 0.

It then follows immediately from the standard Finsler’s lemma (see Proposi-
tion A.13) that there exists µ ∈ R such that

P −APA⊤ − µBB⊤ > 0.

We now distinguish two cases. If µ ⩾ 0, then P − APA⊤ > 0, so obviously
P −APA⊤ + BB⊤ > 0 as well. If µ < 0 then

1
−µ P −A( 1

−µ P )A⊤ + BB⊤ > 0

where 1
−µ P > 0. This completes the proof. □

In view of the above lemma, we see that property (d) in Definition 3.13 means
that not only all systems (A, B) ∈ ΣD are stabilizable, but in addition, there
exists a common matrix P > 0 such that P − APA⊤ + BB⊤ > 0 holds for all
(A, B) ∈ ΣD.

Clearly, (b) implies (a) and (d) implies (c). However, the other implications
do not hold in general, as demonstrated for the case of stabilizability in the
following example.
Example 3.15. Consider the case that n = 1, m = 1 and let the noise model
be given by

Φ =
[
0 0
0 −1

]
.
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We consider the (unknown) true system Atrue = 1, Btrue = 1 that has generated
the data u(0) = 1, x(0) = 0 and x(1) = 1 with the noise sample w(0) = 0
satisfying the noise model. In this case, the set of systems consistent with the
data is ΣD = {(a, 1) | a ∈ R}. Therefore, the data are informative for stabiliz-
ability. However, they are not informative for quadratic stabilizability since, for
any P > 0, we can make the expression P −a2P +1 negative by choosing a suffi-
ciently large. This shows that informativity for stabilizability and informativity
for quadratic stabilizability are not equivalent. ■

In the sequel we will provide conditions for the four notions of informativity
defined in Definition 3.13. In particular, in Section 3.6 we will establish con-
ditions for quadratic stability, and in Section 3.7 we will study conditions for
quadratic stabilizability. The non-quadratic versions require a more sophisti-
cated approach and their treatment is deferred to Section 3.9.

3.6 Tests for informativity for quadratic stability

In this section we will establish necessary and sufficient conditions under which
the data D obtained from (3.16) are informative for quadratic stability.

Informativity for quadratic stability requires all systems in ΣD to be stable
with a common Lyapunov function. The conditions that we will establish will be
in terms of feasibility of certain linear matrix inequalities involving the numerical
data (U−, X) and the (known) matrix Φ representing the quadratic inequality
constraint on the matrix of noise samples.

Again consider the model classM of all noisy input-state systems with state
dimension n and input dimension m of the form (3.17). Suppose we have input-
state data (U−, X) on the time interval [0, T ] and assume that, in addition, the
possible matrices W− of noise samples satisfy the quadratic inequality (3.18) for
a given matrix Φ ∈ Πn,T . Then the set ΣD of all systems consistent with the
data is given by (3.20).

We explicitly assume that the data (U−, X) have been obtained from the
unknown system (3.16). In other words, we assume that (Atrue, Btrue) ∈ ΣD. In
particular this implies that the set ΣD is nonempty.

We will now outline our strategy for characterizing informativity for quadratic
stability defined in Definition 3.13 (b). Let (A, B) ∈ ΣD and rewrite the equation
defining (3.20) as

W− = X+ −AX− −BU−. (3.26)

Recall that by Assumption 3.12, we have[
I

W ⊤
−

]⊤ [Φ11 Φ12
Φ21 Φ22

] [
I

W ⊤
−

]
⩾ 0.
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By substitution of (3.26), this yields

 I
A⊤

B⊤

⊤ I X+
0 −X−
0 −U−

[Φ11 Φ12
Φ21 Φ22

]I X+
0 −X−
0 −U−

⊤  I
A⊤

B⊤

 ⩾ 0. (3.27)

This shows that A and B satisfy a quadratic matrix inequality (QMI) of the
form (3.27). In fact, the set ΣD of all systems consistent with the data can be
equivalently characterized in terms of (3.27), as asserted in the following lemma.

Lemma 3.16. We have that ΣD = {(A, B) | (3.27) is satisfied}.

Proof. Suppose that (A, B) ∈ ΣD. Then (3.26) is satisfied for some W− satis-
fying (3.18). This means that (3.27) holds. Therefore,

ΣD ⊆ {(A, B) | (3.27) is satisfied} .

To prove the reverse inclusion, let (A, B) be such that (3.27) is satisfied. Define
W− := X+−AX−−BU−. By (3.27), W− satisfies Assumption (3.12). Since the
equation X+ = AX− +BU− +W− holds for (A, B) by construction, we conclude
that (A, B) ∈ ΣD. □

By Lemma 3.16 the set ΣD of systems consistent with the data is charac-
terized by a quadratic matrix inequality in (A, B). Next, suppose that we fix a
Lyapunov matrix P > 0. Note that the inequality P −APA⊤ > 0 is equivalent
to  I

A⊤

B⊤

⊤ P 0 0
0 −P 0
0 0 0

 I
A⊤

B⊤

 > 0 (3.28)

which is yet another quadratic matrix inequality in A and B. Therefore, char-
acterizing informativity for quadratic stability essentially boils down to under-
standing under which conditions there exists a matrix P > 0 such that the
quadratic matrix inequality (3.28) holds for all (A, B) satisfying the quadratic
matrix inequality (3.27). This naturally leads to the following fundamental ques-
tion.

When does one QMI imply another QMI?

A detailed discussion on this question can be found in the appendix (see Sec-
tion A.3). We will now apply the theory developed there in order to obtain
necessary and sufficient conditions on the data to be informative for quadratic
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stability. To this end, for given P = P ⊤ > 0 define the partitioned matrices

M =
[

M11 M12

M⊤
12 M22

]
:=

 P 0 0
0 −P 0
0 0 0

 (3.29)

N =
[

N11 N12

N⊤
12 N22

]
:=

 I X+

0 −X−

0 −U−

[Φ11 Φ12
Φ21 Φ22

] I X+

0 −X−

0 −U−


⊤

. (3.30)

Recall that informativity for quadratic stability entails deciding whether there
exists P so that (3.28) holds for all (A, B) satisfying (3.27). In terms of the
matrices M and N as defined above, we thus have to decide whether[

I
Z

]⊤

M

[
I
Z

]
> 0 for all Z ∈ R(n+m)×n such that

[
I
Z

]⊤

N

[
I
Z

]
⩾ 0, (3.31)

where Z is given by
Z :=

[
A⊤

B⊤

]
.

Using the sets defined in (A.3) and (A.12) (see Section A.2), condition (3.31)
can be equivalently restated as

Zn+m(N) ⊆ Z+
n+m(M). (3.32)

Strict matrix S-lemmas (Theorem A.20 and Corollary A.23) give conditions such
that (3.32) holds. In fact, these theorems give necessary and sufficient conditions
for (3.32) to hold. Obtaining sufficient conditions is straightforward. However,
showing that these conditions are also necessary requires the full force of these
results, for which it is required to verify their assumptions on N and M as given
by (3.29) and (3.30).

We will start off with the assumptions of Corollary A.23, which requires that
N22 ⩽ 0, ker N22 ⊆ ker N12, N |N22 ⩾ 0 and M22 ⩽ 0. Obviously, M22 ⩽ 0 since
P > 0. Also,

N22 =
[
X−
U−

]
Φ22

[
X−
U−

]⊤

⩽ 0

because Φ22 ⩽ 0 by the assumption that Φ ∈ Πn,T . We also see that

ker N22 = ker
(

Φ22

[
X−
U−

]⊤)
ker N12 = ker

(
(Φ12 + X+Φ22)

[
X−
U−

]⊤)
.
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Using the assumption ker Φ22 ⊆ ker Φ12 this implies ker N22 ⊆ ker N12. Next
we prove that N | N22 ⩾ 0. Indeed, recall that Zn+m(N) = ΣD is nonempty
because of the assumption that it contains the true system (Atrue, Btrue). Since in
addition N22 ⩽ 0, by applying inequality (A.10) with Π = N we get N |N22 ⩾ 0.

Corollary A.23 now asserts that (3.32) holds if and only if there exist scalars
α ⩾ 0 and β > 0 such

M − αN ⩾

βI 0 0
0 0 0
0 0 0

 . (3.33)

Of course, the matrix P that appears in M is not given. However, by the above
discussion, the data (U−, X) are informative for quadratic stability if and only
if there exist an n×n matrix P > 0, and two scalars α ⩾ 0 and β > 0 such that
(3.33) holds. Note that (3.33) is a linear matrix inequality in P , α and β. Due
to the particular structure of M and N , it turns out that the scalar α must in
fact be positive, and therefore the inequality (3.33) can be scaled by 1

α . Thus
we obtain the following theorem that characterizes informativity for quadratic
stability in terms of feasibility of a linear matrix inequality composed of the data
(U−, X) and the given Φ-matrix.

Theorem 3.17. The data (U−, X) are informative for quadratic stability if and
only if there exists an n× n matrix P > 0, and a scalar β > 0 satisfyingP − βI 0 0

0 −P 0
0 0 0

−
I X+

0 −X−
0 −U−

[Φ11 Φ12
Φ21 Φ22

]I X+
0 −X−
0 −U−

⊤

⩾ 0. (3.34)

Proof. By Corollary A.23, the inclusion (3.32) holds if and only if there exist
scalars α ⩾ 0 and β > 0 such thatP − βI 0 0

0 −P 0
0 0 0

− α

I X+
0 −X−
0 −U−

[Φ11 Φ12
Φ21 Φ22

]I X+
0 −X−
0 −U−

⊤

⩾ 0.

Taking a look at the (2, 2) block in this inequality, we see that we must have
−P − αX−Φ22X⊤

− ⩾ 0. Since P > 0 this yields α > 0. By scaling P and β by
1
α we arrive at the inequality (3.34). □

Next, we will show that under the additional assumption that

rank
[
X−
U−

]
= n + m (3.35)

we can apply Theorem A.20 to obtain alternative conditions for informativity for
quadratic stability. Indeed, in Theorem A.20 the assumptions are that N22 < 0
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and N |N22 ⩾ 0. As we have already proven above, the second condition is indeed
satisfied. The condition N22 < 0 holds if we impose the condition Φ22 < 0 and
the full row rank condition (3.35).

In that case, Theorem A.20 asserts that (3.32) holds if and only if there exist
a scalar α ⩾ 0 such that M − αN > 0. As in the previous, the scalar α is
necessarily positive, and therefore this inquality can be scaled. This leads to the
following theorem.

Theorem 3.18. Assume that Φ22 < 0 and the full rank condition (3.35) holds.
Then the data (U−, X) are informative for quadratic stability if and only if there
exists an n× n matrix P > 0 satisfyingP 0 0

0 −P 0
0 0 0

−
I X+

0 −X−
0 −U−

[Φ11 Φ12
Φ21 Φ22

]I X+
0 −X−
0 −U−

⊤

> 0. (3.36)

In contrast to the notion of informativity for stability in the exact data set-
ting, as studied in Theorem 3.7, we note that informativity for quadratic stability
does not imply that Atrue is uniquely identifiable from the data. However, by
inspection of the (2, 2)-block of (3.36), we do note that a necessary condition for
informativity for quadratic stability is that X− has full row rank.

3.7 A test for informativity for quadratic stabilizability

In this section we will derive tests for verifying informativity for quadratic sta-
bilizability, as defined in Definition 3.13 (d). Again, these tests will involve
feasibility of linear matrix inequalities composed of the data (U−, X) and the
given matrix Φ.

As in Section 3.6, we consider the model class M of all noisy input-state
systems (3.17) with state dimension n and input dimension m. Also, we assume
that we have input-state data (U−, X) on the time interval [0, T ], with the prior
information that the possible matrices W− of noise samples satisfy the quadratic
inequality (3.18) for a given Φ ∈ Πn,T . Then the set ΣD of all systems consistent
with the data is given by (3.20). Recall that we assume that the unknown system
(Atrue, Btrue) is in ΣD, which is therefore nonempty.

Recall from Lemma 3.16 that ΣD is equal to the set of all (A, B) that satisfy
the quadratic matrix inequality (3.27). On the other hand, also the inequality
P −APA⊤ + BB⊤ > 0 can be reformulated as a quadratic matrix inequality in
A and B. Indeed, for given P > 0, this matrix inequality holds if and only if I

A⊤

B⊤

⊤ P 0 0
0 −P 0
0 0 I

 I
A⊤

B⊤

 > 0 (3.37)
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Hence, characterizing informativity for quadratic stabilizability amounts to find-
ing necessary and sufficient conditions under which the quadratic matrix inequal-
ity (3.37) holds for all (A, B) satisfying the quadratic matrix inequality (3.27).
As before, let N be given by (3.30). For given P = P ⊤ > 0 define

M =
[

M11 M12

M⊤
12 M22

]
:=

 P 0 0
0 −P 0
0 0 I

 .

Then, again, we have to find conditions in terms of the matrices M and N
such that Zn+m(N) ⊆ Z+

n+m(M). Note that in this case not all assumptions of
Corollary A.23 can be satisfied. In particular the condition M22 ⩽ 0 never holds.
However we are able to apply Theorem A.20 under the additional assumption
Φ22 < 0 on the noise model and the full rank condition (3.35) on the data.
Indeed, under these assumptions we have N22 < 0, so Theorem A.20 states
that Zn+m(N) ⊆ Z+

n+m(M) if and only if there exists a scalar α ⩾ 0 such that
M −αN > 0. Thus we obtain the following characterization of informativity for
quadratic stabilizability.

Theorem 3.19. Assume that Φ22 < 0 and the full rank condition (3.35) holds.
Then the data (U−, X) are informative for quadratic stabilizability if and only
if there exist a scalar α ⩾ 0 and an n× n matrix P > 0 satisfyingP 0 0

0 −P 0
0 0 I

− α

I X+
0 −X−
0 −U−

[Φ11 Φ12
Φ21 Φ22

]I X+
0 −X−
0 −U−

⊤

> 0. (3.38)

Finally, we note that (3.38) can be further simplified. In particular, (3.38) is
equivalent to a linear matrix inequality of size 2n× 2n. This is made precise in
the following corollary.

Corollary 3.20. Assume that Φ22 < 0 and the full rank condition (3.35) holds.
Then the data (U−, X) are informative for quadratic stabilizability if and only
if there exists a real matrix P > 0 such that[

P 0
0 −P

]
−
[
I X+
0 −X−

] [
Φ11 Φ12
Φ21 Φ22

] [
I X+
0 −X−

]⊤

> 0. (3.39)

Proof. By Theorem 3.19, the data (U−, X) are informative for quadratic sta-
bilizability if and only if there exists a matrix P > 0 and a real number α ⩾ 0
such that (3.38) holds.

By zooming in on the (2, 2)-block of that inequality, we observe that the
inequality can hold only if α > 0. Hence, feasibility of (3.38) is equivalent to
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the existence of P > 0 and µ > 0 such thatP 0 0
0 −P 0
0 0 µI

−
I X+

0 −X−
0 −U−

[Φ11 Φ12
Φ21 Φ22

]I X+
0 −X−
0 −U−

⊤

> 0. (3.40)

Note that the upper left 2 × 2 block of the matrix in (3.40) equals the matrix
in (3.39). Therefore, it is clear that informativity for quadratic stabilizability
implies (3.39). Conversely, if (3.39) is feasible then there exists a sufficiently
large µ > 0 such that (3.40) holds, i.e., (U−, X) are informative for quadratic
stabilizability. This proves the corollary. □

An interesting consequence of Corollary 3.20 is that the condition for in-
formativity for quadratic stabilizability in (3.39) is precisely the same as the
condition for informativity for stability of the state data X (see (3.44)). We
do note, however, that the state data in the current section have been obtained
from a different system (3.16) including a control input u.

3.8 Stability of autonomous systems using noisy state data

At this point, the reader may wonder whether the stability of autonomous sys-
tems (analogous to the last part of Section 3.3) can also be studied in the noisy
data setting. This indeed turns out to be the case. As explained in Section 3.4,
for this we consider the system

x(t + 1) = Atruex(t) + w(t). (3.41)

This system produces the data X ∈ Rn×(T +1) as before, under the influence of
an unknown sequence of noise samples, captured in the matrix W− satisfying
(3.18). The data D now consists of the state samples X and the information
that the noise satisfies the bound governed by the known matrix Φ ∈ Πn,T . In
this case, the set of consistent systems is given by

ΣD =
{

A ∈ Rn×n | X+ = AX− + W− for some W− satisfying (3.18)
}

.

Analogous to Definition 3.13 we now have the following definition of informativ-
ity for stability and quadratic stability of the state data X.

Definition 3.21. The state data X, obtained from (3.41) with noise samples
W− satisfying (3.18), are called

(a) informative for stability if all matrices A ∈ ΣD are stable.

(b) informative for quadratic stability if there exists a matrix P > 0 such that
P −APA⊤ > 0 for all matrices A ∈ ΣD.
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In the present section we will give necessary and sufficient conditions for
informativity for quadratic stability for autonomous systems as defined in Defi-
nition 3.21. A discussion on informativity for stability without the requirement
of a common Lyapunov fuction will be provided in Section 3.9.

To treat informativity for quadratic stability, we will need the following two
lemmas.
Lemma 3.22. Let the data X be obtained from (3.41) where the noise samples
satisfy (3.18) for a given Φ ∈ Πn,T . Then[

I X+
0 −X−

]
Φ
[
I X+
0 −X−

]⊤

∈ Πn,n. (3.42)

Proof. Let N be the matrix in (3.42) and note that N equals[
Φ11 + X+Φ21 + Φ12X⊤

+ + X+Φ22X⊤
+ −ΘX⊤

−
−X−Θ⊤ X−Φ22X⊤

−

]
where

Θ := Φ12 + X+Φ22. (3.43)
Since Φ22 ⩽ 0, we have that X−Φ22X⊤

− ⩽ 0. In addition, ker(X−Φ22X⊤
− ) =

ker(Φ22X⊤
− ). Since ker Φ22 ⊆ ker Φ12, it holds that Φ12 = MΦ22 for some real

matrix M . We conclude that ker(X−Φ22X⊤
− ) ⊆ ker(−ΘX⊤

− ). Since A⊤
true ∈

Zn(N), it follows that N | (X−Φ22X⊤
− ) ⩾ 0 by (A.10). This proves the lemma.

□

Lemma 3.23. The data X are informative for quadratic stability only if X−
has full row rank.

Proof. Assume that the data X are informative for quadratic stability. In
particular this implies that all systems in ΣD are stable. Let ξ ∈ Rn be such that
ξ⊤X− = 0. Then A + αξξ⊤ ∈ ΣD for any A ∈ ΣD and α ∈ R. Hence A + αξξ⊤

is stable for all α ∈ R. This implies that for all α ∈ R, the trace of A + αξξ⊤

satisfies tr(A + αξξ⊤) < n. In other words, for all α ∈ R, tr(A) + α∥ξ∥2 < n.
This implies that ξ = 0, thus X− has full row rank. □

Based on the previous two lemmas, we can state the following theorem that
provides a necessary and sufficient condition under which the data X are infor-
mative for quadratic stability.
Theorem 3.24. Let the data X be obtained from (3.41) where the noise sat-
isfies (3.18) with Φ ∈ Πn,T and Φ22 < 0. Then X are informative for quadratic
stability if and only if there exists a real matrix P > 0 such that[

P 0
0 −P

]
−
[
I X+
0 −X−

]
Φ
[
I X+
0 −X−

]⊤

> 0. (3.44)
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Proof. The ‘if’ part follows directly by taking A ∈ ΣD and multiplying (3.44)
from the left by

[
I A

]
and from the right by its transposed.

Next, we focus on proving the ‘only if’ part. Thus, suppose that there exists a
P > 0 such that P−APA⊤ > 0 for all A ∈ ΣD. The matrix X− has full row rank
by Lemma 3.23. This implies that X−Φ22X⊤

− < 0. Moreover, by Lemma 3.22,
(3.42) holds. Therefore, by Theorem A.20, there exists a real number α ⩾ 0
such that [

P 0
0 −P

]
− α

[
I X+
0 −X−

]
Φ
[
I X+
0 −X−

]⊤

> 0.

In particular, −P −αX−Φ22X⊤
− > 0, so α > 0. Therefore, by rescaling P by 1

α ,
we conclude that the linear matrix inequality (3.44) is feasible. □

3.9 Informativity beyond common Lyapunov functions

In this section we will provide conditions for informativity for stability and
stabilizability for noisy input-state systems and for noisy autonomous systems
as defined in Definition 3.13 (a), Definition 3.13 (c) and Definition 3.21 (a). In all
these cases it turns out that, under certain technical assumptions, informativity
for stability and quadratic stability are equivalent, and allow a test in terms of
the given data.

3.9.1 Stability from noisy state data

We start off with the case of state data X obtained from (3.41), and formulate
a theorem that characterizes informativity for stability of autonomous systems
as defined in Definition 3.21 (a). Also, a numerical example will be given to
illustrate this result.

It turns out that under a certain eigenvalue condition on a matrix obtained
from the data, informativity for stability and quadratic stability are equiva-
lent. Moreover, the theorem provides an alternative for Theorem 3.24 by giving
a condition for informativity for quadratic stability that does not rely on the
solvability of a linear matrix inequality. In fact, condition (c) of the following
theorem involves checking that X− has full row rank, and that two other matri-
ces are negative definite and stable, respectively. In the following, let N be the
matrix in (3.42) and let Θ be as defined in (3.43).

Theorem 3.25. Let the data X be obtained from (3.41) where the noise satis-
fies (3.18) with Φ ∈ Πn,T and Φ22 < 0. For λ ∈ C define

Ψ(λ) :=
[

I
λI

]∗

N

[
I

λI

]
. (3.45)
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Assume that Ψ(1) is invertible and the matrix[
0 Ψ(1)−1

Ψ(−1) 2(ΘX⊤
− −X−Θ⊤)Ψ(1)−1

]
(3.46)

has no eigenvalues on the imaginary axis. Then the following statements are
equivalent:

(a) The data X are informative for quadratic stability.

(b) The data X are informative for stability.

(c) X− has full row rank, Ψ(1) < 0, and the matrix (X−Φ22X⊤
− )−1X−Θ⊤ is

stable.

Before we are able to prove this theorem, we need a lemma, a proposition
and a corollary, as discussed next. In what follows let C denote the unit circle
in the complex plane C.

Lemma 3.26. Let Q ∈ Sn and R ∈ Rn×n. Define Ψ(λ) := Q + λR + λ−1R⊤.
We have that Ψ(λ) < 0 for all λ ∈ C if and only if Ψ(1) = Q + R + R⊤ < 0 and
the matrix [

0 Ψ(1)−1

Ψ(−1) −2(R−R⊤)Ψ(1)−1

]
(3.47)

has no eigenvalues on the imaginary axis.

Proof. First note that[
0 Ψ(1)−1

Ψ(−1) −2(R−R⊤)Ψ(1)−1

] [
x
y

]
= µ

[
x
y

]
for µ ∈ C and x, y ∈ Cn if and only if y = µΨ(1)x and (µ2Ψ(1) + 2µ(R−R⊤)−
Ψ(−1))x = 0. We substitute Ψ(1)=Q + R + R⊤ and Ψ(−1)=Q−R−R⊤ and
rearrange terms to show that the latter equation is equivalent to(

Q + µ + 1
µ− 1R + µ− 1

µ + 1R⊤
)

x = 0.

Finally, by substituting λ := µ+1
µ−1 , the latter is equivalent to x ∈ ker Ψ(λ). Note

that M : iR → C \ {1} defined by M : µ 7→ µ+1
µ−1 is a bijection between the

imaginary axis and C \ {1}. As such, the above discussion shows that (3.47) has
no eigenvalues on the imaginary axis if and only if Ψ(λ) is nonsingular for all
λ ∈ C \ {1}.

Next, we prove the ‘if’ part. Thus, suppose that Ψ(1) < 0 and (3.47) has no
imaginary axis eigenvalues. This implies that Ψ(λ) is nonsingular for all λ ∈ C.



Informativity beyond common Lyapunov functions 67

We note that Ψ(λ) is Hermitian and thus has only real eigenvalues for all λ ∈ C.
Moreover, Ψ(λ) is a continuous function of λ. It thus follows that the largest
eigenvalue of Ψ(λ) is a continuous function of λ.

Now, suppose that there exists a λ ∈ C such that Ψ(λ) ̸< 0. By continuity
of the largest eigenvalue of Ψ(λ) and the fact that Ψ(1) < 0, there exists a
particular value λ̄ ∈ C such that Ψ(λ̄) is singular. This is a contradiction, and
we thus conclude that Ψ(λ) < 0 for all λ ∈ C.

Next, to prove the ‘only if’ part, suppose that Ψ(λ) < 0 for all λ ∈ C.
Clearly, this implies that Ψ(1) < 0. Also, Ψ(λ) is nonsingular for all λ ∈ C,
thus, in particular, for all λ ∈ C \{1}. We conclude that (3.47) has no imaginary
eigenvalues. This proves the lemma. □

The following proposition is a discrete-time version of the well-known Kalman-
Yakubovich-Popov (KYP) lemma. It can be obtained as a special case from the
generalized KYP lemma [80] (see also [127]).

Proposition 3.27. Let A ∈ Rn×n, B ∈ Rn×m and N ∈ Sn+m. There exists a
matrix P ∈ Sn such that[

I 0
A B

]⊤ [
P 0
0 −P

] [
I 0
A B

]
−N > 0

if and only if for all λ ∈ C the following implication holds:[
A− λI B

]
v = 0 for v ∈ Cn+m \ {0} =⇒ v∗Nv < 0.

Corollary 3.28. Let N ∈ S2n be partitioned as

N =
[
N11 N12
N21 N22

]
where N11, N12, N21 and N22 are n× n matrices. For λ ∈ C define the mapping

Ψ(λ) := N11 + N22 + λN12 + λ−1N21.

Then there exists a P ∈ Sn such that[
P 0
0 −P

]
−N > 0 (3.48)

if and only if Ψ(1) < 0 and the matrix[
0 Ψ(1)−1

Ψ(−1) −2(N12 −N21)Ψ(1)−1

]
(3.49)

has no eigenvalues on the imaginary axis.
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Proof. The result follows by consecutively applying Proposition 3.27 with m =
n, A = 0 and B = I, and Lemma 3.26 with Q = N11 + N22 and R = N12. □

Finally, we are in the position to prove Theorem 3.25.

Proof of Theorem 3.25. The implication (a) =⇒ (b) is clear. Next, we
prove that (b) =⇒ (c). First, we see that (b) implies full row rank of X− by
Lemma 3.23, so that X−Φ22X⊤

− < 0. Let N be the matrix in (3.42) and note that
N ∈ Πn,n by Lemma 3.22. Therefore, N |N22 ⩾ 0 and thus −N−1

22 N21 ∈ Zn(N).
Since −N12N−1

22 ∈ ΣD, it is stable. We thus conclude that

−N−1
22 N21 = (X−Φ22X⊤

− )−1X−Θ⊤

is also stable. Finally, we will prove that Ψ(1) < 0. Suppose on the contrary
that there exists a nonzero vector x ∈ Rn such that x⊤Ψ(1)x ⩾ 0, equivalently,[

x
x

]⊤

N

[
x
x

]
⩾ 0. (3.50)

By Lemma A.15 there exists a matrix Z ∈ Zn(N) such that[
x
x

]
=
[

I
Z

]
x. (3.51)

Since Zx = x, Z has an eigenvalue 1 and is thus not stable. However, this is a
contradiction because Z⊤ ∈ ΣD. As such, we conclude that Ψ(1) < 0.

Finally, we prove that (c) =⇒ (a). Since Ψ(1) < 0 and (3.46) has no
imaginary eigenvalues, we conclude by Corollary 3.28 that there exists a P ∈ Sn

satisfying (3.48) with N given in (3.42). We will now show that P > 0. To
this end, note that Z := (X−Φ22X⊤

− )−1X−Θ⊤ ∈ Zn(N). Hence, by multiplying
(3.48) from the left by

[
I Z⊤] and from the right by its transposed we obtain

P − Z⊤PZ > 0, that is, P satisfies the Lyapunov equation P − Z⊤PZ = Y for
some matrix Y > 0. Since Z is stable by hypothesis, the solution P is unique
and given by P =

∑∞
k=0(Z⊤)kY Zk. We observe that P > 0 because Y > 0.

Therefore, we conclude that there exists a P > 0 satisfying (3.48) with N given
by (3.42). According to Theorem 3.24, the data X are therefore informative for
quadratic stability. □

Example 3.29. Consider the unweighted Laplacian matrix L ∈ Sn associated
with an undirected cycle graph. This means that all diagonal entries of L are
equal to 2, while the off-diagonal entries are Lij = −1 if |i− j| = 1 or |i− j| =
n − 1, and Lij = 0 for all other i ̸= j. We study the discrete-time consensus
protocol

x(t + 1) = (I − aL)x(t)
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where a ∈ (0, 1
2 ). This protocol is studied in the presence of a so-called stubborn

agent, assumed to be node n, who keeps its state at the contant value xn(t) = 0
for all t. The resulting dynamics are thus

x(t + 1) =
[
I − aLg 0(n−1),1
01,(n−1) 0

]
x(t) (3.52)

where Lg ∈ R(n−1)×(n−1) is the grounded Laplacian, i.e., the upper left (n−1)×
(n − 1) submatrix of L. It is well-known that (3.52) is stable (i.e., all agents
reach consensus and converge to the zero state of the stubborn agent) if and
only if the network graph underlying L is connected.

With complete knowledge of the (cycle) topology of the network, we are thus
immediately able to conclude stability of (3.52). In this example, we aim to
verify stability without knowledge of the graph, but using data instead. To this
end, we assume that state data are obtained from (3.41) with Atrue equal to the
matrix in (3.52). The noise only directly affects node 1, that is, we assume that
|w1(t)| ⩽ ε and wi(t) = 0 for all i = 2, . . . , n. This implies that the noise satisfies
the noise model (3.18) with

Φ =
[
ε2TEE⊤ 0

0 −I

]
,

where E ∈ Rn denotes the first standard basis vector of Rn.
We take n = 500. In this case, quadratic stability is challenging to verify

by solving (3.44) using LMI solvers, since a large number of 125250 decision
variables is involved. Therefore, we apply Theorem 3.25. We collect 30 data sets
according to Xi

+ = AtrueXi
− +W i

−, where i = 1, 2, . . . , 30. The matrices Xi
−, Xi

+
and W i

− are in Rn×100. Each entry of the first row of W i
− is selected uniformly at

random from {−ε, ε}, while all other entries are zero. The initial state of each
experiment, i.e., the first column of Xi

−, is drawn randomly from a standard
Gaussian distribution, and is scaled by n. The combined data matrices of all 30
experiments are given by X− =

[
X1

− · · · X30
−
]

and X+ =
[
X1

+ · · · X30
+
]
.

Next, we verify the conditions of Theorem 3.25 for various levels of ε. For each ε
we generate 100 data matrices X− and X+. For the assumption of Theorem 3.25
and each of the three conditions of Theorem 3.25(c), we record the number of
data sets for which the condition was satisfied. The results are displayed in
Table 3.1. Here ‘Eigs. (3.46)’ refers to the conditions that Ψ(1) is invertible
and (3.46) does not have imaginary eigenvalues. Moreover, ‘stable’ refers to the
matrix (X−Φ22X⊤

− )−1X−Θ⊤ being stable.
We see that the assumption on the eigenvalues of (3.46) is satisfied for every

data set and all levels of ε. Also, the rank of X− is always 500 and the matrix
(X−Φ22X⊤

− )−1X−Θ⊤ is stable in all experiments. The condition Ψ(1) < 0,
however, is not satisfied in all experiments. We see that for a small value of
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ε Eigs. (3.46) Ψ(1) < 0 rank X− = n stable
0.10 100% 100% 100% 100%
0.15 100% 95% 100% 100%
0.20 100% 75% 100% 100%
0.25 100% 55% 100% 100%
0.30 100% 33% 100% 100%

Table 3.1: Percentage of trials in which the different conditions of Theorem 3.25
hold, for various levels of ε.

ε = 0.10, Ψ(1) < 0 for all 100 data sets. This implies that each of these data
sets are informative for stability, by Theorem 3.25. The percentage of data sets
for which Ψ(1) < 0 decreases as ε increases. For ε = 0.30 only 33 of the 100
data sets were informative for stability.

It is of interest to observe that even in the case of the larger noise bound
ε = 0.30, the matrix (X−Φ22X⊤

− )−1X−Θ⊤ is always stable. This highlights the
‘price of robustness’: even though there exists a system in ΣD that is stable, we
cannot always conclude that all systems in ΣD are stable. ■

3.9.2 Stability from noisy input-state data

Next, we consider data (U−, X) obtained from the noisy input-state system
(3.16) and study informativity for stability as defined in Definition 3.13 (a).
First note that Lemma 3.22 can be extended straightforwardly to the input-
state case, which we present here without proof.

Lemma 3.30. Let the data (U−, X) be obtained from (3.16) where the noise
samples satisfy (3.18) with Φ ∈ Πn,T . Then

I X+
0 −X−
0 −U−

Φ

I X+
0 −X−
0 −U−

⊤

∈ Πn,n+m. (3.53)

Again, let the matrix Θ be as defined in (3.43) and let N be the matrix in
(3.53).

Theorem 3.31. Let the data (U−, X) be obtained from (3.16) where the noise
satisfies (3.18) with Φ ∈ Πn,T and Φ22 < 0. Assume that the data (U−, X)
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satisfy the full rank condition (3.35). For λ ∈ C define the mapping Ψ by

Ψ(λ) :=

 I 0
λI 0
0 I

∗

N

 I 0
λI 0
0 I

 . (3.54)

Also define
R :=

[
−ΘX⊤

− 0
U−Φ22X⊤

− 0

]
∈ R(n+m)×(n+m) (3.55)

Suppose that Ψ(1) is invertible and the matrix[
0 Ψ(1)−1

Ψ(−1) −2(R−R⊤)Ψ(1)−1

]
(3.56)

has no eigenvalues on the imaginary axis. Then the following statements are
equivalent:

(a) (U−, X) are informative for quadratic stability

(b) (U−, X) are informative for stability

(c) Ψ(1) < 0 and the matrix

[
In 0

]([X−
U−

]
Φ22

[
X−
U−

]⊤
)−1 [

X−
U−

]
Θ⊤ (3.57)

is stable.

Proof. The implication (a) =⇒ (b) is clear. Next, we prove that (b) =⇒
(c). By Lemma 3.30, N ∈ Πn,n+m and therefore N |N22 ⩾ 0. By assumption,
Φ22 < 0 and therefore

N22 =
[
X−
U−

]
Φ22

[
X−
U−

]⊤

< 0.

Thus, N22 is invertible and N−1
22 N21 ∈ Zn+m(N). Therefore, (A, B) ∈ ΣD,

where [
A⊤

B⊤

]
:= N−1

22 N21.

Since the data (U−, X) are informative for stability, A is stable and hence A⊤ is
stable. Stability of the matrix (3.57) then follows from the fact that it is equal
to
[
In 0

]
N−1

22 N21 = A⊤. Next we will prove that Ψ(1) < 0. Suppose, on the
contrary, that there exist vectors x ∈ Rn and y ∈ Rm, not both zero, such that[

x
y

]⊤

Ψ(1)
[
x
y

]
⩾ 0.
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That is, x
x
y

⊤

N

x
x
y

 ⩾ 0.

Clearly, x ̸= 0 since N22 < 0. Define W :=
[
In 0n,m

]
and

NW :=
[
W ⊤ 0

0 In+m

]
N

[
W 0
0 In+m

]
.

Then 
x
y
x
y


⊤

NW


x
y
x
y

 ⩾ 0.

By Lemma A.15, there exists a matrix Z ∈ Zn+m(NW ) such that
x
y
x
y

 =
[
In+m

Z

] [
x
y

]

so [
x
y

]
= Z

[
x
y

]
.

Moreover, by Theorem A.7, Z = Z̄W where Z̄ ∈ Zn+m(N). Hence,
[
x
y

]
= Z̄x.

Partition
Z̄ =

[
Ā⊤

B̄⊤

]
.

Then Ā⊤x = x. Because the data are informative for stability, Ā⊤ is stable.
However, since x ̸= 0, Ā⊤ also has an eigenvalue 1. We thus reach a contradic-
tion. In other words, Ψ(1) < 0. This shows that item (c) holds.

Finally, we prove that (c) =⇒ (a). Since Ψ(1) < 0 and the matrix (3.56) has
no eigenvalues on the imaginary axis, by Lemma 3.26, Ψ(λ) < 0 for all λ ∈ C.
Therefore, by applying Proposition 3.27 with A = 0 and B =

[
In 0n,m

]
we

conclude that the matrix inequalityP 0 0
0 −P 0
0 0 0

−N > 0 (3.58)
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has a solution P ∈ Sn. To prove that P > 0 we note that −N−1
22 N21 ∈ Zn+m(N).

Partition −N−1
22 N21 =

[
A B

]⊤ and note that A⊤ is stable by assumption.
By multiplying (3.58) from the left by

[
I A B

]
and from the right by its

transposed we obtain P −APA⊤ > 0, that is, P satisfies the Lyapunov equation
P − APA⊤ = Y for some matrix Y > 0. Since A is stable by assumption,
the solution P is unique and given by P =

∑∞
k=0 AkY (A⊤)k. We observe that

P > 0 because Y > 0. Therefore, we conclude that there exists a P > 0
satisfying (3.58), By Theorem 3.18 then, the data (U−, X) are informative for
quadratic stability. This proves the theorem. □

3.9.3 Stabilizability from noisy input-state data

To conclude this section, we turn our attention to data (U−, X) obtained from
the noisy input-state system (3.16) and study informativity for stabilizability
as defined in Definition 3.13 (c). Recall that the condition for informativity
for quadratic stabilizability in Corollary 3.20 is the same as the condition for
informativity for quadratic stability of the state data X given in Theorem 3.24.
One may thus think that an extension of Theorem 3.25 to stabilizability is
straightforward. However, this extension is hindered by a subtle fact. To explain
this, recall Lemma 3.30. Now, even though (3.53) holds, the subtlety is that the
upper left 2n×2n submatrix of the matrix in (3.53) is generally not a member of
Πn,n, i.e., (3.42) does not hold. Nonetheless, we provide the following theorem
that characterizes informativity for stabilizability and quadratic stabilizability
in the case that (3.42) is satisfied. Again, let the matrix Θ be as defined in
(3.43).

Theorem 3.32. Let the data (U−, X) be obtained from (3.16) where the noise
satisfies (3.18) with Φ ∈ Πn,T and Φ22 < 0. Define the mapping Ψ as in (3.45).
Assume that the data (U−, X) satisfy (3.42) and the full rank condition (3.35).
Suppose that Ψ(1) is invertible and the matrix[

0 Ψ(1)−1

Ψ(−1) 2(ΘX⊤
− −X−Θ⊤)Ψ(1)−1

]
(3.59)

has no eigenvalues on the imaginary axis. Then the following statements are
equivalent:

(a) (U−, X) are informative for quadratic stabilizability.

(b) (U−, X) are informative for stabilizability.

(c) Ψ(1) < 0 and the matrix (X−Φ22X⊤
− )−1X−Θ⊤ is stable.
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Proof. The implication (a) =⇒ (b) is clear. Next, we prove that (b) =⇒
(c). Let N be the matrix in (3.42) and N ′ be the matrix in (3.53). Since (3.42)
holds by hypothesis, we have that[

(X−Φ22X⊤
− )−1X−Θ⊤

0

]
∈ Zn+m(N ′).

In other words, (ΘX⊤
− (X−Φ22X⊤

− )−1, 0) ∈ ΣD. Since every system in ΣD is
stabilizable, we must have that the matrix ΘX⊤

− (X−Φ22X⊤
− )−1 is stable. We

thus conclude that its transposed (X−Φ22X⊤
− )−1X−Θ⊤ is also stable.

Next, we prove that Ψ(1) < 0. Suppose on the contrary that there exists a
nonzero vector x ∈ Rn such that x⊤Ψ(1)x ⩾ 0, equivalently, (3.50) holds. By
Lemma A.15 there exists a matrix Z ∈ Zn(N) such that (3.51) holds. Since
Zx = x, Z has an eigenvalue 1 and is thus not stable. However, this is a
contradiction because (Z⊤, 0) ∈ ΣD. As such, we conclude that Ψ(1) < 0.

Finally, we prove that (c) =⇒ (a). Since Ψ(1) < 0 and (3.46) has no
imaginary eigenvalues, we conclude by Corollary 3.28 that there exists a P ∈ Sn

satisfying (3.48) with N given in (3.42). It remains to be shown that P > 0. To
this end, note that Z := (X−Φ22X⊤

− )−1X−Θ⊤ ∈ Zn(N). Hence, by multiplying
(3.48) from the left by

[
I Z⊤] and from the right by its transposed we obtain

P − Z⊤PZ > 0, that is, P satisfies the Lyapunov equation P − Z⊤PZ = Y for
some matrix Y > 0. Since Z is stable by hypothesis, the solution P is unique
and given by P =

∑∞
k=0(Z⊤)kY Zk. Clearly, P > 0 because Y > 0. Therefore,

we conclude that there exists a P > 0 satisfying (3.48), with N given by (3.42).
Thus, by Corollary 3.20, the data X are informative for quadratic stabilizability.
This proves the theorem. □

3.10 Controllability from noisy data

This section deals with informativity of noisy data for controllability. In contrast
to our tests for stability and stabilizability, we will only establish sufficient con-
ditions, again in terms of feasibility of a linear matrix inequality. To start with,
we first state a necessary and sufficient condition for controllability of stable
input-state systems.

Lemma 3.33. Assume that A is stable. Then the system (A, B) is controllable
if and only if there exists a matrix P > 0 such that P −APA⊤ −BB⊤ ⩽ 0.

Proof. To prove the ‘if’ statement, let v ∈ Cn, be such that v∗A = λv∗ and
v∗B = 0. Then (1 − |λ|2) v∗Pv ⩽ 0. Since, by stability, |λ| < 1 we must have
v∗Pv = 0, so v = 0. The result then follows from the Hautus test.

Conversely, if A is stable and (A, B) is controllable then the controllability
Gramian P > 0 satisfies P −APA⊤ −BB⊤ = 0. This completes the proof. □
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Again consider the model class M of all noisy input-state systems given by
(3.17) together with input-state data (U−, X) on the time interval [0, T ]. The
possible matrices W− of noise samples satisfy the quadratic inequality (3.18) for
a given Φ ∈ Πn,T . The set ΣD of systems consistent with the data is given by
(3.20), and we assume that it contains the true system (Atrue, Btrue).

In the remainder of this section it will be assumed that Φ22 < 0 and that
the data (U−, X) satisfy the full rank condition (3.35). Thus we have N22 < 0,
which in turn is equivalent to boundedness of ΣD = Zn+m(N) (see Theorem
A.5). Obviously, in that case there exists γ > 0 such that AA⊤ < γI for all
(A, B) ∈ ΣD, which implies that 1√

γ A is stable for all (A, B) ∈ ΣD.
Our definition of informativity for controllability requires all systems that

are consistent with the data to be controllable.

Definition 3.34. The data (U−, X) are called informative for controllability if
every (A, B) ∈ ΣD is controllable.

We will now derive sufficient conditions for informativity for controllability.
The idea it to first compute a scaling factor γ > 0 such that AA⊤−γI < 0 for all
(A, B) ∈ ΣD. This can be done in the following way. Note that AA⊤ − γI < 0
can be written as  I

A⊤

B⊤

⊤ γI 0 0
0 −I 0
0 0 0

 I
A⊤

B⊤

 > 0. (3.60)

As a consequence, we need to find γ > 0 such that the strict quadratic matrix
inequality (3.60) holds for all (A, B) that satisfy the quadratic matrix inequality
(3.27). For given γ > 0, define

M1 :=

γI 0 0
0 −I 0
0 0 I

 . (3.61)

Again, let N be given by (3.30). Then we have to find conditions in terms of
the matrices M1 and N such that

Zn+m(N) ⊆ Z+
n+m(M1). (3.62)

By virtue of Theorem A.20 the inclusion (3.62) holds if and only if there exists
α ⩾ 0 such that M1 − αN > 0, equivalentlyγI 0 0

0 −I 0
0 0 I

− α

I X+
0 −X−
0 −U−

[Φ11 Φ12
Φ21 Φ22

]I X+
0 −X−
0 −U−

⊤

> 0.
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As a consequence, a suitable γ can be found by solving this linear matrix in-
equality.

Next, after fixing the scaling factor γ obtained above, we want to find P >
0 such that the (nonstrict) inequality γP − APA⊤ − BB⊤ ⩽ 0 holds for all
(A, B) ∈ ΣD. This inequality can also be reformulated as a quadratic matrix
inequality in A and B. Indeed, for given γ and P > 0, the inequality holds if
and only if  I

A⊤

B⊤

⊤ −γP 0 0
0 P 0
0 0 I

 I
A⊤

B⊤

 ⩾ 0. (3.63)

Now define

M2 :=

−γP 0 0
0 P 0
0 0 I

 . (3.64)

We have to find conditions in terms of the matrices M2 and N such that

Zn+m(N) ⊆ Zn+m(M2). (3.65)

By Theorem A.17, the inclusion (3.65) holds if and only if there exists α ⩾ 0
such that

M2 − αN ⩾ 0. (3.66)

The following theorem then gives a sufficient condition for informativity for
controllability.

Theorem 3.35. Assume that Φ22 < 0 and that the full rank condition (3.35)
holds. Let γ > 0 be such that AA⊤ − γI < 0 for all (A, B) ∈ ΣD. Then the
data (U−, X) are informative for controllability if there exist an n × n matrix
P > 0, and a scalar α ⩾ 0 satisfying−γP 0 0

0 P 0
0 0 I

− α

I X+
0 −X−
0 −U−

[Φ11 Φ12
Φ21 Φ22

]I X+
0 −X−
0 −U−

⊤

⩾ 0. (3.67)

Proof. Suppose (3.67) holds for some P > 0 and α ⩾ 0. Let (A, B) ∈ ΣD. By
the inclusion (3.65) we then have γP −APA⊤−BB⊤ ⩽ 0. Since 1√

γ A is stable,
this implies that ( 1√

γ A, 1√
γ B) is controllable, so (A, B) is controllable. □
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3.11 Notes and references

The notion of informativity for system identification and the characterization in
Theorem 3.1 can be found in [175].

For the classical Hautus tests for controllability and stabilizability (see Equa-
tion 3.7) we refer to [160, Thms. 3.13 and 3.32].

The problem of verifying controllability of a linear system from input-state
data has been studied in different papers. The authors of [182] consider m in-
dependent experiments, where the initial state of each experiment is zero and
the inputs of the ith experiment are all equal to the ith standard basis vector
of Rm. Under these experimental conditions, they show how to verify control-
lability of the true system from the combined data. Extensions of the approach
were considered in [94,119,199]. The data-driven Hautus tests for controllability
and stabilizability in Theorem 3.3 were proven in [175]. One of the attractive
features of these tests is that they can be applied to general sets of input-state
data, that is, the inputs and initial states can take arbitrary values.

The results on informativity for stability are partially based on the paper
[175]. In particular, [175] considered the problem of verifying stability of an
autonomous system using state data (see Theorem 3.11). In this book, we have
also studied the problem of verifying internal stability of an input-state system
using input-state data. Stability analysis of autonomous linear systems has been
considered before in [125]. In the notation of this book, the paper [125] assumes
that X− has full row rank. An interesting consequence of Theorem 3.11 is that
this condition is necessary for informativity for stability. Data-driven stability
analysis has also been considered for a class of switched linear systems [88] from
a probabilistic viewpoint.

The energy bound on the noise in (3.18) has become a common modeling
approach in recent work on data-driven control. In this particular form, (3.18)
was introduced in [169]. However, related noise models have appeared elsewhere.
In particular, [44] considers a special case of (3.18) while [18] makes use of
a ‘dual’ noise model. Other references that work with energy bounded noise
include [29, 89, 157]. We also refer to [168] for the discussion of special cases of
the model (3.18).

In the setting of noisy data, the notions of informativity for stability, quadratic
stability, stabilizability and quadratic stabilizability were introduced in [171],
alongside their characterizations in Theorem 3.24, Corollary 3.20, and Theo-
rems 3.25 and 3.32. In order to prove Theorems 3.25 and 3.32 we required some
technical results, including Lemma 3.26 and Proposition 3.27. In the proof of
Lemma 3.26 we make use of the fact that the largest eigenvalue of Ψ(λ) is con-
tinuous, which follows from [87, p. 125-126]. In Example 3.29 we have studied
a consensus protocol with a so-called stubborn agent. More details on such
protocols can be found in [128].
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Dissipativity analysis

In this chapter we consider data-driven dissipativity analysis. This problem is
concerned with deciding on the basis of data whether an unknown input-state-
output system is dissipative with respect to a given supply rate. We first consider
the case that the input-state-output data obtained from the unknown system
are noiseless. It will be shown that in this situation the data are informative for
dissipativity if and only if they are informative for system identification and, in
addition, the unique system consistent with the data is dissipative. Next, we turn
to the noisy case. We consider an unknown input-state-output system corrupted
by unknown process noise and measurement noise. The matrix collecting the
samples of these noise signals are assumed to satisfy a given quadratic matrix
inequality. For two different set-ups of these quadratic inequality constraints we
establish necessary and sufficient conditions for informativity for dissipativity.

4.1 Dissipativity from noiseless data

Before turning to data-driven dissipativity analysis, we will first review the defi-
nition of dissipativity. Consider a discrete-time linear input-state-output system

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(4.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m are given matrices. Let
S ∈ Sm+p. The system (4.1) is said to be dissipative with respect to the supply
rate

s(u, y) =
[
u
y

]⊤

S

[
u
y

]
(4.2)

if there exists P ∈ Sn with P ⩾ 0 such that the dissipation inequality

x(t + 1)⊤Px(t + 1)− x(t)⊤Px(t) ⩽ s
(
u(t), y(t)

)
(4.3)

holds for all t ⩾ 0 and for all trajectories (u, x, y) : Z+ → Rm+n+p of (4.1). For
any such matrix P , the function x 7→ x⊤Px is called a storage function for the
system (4.1) and the supply rate (4.2). It follows from (4.3) that dissipativity
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with respect to the supply rate (4.2) is equivalent with the feasibility of the
linear matrix inequalities P ⩾ 0 and[

I 0
A B

]⊤ [
P 0
0 −P

] [
I 0
A B

]
+
[

0 I
C D

]⊤

S

[
0 I
C D

]
⩾ 0. (4.4)

In the framework of data-driven system analysis, the system matrices are
unknown. The question we want to study then is whether we can verify dis-
sipativity using only the input-state-output data obtained from the unknown
system. In the present section we will study this question for the situation that
our data are noiseless.

Consider the unknown input-state-output system

x(t + 1) = Atruex(t) + Btrueu(t) (4.5a)
y(t) = Ctruex(t) + Dtrueu(t) (4.5b)

where the input u is m-dimensional, the state x is n-dimensional and the output
y is p-dimensional. We assume that the dimensions m, n and p are known,
but the true system matrices (Atrue, Btrue, Ctrue, Dtrue) are unknown. What is
known instead are a finite number of input-state-output measurements of (4.5).

More concrete, we suppose that we have collected input-state-output data
on the time interval [0, T ]. Let U−, X, X−, and X+ be defined by (2.1) and
(2.2) and let Y− be defined in a similar way as U−. Our data are now given by
D = (U−, X, Y−). These data are assumed to be generated by the true system
(Atrue, Btrue, Ctrue, Dtrue), which means that[

X+
Y−

]
=
[
Atrue Btrue
Ctrue Dtrue

] [
X−
U−

]
. (4.6)

The set of all systems that are consistent with these data is then given by:

Σ(U−,X,Y−) :=
{

(A, B, C, D) |
[
X+
Y−

]
=
[
A B
C D

] [
X−
U−

]}
. (4.7)

It follows from (4.6) that the unknown system (Atrue, Btrue, Ctrue, Dtrue) is con-
tained in Σ(U−,X,Y−). Our goal is to infer from the data (U−, X, Y−) whether
the unknown system (4.5) is dissipative.

On the basis of the given data we are unable to distinguish between the sys-
tems in Σ(U−,X,Y−), in the sense that any of these systems could have generated
the data. Nonetheless, if all of these systems are dissipative, then we can also
conclude that the true data-generating system (4.5) is dissipative. With this in
mind, we now define the property of informativity for dissipativity for the case
of noiseless data.
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Definition 4.1. The data (U−, X, Y−) are informative for dissipativity with
respect to the supply rate (4.2) if there exists a matrix P ∈ Sn, P ⩾ 0, such that
the LMI (4.4) holds for every system (A, B, C, D) ∈ Σ(U−,X,Y−).

Note that our definition of informativity for dissipativity requires the systems
in Σ(U−,X,Y−) to be dissipative with a common storage function.

We will restrict ourselves to the case that the number of negative eigenvalues
of the matrix S representing the supply rate is equal to the output dimension
p and the number of positive eigenvalues of S is equal to the input dimension
m. In particular then, S is nonsingular. In other words, we will impose the
following assumption on the inertia of S:

In(S) = (p, 0, m). (4.8)

It is a well-known fact that a necessary condition for dissipativity of any system
of the form (4.1) is that m ⩽ In+(S), i.e., the input dimension does not exceed
the positive signature of S. Our assumption requires that the input dimension is
equal to this positive signature and in addition that the matrix S is nonsingular.
This assumption is satisfied, for example, for the positive-real and bounded-real
case. Indeed, in the positive-real case we have that m = p and

S =
[

0 Im

Im 0

]
so that In(S) = (m, 0, m). In the bounded-real case we have

S =
[
γ2Im 0

0 −Ip

]
for some γ > 0, which implies that In(S) = (p, 0, m).

Before establishing conditions for informativity for dissipativity, recall the
notion of informativity for identification (see Section 3.1). In particular, recall
from Theorem 3.1 that the noiseless input-state data (U−, X) are informative
for system identification if and only if the full rank condition

rank
[
X−
U−

]
= n + m (4.9)

holds. This notion can of course be extended to noiseless input-state-output
data. Indeed, in accordance with Definition 2.12, we define:

Definition 4.2. The data (U−, X, Y−) are informative for system identification
if Σ(U−,X,Y−) contains exactly one element.
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If this is the case, then by (4.6) this single element must coincide with the un-
known system (Atrue, Btrue, Ctrue, Dtrue). It turns out that the data (U−, X, Y−)
are informative for system identification if and only if the corresponding input-
state data (U−, X) are informative.

Theorem 4.3. The data (U−, X, Y−) are informative for system identification
if and only if the rank condition (4.9) holds. In that case we have Atrue = X+V1,
Btrue = X+V2, Ctrue = Y−V1 and Dtrue = Y−V2, where V1 and V2 are such that[

X−
U−

] [
V1 V2

]
=
[
In 0
0 Im

]
. (4.10)

Proof. The set Σ(U−,X,Y−) of systems that are consistent with the data contains
exactly one element if and only if the solution set of the homogeneous equation[

0
0

]
=
[
A B
C D

] [
X−
U−

]
only contains (0n,n, 0n,m, 0p,n, 0p,m). This is the case if and only if (4.9) holds.
For any right inverse

[
V1 V2

]
the unique solution (Atrue, Btrue, Ctrue, Dtrue) of

the inhomogeneous linear equation[
X+
Y−

]
=
[
A B
C D

] [
X−
U−

]
is then given by [

Atrue Btrue
Ctrue Dtrue

]
=
[
X+
Y−

] [
V1 V2

]
.

This completes the proof. □

As the main result of this section we will now show that the noiseless input-
state-output data (U−, X, Y−) are informative for dissipativity if and only if they
are informative for system identification and the unique system consistent with
these data is dissipative. In addition, dissipativity of this unknown true system
can be expressed in terms of feasibility of an LMI involving the data.

Theorem 4.4. Assume that In(S) = (p, 0, m). Then the data (U−, X, Y−) are
informative for dissipativity with respect to the supply rate (4.2) if and only if
they are informative for system identification and there exists P ⩾ 0 such that[

X−
X+

]⊤ [
P 0
0 −P

] [
X−
X+

]
+
[
U−
Y−

]⊤

S

[
U−
Y−

]
⩾ 0. (4.11)
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Proof. We first prove the ‘only if’ part. Suppose that the data are not infor-
mative for system identification. Then by Theorem 4.3 the rank condition (4.9)
does not hold, so there exist ξ ∈ Rn and η ∈ Rm such that ξ⊤ξ + η⊤η = 1 and[

ξ⊤ η⊤] [X−
U−

]
= 0. (4.12)

The set Γ = {u ∈ Rm | ∃ y ∈ Rp such that s(u, y) < 0} has nonempty interior
since there exists (û, ŷ) with s(û, ŷ) < 0 due to our assumption on the inertia of
S. We claim that there exist x ∈ Rn and u ∈ Γ such that

ξ⊤x + η⊤u = 1. (4.13)

Indeed, if ξ ̸= 0, then one can construct x and u by selecting u ∈ Γ arbitrarily,
and by defining x := 1−η⊤u

ξ⊤ξ
ξ. If ξ = 0 then x ∈ Rn can be selected arbitrarily.

In this case, we can choose u as follows. Since Γ has nonempty interior, there
exists ū ∈ Γ such that η⊤ū ̸= 0. Note that αū ∈ Γ for all nonzero α ∈ R. As
such, there exists an α ∈ R such that u := αū ∈ Γ and η⊤u = 1. For this u, we
obtain (4.13) which proves our claim.

Since u ∈ Γ, there exists y such that s(u, y) < 0. Let (A0, B0, C0, D0) ∈
Σ(U−,X,Y−). Define

ζ := x−A0x−B0u and θ := y − C0x−D0u (4.14)

and [
A B
C D

]
:=
[
A0 B0
C0 D0

]
+
[
ζ
θ

] [
ξ⊤ η⊤] .

It follows from (4.12) that (A, B, C, D) ∈ Σ(U−,X,Y−). Since the data are infor-
mative for dissipativity with respect to the supply rate (4.2), there must exist
P ⩾ 0 such that the linear matrix inequality (4.4) holds. Note that[

I 0
A B

] [
x
u

]
=
[
x
x

]
and

[
0 I
C D

] [
x
u

]
=
[
u
y

]
due to (4.13) and (4.14). Therefore, the following inequality holds:[

x
u

]⊤
([

I 0
A B

]⊤ [
P 0
0 −P

] [
I 0
A B

]
+
[

0 I
C D

]⊤

S

[
0 I
C D

])[
x
u

]

=
[
x
x

]⊤ [
P 0
0 −P

] [
x
x

]
+
[
u
y

]⊤

S

[
u
y

]
= s(u, y) < 0.

However, this contradicts (4.4). Consequently, the full rank condition (4.9)
holds. Next, it then follows from Theorem 4.3 that

Σ(U−,X,Y−) = {(Atrue, Btrue, Ctrue, Dtrue)}.
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Define

L :=
[

I 0
Atrue Btrue

]⊤[
P 0
0 −P

][
I 0

Atrue Btrue

]
+
[

0 I
Ctrue Dtrue

]⊤

S

[
0 I

Ctrue Dtrue

]
.

Since the data are informative for dissipativity, there exists P = P ⊤ ⩾ 0 such
that L ⩾ 0. By post- and pre-multiplying this expression by

[
X−
U−

]
and its

transpose, we conclude that (4.11) holds.
To prove the ‘if’ part, note that by assumption we have that (4.6) holds.

Then (4.11) implies [
X−
U−

]⊤

L

[
X−
U−

]
⩾ 0. (4.15)

It immediately follows from the full rank condition (4.9) that L ⩾ 0. By (4.4),
this means that the system (Atrue, Btrue, Ctrue, Dtrue) is dissipative with respect
to the supply rate (4.2). Finally, since Σ(U−,X,Y−) = {(Atrue, Btrue, Ctrue, Dtrue)},
we conclude that the data are informative for dissipativity. This completes the
proof. □

Remark 4.5. The result of Theorem 4.4 implies that it is only possible to ascer-
tain dissipativity from noise-free data if the plant is uniquely identifiable, in the
sense that the data are informative for system identification. Consequently, in
the noise-free setting, methods for determining dissipativity directly from data
are conceptually equivalent with indirect ones consisting of a system identifica-
tion stage, followed by a second one involving a check on the solvability of an
LMI (condition (4.4)).

4.2 Dissipativity from noisy data

In this section we proceed with studying informativity for dissipativity in the
case that our input-state-output data are obtained from an unknown system
subject to unknown process noise and measurement noise. We assume that the
unknown system is given by

x(t + 1) = Atruex(t) + Btrueu(t) + w(t) (4.16a)
y(t) = Ctruex(t) + Dtrueu(t) + z(t) (4.16b)

where the input u is m-dimensional, the state x is n-dimensional and the output
y is p-dimensional. The dimensions m, n and p are assumed to be known. The
terms w and z are n-dimensional and p-dimensional, respectively. They represent
process and measurement noise, respectively, and are assumed to be unknown.
Also the system matrices (Atrue, Btrue, Ctrue, Dtrue) are assumed to be unknown.
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Again, we assume that a supply rate is represented by a given matrix S ∈ Sm+p,
viz. (4.2). The problem that we will study in this section is to determine whether
the unknown system (4.16) is dissipative with respect to the given supply rate.

Suppose that we obtain input-state-output data data from the unknown sys-
tem (4.16) on the time interval [0, T ]. These data are collected in the matrices
(U−, X, Y−) that are given as before by

U− = U[0,T −1]

X = X[0,T ]

Y− = Y[0,T −1].

Also the auxiliary matrices X− and X+ are as defined before. The noise terms
w and z are unknown, so w(0), w(1), . . . , w(T − 1) and z(0), z(1), . . . , z(T − 1)
are not measured, and are therefore not part of the data. We denote

W− = W[0,T −1]

Z− = Z[0,T −1].

As part of the data D we do assume that we have the following information on
the noise during the data sampling period.

Assumption 4.6. The noise samples, collected in the real (n + p)× T matrix

V− :=
[
W−
Z−

]
satisfy the quadratic matrix inequality[

I
V ⊤

−

]⊤

Φ
[

I
V ⊤

−

]
⩾ 0 (4.19)

where Φ ∈ Sn+p+T is a given partitioned matrix

Φ =
[
Φ11 Φ12
Φ21 Φ22

]
(4.20)

with Φ11 ∈ Sn+p, Φ12 ∈ R(n+p)×T , Φ21 = Φ⊤
12 and Φ22 ∈ ST . We assume

that Φ ∈ Πn+p,T . Then ZT (Φ) is nonempty and convex (see Theorem A.5).
Moreover, V− satisfies (4.19) if and only if V ⊤

− ∈ ZT (Φ) (see Section A.2).

In other words, the data D consist of the input-state-output measurements
(U−, X, Y−) together with the information that the noise on the sampling interval
[0, T ] satisfies the inequality (4.19) for a given partitioned matrix Φ with the
properties stated above.
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We now turn to defining the property of informativity for dissipativity for
noisy input-state-output data, i.e. data that are generated by the unknown
system (4.16) with unknown process noise and measurement noise whose samples
satisfy the quadratic matrix inequality (4.19). For our model class M we take
all noisy input-state-output systems

x(t + 1) = Ax(t) + Bu(t) + w(t) (4.21a)
y(t) = Cx(t) + Du(t) + z(t) (4.21b)

with input dimension m, state space dimension n and output dimension p. Given
the input-state-output data (U−, X, Y−) together with the information that the
matrices of noise samples satisfy (4.19), the set of all systems consistent with
the data is then given by

ΣD =
{

(A, B, C, D) |
([

X+
Y−

]
−
[
A B
C D

] [
X−
U−

])⊤

∈ ZT (Φ)
}

. (4.22)

We assume that the data have been obtained from the unknown system (4.16),
i.e., (Atrue, Btrue, Ctrue, Dtrue) ∈ ΣD. Therefore, ΣD is nonempty. Define

N :=
[

N11 N12

N⊤
12 N22

]
=


I

X+
Y−

0 −X−
−U−


[
Φ11 Φ12
Φ21 Φ22

]
I

X+
Y−

0 −X−
−U−


⊤

(4.23)

Note that (A, B, C, D) ∈ ΣD if and only if I

A⊤ C⊤

B⊤ D⊤


⊤

N

 I

A⊤ C⊤

B⊤ D⊤

 ⩾ 0. (4.24)

This can be restated equivalently as[
A⊤ C⊤

B⊤ D⊤

]
∈ Zn+m(N).

From Assumption 4.6 we have Φ22 ⩽ 0 and therefore N22 ⩽ 0. It follows from
the assumption ker Φ22 ⊆ ker Φ12 that ker N22 ⊆ ker N12. Since Zn+m(N) is
nonempty, it follows from inequality (A.10) that N |N22 ⩾ 0. Thus the matrix
N given by (4.23) is in Πn+p,n+m.

Next, we give the definition of informativity for dissipativity in the context of
noisy input-state-output data. Again, we will require that all systems consistent
with the data are dissipative with a common storage function.
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Definition 4.7. The noisy input-state-output data (U−, X, Y−) are informative
for dissipativity with respect to the supply rate (4.2) if there exists a matrix
P ⩾ 0 such that the LMI (4.4) holds for all systems (A, B, C, D) ∈ ΣD.

Similar to the noiseless case as studied in Section 4.1, in the remainder of this
section we will assume that the matrix S representing the supply rate satisfies
the inertia condition In(S) = (p, 0, m).

The following preliminary lemma states that also in the context of noisy data,
the rank condition (4.9) on the input-state data is necessary for informativity.

Lemma 4.8. Assume that In(S) = (p, 0, m). If the data (U−, X, Y−) are infor-
mative for dissipativity with respect to the supply rate (4.2) then

rank
[
X−
U−

]
= n + m. (4.25)

Proof. Suppose that (4.25) does not hold, i.e., there exist ξ ∈ Rn and η ∈ Rm

such that ξ⊤ξ + η⊤η = 1 and [
ξ⊤ η⊤] [X−

U−

]
= 0. (4.26)

The set Γ = {u ∈ Rm | ∃ y ∈ Rp such that s(u, y) < 0} has nonempty interior
since there exists (û, ŷ) with s(û, ŷ) < 0 . Similar as in the proof of Theorem 4.4,
there exist x ∈ Rn and u ∈ Γ such that

ξ⊤x + η⊤u = 1. (4.27)

Since u ∈ Γ, there exists y such that s(u, y) < 0. Let (A0, B0, C0, D0) ∈ ΣD,
equivalently ([

X+
Y−

]
−
[
A0 B0
C0 D0

] [
X−
U−

])⊤

∈ ZT (Φ).

Define
ζ := x−A0x−B0u and θ := y − C0x−D0u (4.28)

and [
A B
C D

]
:=
[
A0 B0
C0 D0

]
+
[
ζ
θ

] [
ξ⊤ η⊤] .

It follows from (4.26) that[
A B
C D

] [
X−
U−

]
=
[
A0 B0
C0 D0

] [
X−
U−

]
and therefore (A, B, C, D) ∈ ΣD as well. Since the data are informative for
dissipativity with respect to the supply rate (4.2), there exists P ⩾ 0 such that
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the dissipation inequality (4.4) holds. As before, due to (4.27) and (4.28) we
have [

I 0
A B

] [
x
u

]
=
[
x
x

]
and

[
0 I
C D

] [
x
u

]
=
[
u
y

]
.

Therefore, the following inequality holds:[
x
u

]⊤
([

I 0
A B

]⊤ [
P 0
0 −P

] [
I 0
A B

]
+
[

0 I
C D

]⊤

S

[
0 I
C D

])[
x
u

]

=
[
x
x

]⊤ [
P 0
0 −P

] [
x
x

]
+
[
u
y

]⊤

S

[
u
y

]
= s(u, y) < 0 .

However, this contradicts (4.4). Consequently, the full rank condition (4.25)
holds. □

The following lemma states that if the data are informative for dissipativity
with all systems in ΣD having a common storage function P ⩾ 0, then P is
necessarily positive definite. We will prove this under the additional assumption
that the Schur complement N | N22 is positive definite. Combining this with
the fact that N ∈ Πn+p,n+m as was already established above, we see from
Theorem A.5 that ΣD has a nonempty interior. The positive definiteness of
P will play an important role in the remainder of the chapter, as it will be
instrumental in deriving LMI conditions under which the data are informative
for dissipativity.

Lemma 4.9. Suppose that In(S) = (p, 0, m) and that N |N22 > 0. If P ⩾ 0
satisfies the dissipation inequality (4.4) for all (A, B, C, D) ∈ ΣD then P > 0.

Before we can prove Lemma 4.9, we need the following technical lemma on
the inertia of certain products of matrices. Again let In+(M) and In−(M) denote
the number of positive and negative eigenvalues of a symmetric matrix M . In
addition, let dimV denote the dimension of a subspace V ⊆ Rn.

Lemma 4.10. Let M ∈ Sn and H ∈ Rn×m. Then

In+(M) + (m− n)− dim ker H ⩽ In+(H⊤MH)

and
In−(M) + (m− n)− dim ker H ⩽ In−(H⊤MH).

Proof. We will first prove that

In+(H⊤MH) ⩾ In+(M) + In+(H⊤H)− n.
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Denote r := In+(H⊤H) and s := In+(M). Then there exists an r-dimensional
subspace V ⊆ Rm such that v⊤H⊤Hv > 0 for all nonzero v ∈ V. Also, there
exists an s-dimensional subspace W ⊆ Rn such that w⊤Mw > 0 for all nonzero
w ∈ W. Note that V∩ker H = {0} and therefore dim HV = r. Define a subspace
U ⊆ V by

U := {v ∈ V | Hv ∈ W}.

Then obviously v⊤H⊤MHv > 0 for all nonzero v ∈ U . This implies

In+(H⊤MH) ⩾ dimU .

Also, by the fact that V ∩ ker H = {0}, we have dimU = dim(HV ∩W). Using
the fact that

dim(HV ∩W) = dim HV + dimW − dim(HV +W)

together with HV+W ⊆ Rn, we then obtain In+(H⊤MH) ⩾ dimU ⩾ r +s−n,
as claimed. The proof of the first statement of the lemma is then completed by
noting that

r = In+(H⊤H) = m− dim ker H⊤H = m− dim ker H.

To prove the second statement, note that the number of positive and neg-
ative eigenvalues are interchanged by replacing M by −M and H⊤MH by
−H⊤MH = H⊤(−M)H. □

Proof of Lemma 4.9. Let ξ ∈ ker P . It follows from (4.4) that

−
[
ξ⊤A⊤

B⊤

]
P
[
Aξ B

]
+
[

0 I
Cξ D

]⊤

S

[
0 I

Cξ D

]
⩾ 0

for all (A, B, C, D) ∈ ΣD. This implies that[
0 I

Cξ D

]⊤

S

[
0 I

Cξ D

]
⩾ 0

for every (A, B, C, D) ∈ ΣD. It now immediately follows from Lemma 4.10 that

In−(S) + (m + 1)− (m + p)− dim
(

ker
[

0 I
Cξ D

])
⩽ 0.

Using the assumption that In−(S) = p this yields

dim
(

ker
[

0 I
Cξ D

])
⩾ 1.
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Therefore, Cξ = 0 for every (A, B, C, D) ∈ ΣD. Moreover, since N |N22 > 0 by
assumption, it follows from Theorem A.5 that ΣD has a nonempty interior. As
a consequence we have Cξ = 0 for a sufficiently rich set of matrices C so that
we can conclude that ξ = 0. This implies that P > 0. □

Our next step is to partition

S =
[

F G
G⊤ H

]
(4.29)

where F ∈ Rm×m, G ∈ Rm×p, H ∈ Rp×p. For any P ⩾ 0 define

M :=


P 0 0 0
0 F 0 G
0 0 −P 0
0 G⊤ 0 H

 . (4.30)

Then the system (A, B, C, D) can be seen to satisfy the dissipation inequality
(4.4) if and only if  I

A B
C D


⊤

M

 I

A B
C D

 ⩾ 0 (4.31)

Moreover, with this notation in place, the problem of characterizing informa-
tivity for dissipativity is equivalent to finding conditions for the existence of a
matrix P > 0 such that the inequality (4.31) holds for all (A, B, C, D) satisfying
the inequality (4.24).

Our strategy to solve this problem is to invoke the nonstrict matrix S-lemma,
Theorem A.17. Before we can apply Theorem A.17, however, note that the
inequality (4.31) is in terms of (A, B, C, D) while the inequality (4.24) is in
terms of the transposed matrices (A⊤, C⊤, B⊤, D⊤). Therefore, we will need an
additional dualization result that we formulate in the following lemma.

Lemma 4.11. Let P > 0 and let (A, B, C, D) be any system with input di-
mension m, state space dimension n and output dimension p. Assume that
In(S) = (p, 0, m). Define

Ŝ :=
[

0 −Ip

Im 0

]
S−1

[
0 −Im

Ip 0

]
. (4.32)

Then we have [
I 0
A B

]⊤[
P 0
0 −P

] [
I 0
A B

]
+
[

0 I
C D

]⊤

S

[
0 I
C D

]
⩾ 0 (4.33)
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if and only if[
I 0

A⊤ C⊤

]⊤[
P −1 0

0 −P −1

] [
I 0

A⊤ C⊤

]
+
[

0 I
B⊤ D⊤

]⊤

Ŝ

[
0 I

B⊤ D⊤

]
⩾ 0. (4.34)

Proof. Partition the matrix S as in (4.29). Since P is positive definite and
In(S) = (p, 0, m), the inertia of the matrix M given by (4.30) is given by In(M) =
(n + p, 0, n + m). The lemma now readily follows by applying Lemma A.3 to the
matrix M . □

Lemma 4.11 can be interpreted as saying that the system defined by the
quadruple (A, B, C, D) is dissipative with respect to the supply rate S, with
storage function P if and only if the dual system (A⊤, C⊤, B⊤, D⊤) is dissipative
with respect to the supply rate Ŝ, with storage function P −1.

Partition now

−S−1 =
[

F̂ Ĝ

Ĝ⊤ Ĥ

]
where F̂ = F̂ ⊤ ∈ Rm×m, Ĝ ∈ Rm×p, and Ĥ = Ĥ⊤ ∈ Rp×p and define

M̂ :=


P −1 0 0 0

0 Ĥ 0 −Ĝ⊤

0 0 −P −1 0
0 −Ĝ 0 F̂

 . (4.35)

Then it is easily seen that (A⊤, C⊤, B⊤, D⊤) satisfies the inequality (4.34) if
and only if  I

A⊤ C⊤

B⊤ D⊤


⊤

M̂

 I

A⊤ C⊤

B⊤ D⊤

 ⩾ 0. (4.36)

We may now observe that, under the assumptions that In(S) = (p, 0, m) and
N |N22 > 0, informativity for dissipativity with respect to the supply rate given
by S holds if and only if there exists P > 0 such that the quadratic inequality
(4.36) holds for all (A, B, C, D) that satisfy the the quadratic inequality (4.24),
equivalently

Zn+m(N) ⊆ Zn+m(M̂). (4.37)

This brings us in position to apply Theorem A.17 and to obtain the following
characterization for informativity for dissipativity for noisy input-state-output
data.
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Theorem 4.12. Assume that In(S) = (p, 0, m) and that the data (U−, X, Y−)
are such that N |N22 > 0. Partition

−S−1 =
[

F̂ Ĝ

Ĝ⊤ Ĥ

]
(4.38)

where F̂ = F̂ ⊤ ∈ Rm×m, Ĝ ∈ Rm×p, and Ĥ = Ĥ⊤ ∈ Rp×p. Then the data are
informative for dissipativity with respect to the supply rate (4.2) if and only if
there exist a real n× n matrix Q > 0 and a scalar α ⩾ 0 such that


Q 0 0 0
0 Ĥ 0 −Ĝ⊤

0 0 −Q 0
0 −Ĝ 0 F̂

− α


I

X+
Y−

0 −X−
−U−


[
Φ11 Φ12
Φ21 Φ22

]
I

X+
Y−

0 −X−
−U−


⊤

⩾ 0. (4.39)

In that case P := Q−1 is a common storage function for all systems consistent
with the data.

Proof. To prove the ‘if’ statement, assume that the LMI (4.39) holds for some
Q > 0. Define P := Q−1 and define M̂ by (4.35). Then clearly Zn+m(N) ⊆
Zn+m(M̂), so P is a common storage function for all (A, B, C, D) ∈ ΣD, which
implies that we have informativity for dissipativity with respect to the supply
rate (4.2).

To prove the ‘only if’ part, suppose that the data (U−, X, Y−) are informative
for dissipativity. Using the assumptions In(S) = (p, 0, m) and N |N22 > 0, this
is equivalent with the existence of a matrix P > 0 such that the inclusion
(4.37) holds, with M̂ given by (4.35). Also recall that N ∈ Πn+p,n+m. In
addition, N has at least one positive eigenvalue. Now define Q := P −1. Then
by Theorem A.17 there exists a scalar α ⩾ 0 such that (4.39) holds. This
completes the proof. □

Theorem 4.12 provides a tractable method for verifying informativity for
dissipativity of noisy data given the noise model introduced in Assumption 4.6.
The procedure involves solving the linear matrix inequality (4.39) for Q and α.
Given Q, a common storage function P for all systems in ΣD is also readily
computable as P = Q−1.

4.3 Informativity with an alternative noise model

In the preceding two sections we have studied informativity of input-state-data
in two different setups. In Section 4.1 we assumed that our data are noiseless,
and in Section 4.2 we considered the situation that samples of the process noise
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and measurement noise on a finite interval satisfy a given quadratic matrix
inequality. This quadratic inequality was introduced in Assumption 4.6 and
involved an a priori given weighting matrix Φ. In the present section we will
discuss an alternative noise model and establish conditions for informativity of
input-state-output data in the context of this alternative noise description.

Again our unknown system is assumed to be of the form (4.16). The input
dimension m, state space dimension n and output dimension p are given. We
also assume that a supply rate is given by a given matrix S ∈ Sm+p, viz. (4.2).
We have input, state and output samples U−, X and Y− and our aim is to
determine on the basis of these data whether the unknown system is dissipative
with respect to this supply rate. Again, the matrices Atrue, Btrue, Ctrue and
Dtrue are unknown. Also the process noise w and measurement noise z are
unknown. We do however assume that we have the following information on the
possible noise samples on a given finite time interval.
Assumption 4.13. The noise samples, collected in the real (n + p)×T matrix

V− :=
[
W−
Z−

]
satisfy the quadratic matrix inequality[

I
V−

]⊤

Θ
[

I
V−

]
⩾ 0 (4.40)

where Θ ∈ Sn+p+T is a given partitioned matrix

Θ =
[
Θ11 Θ12
Θ21 Θ22

]
with Θ11 ∈ ST , Θ12 ∈ RT ×(n+p), Θ21 = Θ⊤

12 and Θ22 ∈ Sn+p. We assume that

Θ22 < 0

and the Schur complement satisfies

Θ |Θ22 > 0.

Assumption 4.13 implies that Θ ∈ ΠT,n+p. In view of Theorem A.5, Zn+p(Θ)
is bounded and has nonempty interior. Furthermore, V− satisfies (4.40) if and
only if V− ∈ Zn+p(Θ) (see Section A.2).

Now, given the input-state-output data (U−, X, Y−) together with the infor-
mation that the matrices of noise samples satisfy (4.40), the set of all systems
consistent with the data is given by

Σ̃D =
{

(A, B, C, D) |
[
X+
Y−

]
−
[
A B
C D

] [
X−
U−

]
∈ Zn+p(Θ)

}
. (4.41)
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The corresponding definition of informativity is then the following.

Definition 4.14. Given the noise model of Assumption 4.13, the noisy input-
state-output data (U−, X, Y−) are informative for dissipativity with respect to
the supply rate (4.2) if there exists a matrix P ⩾ 0 such that the LMI (4.4)
holds for all systems (A, B, C, D) ∈ Σ̃D.

In order to obtain conditions for informativity in this new noise set up, we
prove the following duality result.

Lemma 4.15. Assume that Θ22 < 0 and Θ |Θ22 > 0, equivalently, Zn+p(Θ) is
bounded and has a nonempty interior. Define[

Φ11 Φ12
Φ21 Φ22

]
:=
[
0 −I
I 0

] [
Θ11 Θ12
Θ21 Θ22

]−1 [0 −I
I 0

]
. (4.42)

Then for any V ∈ R(n+p)×T we have

V ∈ Zn+p(Θ) ⇐⇒ V ⊤ ∈ ZT (Φ).

Proof. Note that In(Θ) = (n + p, 0, T ). The result then follows immediately
from Lemma A.3. □

An immediate consequence of Lemma 4.15 is that a given system (A, B, C, D)
is consistent with the data (U−, X, Y−) using the alternative noise model of
Assumption 4.13 if and only if it is consistent with these data using the original
noise model of Assumption 4.6 with Φ defined by (4.42). In other words,

Σ̃D =
{

(A, B, C, D) |
([

X+
Y−

]
−
[
A B
C D

] [
X−
U−

])⊤

∈ ZT (Φ)
}

. (4.43)

We now turn to finding conditions for informativity using the alternative noise
model. In order to do this, we first need to check whether the matrix Φ defined
by (4.42) satisfies the conditions that were imposed in Assumption 4.6. We will
show that, in fact, Φ22 < 0 and Φ | Φ22 > 0. Using the Schur decomposition
(A.8) applied to the partitioned matrix Θ, it is easily seen that, in fact,[

Φ11 Φ12
Φ21 Φ22

]
=
[
−Θ−1

22 Θ21(Θ |Θ22)−1Θ12Θ−1
22 −Θ−1

22 Θ21(Θ |Θ22)−1

−(Θ |Θ22)−1Θ12Θ−1
22 −(Θ |Θ22)−1

]
. (4.44)

From this we immediately seen that Φ22 = −(Θ | Θ22)−1 < 0. It also follows
from (4.42) that In(Θ) = − In(Φ) = (T, 0, n + p). Since Φ22 is a T × T matrix,
this implies that Φ |Φ22 > 0 as desired.
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As before, in the sequel we will assume that the supply rate satisfies the
inertia condition In(S) = (p, 0, m). Define

Ñ :=
[

Ñ11 Ñ12

Ñ⊤
12 Ñ22

]
=


I

X+
Y−

0 −X−
−U−


[
Φ11 Φ12
Φ21 Φ22

]
I

X+
Y−

0 −X−
−U−


⊤

with Φ given by (4.44). For completeness we finally state the following charac-
terization of informativity using the alternative noise model.

Theorem 4.16. Assume that In(S) = (p, 0, m) and that the data (U−, X, Y−)
are such that Ñ |Ñ22 > 0. Let −S−1 be partitioned as in (4.38). Then the data
are informative for dissipativity with respect to the supply rate (4.2) using the
noise model of Assumption 4.13 if and only if there exist a real n × n matrix
Q > 0 and a scalar α ⩾ 0 such that


Q 0 0 0
0 Ĥ 0 −Ĝ⊤

0 0 −Q 0
0 −Ĝ 0 F̂

− α


I

X+
Y−

0 −X−
−U−


[
Φ11 Φ12
Φ21 Φ22

]
I

X+
Y−

0 −X−
−U−


⊤

⩾ 0. (4.45)

In that case P := Q−1 defines a common storage function for all systems con-
sistent with the data.

4.4 Notes and references

The notion of dissipativity was introduced by Jan Willems in the seminal papers
[184] and [185]. During the same period, he also made fundamental contributions
to the subject of optimal control, in particular to linear quadratic problems with
indefinite cost, and the associated algebraic Riccati equation [183]. Together,
[183], [184] and [185] are generally considered to provide the main concepts and
analysis tools in many areas of linear and nonlinear systems and control, ranging
from stability theory, linear quadratic optimal control and stochastic realization
theory, to network synthesis, differential games and robust control. The above
contributions addressed dissipativity of continuous-time systems. For an early
contribution treating discrete-time systems, we refer to [31].

In this chapter, we have focused on the problem of verifying dissipativity of
discrete-time LTI systems using measured data. The results that were presented
here are based on the paper [170]. The problem of assessing dissipativity from
data has received considerable attention in recent years, see e.g. [138] and [139].
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In [107], the notion of (finite-horizon) L-dissipativity was introduced. This no-
tion was also further studied in [137]. A discrete-time system is L-dissipative
if the average of the supply rate over the time interval [0, L] is nonnegative for
all system trajectories. This is a necessary condition for dissipativity, but it is
in general not sufficient. In both of the latter two contributions, a crucial as-
sumption is that the input trajectory is persistently exciting of a sufficiently high
order (see [190] and [172]). This property of the input sequence can be shown
to imply that the data-generating system is uniquely identifiable from the data.

In the current chapter we have adopted the more classical notion of dissipa-
tivity for linear systems, rather than L-dissipativity. We have considered a setup
similar to that of [89]. In that paper, sufficient data-based conditions were given
for dissipativity. The main difference between our results and those in [89] is
that we have provided necessary and sufficient conditions for dissipativity based
on data, for noiseless and noisy data.

Apart from conditions for verifying dissipativity based on data, we have
derived a number of additional results as byproducts that are interesting in
their own right. First of all, we have shown in Corollary 4.15 that, under mild
assumptions, the different noise models studied in the papers [18] and [169]
are actually equivalent. Moreover, in the setting of noisy data, it follows from
Lemma 4.9 that informativity for dissipativity requires the common storage
function to be positive definite. This is an interesting conclusion, since the
definition of dissipativity only requires positive semidefinite storage functions.
We note that conditions under which all storage functions are positive definite
have been studied before in [71, Lem. 1], for nonlinear systems. In that paper,
certain minimality conditions were imposed as well as a signature condition on
the supply rate. Here, we have not assumed minimality but we have concluded
that all storage functions are positive definite in the case that the supply rate
satisfies an inertia condition and the set of systems consistent with the data has
nonempty interior. In order to prove Lemma 4.9, we have relied on Lemma 4.10
that can be interpreted as a generalization of Sylvester’s law of inertia, see the
paper [41].



5

Analysis of further system properties

In this chapter we will further study the problem of finding data-based tests
for checking whether a given unknown dynamical system has certain structural
properties. In Sections 3.2 and 3.3, tests were already established for checking
whether a given set of noiseless data is informative for controllability, stabilizabil-
ity and stability. For the case of noisy data, in Sections 3.5 to 3.10 data-driven
tests were discussed for stability, stabilizability, quadratic stability, quadratic
stabilizability and controllability. Also in this chapter, we will deal with infor-
mativity of noisy data. We will establish tests for informativity of several addi-
tional relevant structural system properties in the setting of unbounded noise.
More specifically, we will study informativity for observability and detectability,
strong observability and detectability, strong controllability and stabilizability,
and invertibility of linear systems.

5.1 Problem setup

We will consider the linear input-state-output system with noise given by

x(t + 1) = Atruex(t) + Bu(t) + Ew(t) (5.1a)
y(t) = Cx(t) + Du(t) + Fw(t) (5.1b)

where the state x is n-dimensional, the control input u is m-dimensional, the
output y is p-dimensional, and the unknown noise w is r-dimensional. We assume
that Atrue is an unknown matrix, but the matrices B, C, D and E, F are known.
The assumption that the matrix Atrue is unknown while the others are known
can, for example, be motivated within the context of networked systems, in
which the input and output nodes are given, but the interconnection topology is
unknown. Typically, in that context the matrices B, C and D are matrices whose
columns only contain 0’s and 1’s, with in each column at most one entry equal to
1. The term Ew represents process noise, whereas Fw represents measurement
noise. The special case that E = 0 and F = 0 is called the noiseless case.

We assume that we have input-state-output data concerning this unknown
‘true’ system in the form of samples of x, u and y on a given finite time interval
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[0, T ]. As before, these data are denoted by

U− = U[0,T −1]

X = X[0,T ]

Y− = Y[0,T −1].

It will be assumed that these data are obtained from the true system (5.1),
meaning that there exists some matrix

W− = W[0,T −1]

such that

X+ = AtrueX− + BU− + EW− (5.3a)
Y− = CX− + DU− + FW− (5.3b)

where as usual we denote

X− = X[0,T −1]

X+ = X[1,T ].

We then say that the data are consistent with the true system (Atrue, B, C, D, E, F ).
The set of all n × n matrices A such that the system (A, B, C, D, E, F ) is

consistent with the data will be denoted by AD, i.e.,

AD :=
{

A ∈ Rn×n | ∃W− :
[
X+
Y−

]
=
[
A B
C D

] [
X−
U−

]
+
[
E
F

]
W−

}
. (5.4)

Let P denote some system-theoretic property that might or might not hold for a
given linear system. The general problem that we will address in this chapter is
to determine from the data obtained from (5.1) whether the property P holds for
the unknown true system (Atrue, B, C, D, E, F ). Since on the basis of the data
we can not distinguish between the true Atrue and any A ∈ AD, we need to check
whether the property holds for all systems (A, B, C, D, E, F ) with A ∈ AD. In
line with Definition 2.1 we then call the data informative for property P.
Example 5.1. For P take the property ‘(A, B) is a controllable pair’. Suppose
that on the basis of the data (U−, X, Y−) we want to determine whether P holds
for the pair (Atrue, B) corresponding to the true system. This requires to check
whether the data are informative for property P. Using ideas from Section 3.2, it
can be shown that in the noiseless case (i.e. the case that E = 0 and F = 0) the
data (U−, X, Y−) are informative for P if and only if rank

[
X+ − λX− B

]
= n

for all λ ∈ C. This will be proven later on in this chapter in Subsection 5.3.3.
■
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Example 5.2. For P take the property ‘the pair (C, A) is detectable’. In the
noiseless case it can be shown that the data (U−, X, Y−) are informative for P
if and only if ker C ⊆ im X− and for all λ ∈ C with |λ| ⩾ 1 we have

rank
[
X+ −BU− − λX−

CX−

]
= rank X−.

This will be proven later on in this chapter in Subsection 5.3.2. ■

Remark 5.3. We note that the case of independent process noise and measure-
ment noise is also covered by the noisy model (5.1) introduced above. The noise
matrices should then be taken of the form E = [E1 0] and F = [0 F2], while the
noise signal is given by the vector

w =
[
w1
w2

]
and, likewise,

W− =
[
W1−
W2−

]
.

A special case of this is that only process noise occurs, in which case F2 is void
and E = E1 and F = 0. In other words, in the case of independent process and
measurement noise we have A ∈ AD if and only if there exists a matrix W1− such
that X+ = AX− + BU− + E1W1−. The equation Y− = CX− + DU− + F2W2−
can then be ignored since it does not put any constraint on A.

This chapter will provide necessary and sufficient conditions on the input-
state-output data obtained from (5.1) to be informative for a range of system
properties P. Throughout, we will restrict ourselves to the situation introduced
above, namely, that the state matrix Atrue is unknown, but that the matrices
B, C and D are known. We will study both the noisy case as well as the noiseless
case. In the noisy case it will be assumed that the noise matrices E and F are
known.

The outline of this chapter is as follows. In Section 5.2, we will state and
prove a theorem that will be instrumental in order to obtain our results on
informativity in the rest of the chapter. This theorem states that a certain rank
property of the system matrix of the unknown system is equivalent to a rank
property of a polynomial matrix that collects available information about the
unknown system. In Section 5.3, this result will be applied to obtain necessary
and sufficient conditions for informativity of noisy data for the following system
properties:

• strong observability and strong detectability of (A, B, C, D),
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• observability and detectability of (C, A),

• strong controllability and strong stabilizability of (A, B, C, D),

• controllability and stabilizability of (A, B).

In Section 5.4, we apply ideas from the geometric approach to linear systems,
to set up a geometric framework for informativity analysis for strong observ-
ability and observability. This framework will also be applied to the analysis of
informativity for left-invertibility.

5.2 A rank property for an affine set of systems

In this section we will establish a general framework that will enable us to
characterize informativity of input-state-output data for the properties listed in
Section 5.1.

Let P ∈ Rn×r, Q ∈ Rℓ×n and R ∈ Rℓ×r be given matrices. Here, r and
ℓ are positive integers, and the symbol n has the usual meaning of state space
dimension. Using these matrices, we define an affine space of state matrices A
by

A := {A ∈ Rn×n | R = QAP}. (5.5)

It is easily seen that A is nonempty if and only if the inclusions im R ⊆ im Q
and ker P ⊆ ker R hold. Assume this to be the case.

Now let B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m be given, and for each A ∈ A
consider the system

x(t + 1) = Ax(t) + Bu(t) (5.6a)
y(t) = Cx(t) + Du(t). (5.6b)

The system matrix associated with the system (5.6) is defined as the first order
polynomial matrix [

A− sI B
C D

]
. (5.7)

In addition, we will consider the polynomial matrix[
R− sQP QB

CP D

]
(5.8)

associated with the given matrices (P, Q, R) and (B, C, D). The following the-
orem expresses a uniform rank property of the set of system matrices (5.7),
with A ranging over the affine set A, in terms of a rank property of the single
polynomial matrix (5.8).
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Theorem 5.4. Let (P, Q, R) and (B, C, D) be given. Then

rank
[
A− λI B

C D

]
= n + rank

[
B
D

]
(5.9)

for all A ∈ A and λ ∈ C if and only if 1 C−1 im D ⊆ im P and

rank
[
R− λQP QB

CP D

]
= rank P + rank

[
QB
D

]
(5.10)

for all λ ∈ C.
In addition, (5.9) holds for all A ∈ A and λ ∈ C such that |λ| ⩾ 1 if and only

if C−1 im D ⊆ im P and (5.10) holds for all λ ∈ C such that |λ| ⩾ 1.

Proof. To start the proof, first observe that for any A ∈ A:[
A− λI B

C D

]
=
[
A− λI I 0

C 0 I

]I 0
0 B
0 D

 . (5.11)

Note that for any pair of matrices M and N we have rank MN = rank N if
and only if ker MN = ker N . By applying this to (5.11), we see that (5.9) is
equivalent to [

A− λI B
C D

] [
ξ
η

]
= 0 =⇒

I 0
0 B
0 D

[ξ
η

]
= 0.

It is straightforward to check that, in turn, this holds if and only if[
A− λI B

C D

] [
ξ
η

]
= 0 =⇒ ξ = 0. (5.12)

Similarly, note that for all A ∈ A[
R− λQP QB

CP D

]
=
[
Q(A− λI) I 0

C 0 I

]P 0
0 QB
0 D

.
This makes (5.10) equivalent to[

R− λQP QB
CP D

] [
ν
η

]
= 0 =⇒ Pν = 0. (5.13)

From here on, we will prove the first statement of the theorem, noting any
changes required for the second part.

1For a given subspace L and matrix M we denote by M−1L the inverse image {x | Mx ∈ L}.



102 Analysis of further system properties

(⇐): Let A ∈ A and λ ∈ C (resp. λ ∈ C such that |λ| ⩾ 1). Assume that
C−1 im D ⊆ im P and (5.10) holds for λ. We will prove that (5.12) holds. For
this, let ξ and η satisfy [

A− λI B
C D

] [
ξ
η

]
= 0.

Since ξ ∈ C−1 im D ⊆ im P , we can write ξ = Pν for some ν. Now, by pre-
multiplying with

[
Q 0
0 I

]
we obtain that

[
R− λQP QB

CP D

] [
ν
η

]
= 0.

We can now apply (5.13) and thus conclude that ξ = Pν = 0. This proves that
(5.12) holds.

(⇒): Assume that (5.12) holds for all A ∈ A and λ ∈ C (resp. λ ∈ C such
that |λ| ⩾ 1). We will first prove that C−1 im D ⊆ im P . Suppose this inclusion
does not hold, i.e., there exists x̂ ∈ C−1 im D with x̂ ̸∈ im P . There exists a
û such that Cx̂ + Dû = 0. Take any A ∈ A and µ ∈ R (resp. µ ∈ R such
that |µ| ⩾ 1). Since x̂ ̸∈ im P there exists a real n × n matrix A0 such that
A0P = 0 and A0x̂ = −(A − µI)x̂ − Bû. This implies that QA0P = 0. Now
define Ā := A + A0. Note that Ā ∈ A and[

Ā− µI B
C D

] [
x̂
û

]
= 0.

By (5.12), we see that x̂ = 0, which contradicts with x̂ ̸∈ im P . Therefore
C−1 im D ⊆ im P .

We now move to proving (5.13). Let λ ∈ C (resp. λ ∈ C such that |λ| ⩾ 1),
and let ν and η satisfy [

R− λQP QB
CP D

] [
ν
η

]
= 0.

Denote ξ = Pν, then we see that Cξ + Dη = 0 and (A− λI)ξ + Bη ∈ ker Q for
any A ∈ A.

We will prove that (5.13) holds in three separate cases: First, we prove
the statement for real λ. For complex λ we consider the cases where the real
and complex parts of ξ are linearly dependent and where these are linearly
independent.

First suppose that λ ∈ R. Then, without loss of generality, ν and η are real,
and as such ξ is real. Suppose that ξ ̸= 0, and take any A ∈ A. Let A0 be any
real n × n matrix such that A0ξ = −(A − λI)ξ − Bη and QA0P = 0. Such a
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matrix exists as −(A − λI)ξ − Bη ∈ ker Q and ξ ̸= 0. Now take Ā = A + A0.
Then it is immediate that Ā ∈ A and:[

Ā− λI B
C D

] [
ξ
η

]
= 0.

As (5.12) holds for Ā by assumption, we see that ξ = 0, which leads to a
contradiction. Therefore ξ = 0.

Now consider that case where λ ̸∈ R. Suppose that the real and complex
parts of ξ are linearly dependent. Therefore, there exist real scalars α, β ∈ R
and a real vector r such that ξ = (α + iβ)r. Let r̂ = (α − iβ)ξ = (α2 + β2)r.
Let A ∈ A. Then [

Q(A− λI) QB
C D

] [
r̂

(α− iβ)η

]
= 0.

Denote λ = a + bi, where b ̸= 0, and (α − iβ)η = η1 + iη2. Then we see that:
Q(A− aI)r̂ + QBη1 = −bQr̂ + QBη2 = 0 and Cr̂ + Dη1 = Dη2 = 0. Let µ ∈ R
(resp. µ ∈ R such that |µ| ⩾ 1). Note that[

Q(A− µI) QB
C D

] [
br̂

bη1 + (µ− a)η2

]
= 0.

As µ is real, we can now apply the previous part of the proof to note that br̂ = 0,
which holds only if ξ = 0.

Now suppose that ξ = Pp + iPq, where Pp and Pq are linearly independent.
If we take any A ∈ A, we know that Q(A − λI)ξ + QBη = 0, and that we can
denote (A− λI)ξ + Bη = ζ1 + ζ2i, where ζ1, ζ2 ∈ ker Q. Take A0 any real map
such that A0Pp = −ζ1, A0Pq = −ζ2 and QA0P = 0. Such a map exists as Pp
and Pq are linearly independent. Now take Ā = A+A0, then Ā ∈ A and clearly[

Ā− λI B
C D

] [
ξ
η

]
= 0.

Using (5.12), this implies that ξ = 0. This is a contradiction with the fact that
Pp and Pq are linearly independent. □

5.3 Informativity analysis

In this section we will apply Theorem 5.4 to obtain necessary and sufficient
conditions for informativity of input-state-output data for the system properties
listed in Section 5.1. For a given system (5.6) we will denote by x(t, x0, u)
and y(t, x0, u) the state and output sequence corresponding to the initial state
x(0) = x0 and input sequence u.
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5.3.1 Strong observability and strong detectability

We first briefly review the properties of strong observability and strong de-
tectability.

Definition 5.5. The system (5.6) is called strongly observable if for each x0 ∈
Rn and input sequence u the following holds: y(t, x0, u) = 0 for all t ∈ Z+
implies that x0 = 0. The system is called strongly detectable if for all x0 ∈ Rn

and every input sequence u the following holds: y(t, x0, u) = 0 for all t ∈ Z+
implies that limt→∞ x(t, x0, u) = 0.

For continuous-time systems, necessary and sufficient conditions for strong
observability and strong detectability were formulated in [160]. It can be ver-
ified that also the discrete-time system (5.6) is strongly observable (strongly
detectable) if and only if the pair (C + DK, A + BK) is observable (detectable)
for all K. It is also straightforward to verify the following.

Proposition 5.6. The system (5.6) is strongly observable if and only if for all
λ ∈ C

rank
[
A− λI B

C D

]
= n + rank

[
B
D

]
. (5.14)

The system (5.6) is strongly detectable if and only if (5.14) holds for all λ ∈ C
such that |λ| ⩾ 1.

As in Section 5.2, we now consider the situation that only the matrices B, C
and D are given, and that the matrix A can be any matrix from the affine set
(5.5) with P, Q and R given matrices. By applying Theorem 5.4 we then get the
following necessary and sufficient conditions for strong observability and strong
detectability of all systems (5.6) with A ranging over the affine set A.

Theorem 5.7 (Uniform rank condition). Let (P, Q, R) and (B, C, D) be given
matrices. Then (5.6) is strongly observable for all A ∈ A if and only if C−1 im D ⊆
im P and for all λ ∈ C we have

rank
[
R− λQP QB

CP D

]
= rank P + rank

[
QB
D

]
. (5.15)

Similarly, (5.6) is strongly detectable for all A ∈ A if and only if C−1 im D ⊆
im P and (5.15) holds for all λ ∈ C such that |λ| ⩾ 1.

Proof. This follows immediately by combining Proposition 5.6 and Theorem 5.4.
□

We will now apply the previous result to informativity of input-state-output
data. Suppose the data are (U−, X, Y−). Recall Definition 5.4 of the affine set
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AD of all n × n matrices A such that the data are consistent with the system
(A, B, C, D, E, F ). We want to obtain conditions under which the data are
informative for strong observability and for strong detectability. To this end, let
[M N ] be any matrix such that

ker[M N ] = im
[
E
F

]
. (5.16)

Then we have A ∈ AD if and only if R = MAX− with

R := [M N ]
[

X+ −BU−
Y− − CX− −DU−

]
. (5.17)

The following then immediately follows from Theorem 5.7.

Theorem 5.8. The data (U−, X, Y−) are informative for strong observability if
and only if C−1 im D ⊆ im X− and for all λ ∈ C we have

rank
[
R− λMX− MB

CX− D

]
= rank X− + rank

[
MB
D

]
(5.18)

where R is given by (5.17).
The data are informative for strong detectability if and only if C−1 im D ⊆

im X− and (5.18) holds for all λ ∈ C with |λ| ⩾ 1.

In the case of independent process and measurement noise (see Remark 5.3),
in which case E = [E1 0] and F = [0 F2], we have A ∈ AD if and only if there
exists a matrix W1− such that X+ = AX− + BU− + E1W1−. Thus, A ∈ AD if
and only if R = MAX− with

R := M [X+ −BU−] (5.19)

and M such that ker M = im E1 = im E. In this case, the formulation of
Theorem 5.8 holds verbatim with this M , and the new R given by (5.19).

Finally, for the special case E = 0 (the case with no process noise), we have
A ∈ AD if and only if R = AX− with

R := X+ −BU−. (5.20)

In that case, Theorem 5.8 holds verbatim with M = In and R given by (5.20).

5.3.2 Observability and detectability

Next, we turn to characterizing informativity of the data for the properties of
observability and detectability. Consider the system

x(t + 1) = Ax(t), y(t) = Cx(t). (5.21)
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The Hautus test states that (5.21) is observable (detectable) if and only if

rank
[
A− λI

C

]
= n

for all λ ∈ C (for all λ ∈ C with |λ| ⩾ 1).
Now, take the situation that only C is known, that matrices P, Q and R are

given, and that A can be any matrix from the affine set A given by (5.5). By
applying Theorem 5.7 to the special case B = 0 and D = 0, we then obtain the
following.

Corollary 5.9 (Uniform Hautus test). Let (P, Q, R) and C be given matrices.
Then (5.21) is observable for all A ∈ A if and only if ker C ⊆ im P and for any
λ ∈ C we have

rank
[
R− λQP

CP

]
= rank P. (5.22)

Similarly, (5.21) is detectable for all A ∈ A if and only if ker C ⊆ im P and
(5.22) holds for all λ ∈ C such that |λ| ⩾ 1.

We now apply the previous result to the situation that input-state-output
data on the system are available. As before, suppose that the data are (U−, X, Y−)
and consider the affine set AD of all n×n matrices given by (5.4). The next re-
sult establishes conditions under which the data are informative for observability
and for detectability.

Corollary 5.10. Let (U−, X, Y−) be given input-state-output data. Let [M N ]
be any matrix such that (5.16) holds. Let R be given by (5.17). The data are
informative for observability if and only if ker C ⊆ im X− and for all λ ∈ C we
have

rank
[
R− λMX−

CX−

]
= rank X−. (5.23)

The data are informative for detectability if and only if ker C ⊆ im X− and
(5.23) holds for all λ ∈ C with |λ| ⩾ 1.

Again, in the special case that the process noise and measurement noise are
independent, Corollary 5.10 holds verbatim with M such that ker M = im E
and R given by (5.19). For the case that there is no process noise, in the rank
test (5.23) we should take M = In and R given by (5.20). This proves the claim
made in Example 5.2.

Example 5.11. As an example, consider the system (5.1) with

Atrue =
[
0 1
2 0

]
, B =

[
0
1

]
, E =

[
1
0

]
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C =
[
1 0
]

, D = 0, F = 0.

Suppose that the following data are given:

U− = [1 1], X =
[
0 0 2
0 1 1

]
, Y− = [0 0]. (5.24)

These data are indeed compatible with the true system, since (5.3) holds with
W− = [0 1]. It is easily verified that

AD =
{[

a b
c 0

]
| a, b, c ∈ R

}
.

We will check whether the data are informative for strong detectability. Take
M = [0 1]. Since F = 0 we have R = M [X+ − BU−] = [0 0], MX− = [0 1],
CX− = [0 0], MB = 1. The condition C−1 im D ⊆ im X− is satisfied, so
informativity for strong detectability holds if and only if

rank
[
0 −λ 1
0 0 0

]
= 2

for |λ| ⩾ 1, which is clearly not the case. We now check informativity for
detectability. This requires ker C ⊆ im X− and

rank
[
0 −λ
0 0

]
= 1

for |λ| ⩾ 1. Both conditions indeed hold. On the other hand, the data are
not informative for observability since the rank condition fails for λ = 0. If, in
the example, we modify C and take C = [0 1], and accordingly Y− = [0 1],
then the data are still not informative for strong observability. In that case the
rank condition does hold for all λ ∈ C, but the condition C−1 im D ⊆ im X− is
violated. ■

Remark 5.12. For the noiseless case, without proof we mention that if, apart
from Atrue, also the true matrix C (which we will call Ctrue) is unknown (but
B and D are still known), then both for informativity for observability and
detectability a necessary condition is that X− has full row rank. As illustrated
in Example 5.11, this is no longer the case if Ctrue is known. Since X+ =
AtrueX− +BU− and Y− = CtrueX− +DU−, this implies Atrue = (X+−BU−)X♯

−
and Ctrue = (Y− − DU−)X♯

− for any right-inverse X♯
− of X−. Hence, in that

case the data are informative for observability (detectability) if and only if X−
has full row rank, and the pair ((Y− −DU−)X♯

−, (X+ −BU−)X♯
−) is observable

(detectable). The unknown Atrue and Ctrue are then uniquely determined by the
data.
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5.3.3 Strong controllability and strong stabilizability

For the system (5.6), the dual properties of strong observability and strong
detectability are strong controllability and strong stabilizability. These prop-
erties can be defined in terms of trajectories of the system. Here, for brevity,
we define (5.6) to be strongly controllable (strongly stabilizable) if the pair
(A + LC, B + LD) is controllable (stabilizable) for all L. From this it is imme-
diate that (5.6) is strongly controllable (strongly stabilizable) if and only if the
dual system (A⊤, C⊤, B⊤, D⊤) is strongly observable (strongly detectable). As
before, assume that B, C and D are given, but that A can be any matrix from
the affine set A := {A ∈ Rn×n | R = QAP}, where P, Q and R are given. Obvi-
ously, A ∈ A if and only if A⊤ satisfies R⊤ = P ⊤A⊤Q⊤. The above observations
make the following a matter of course.

Corollary 5.13. Let (P, Q, R) and (B, C, D) be given. Then (5.6) is strongly
controllable for all A ∈ A if and only if ker Q ⊆ B ker D and for all λ ∈ C

rank
[
R− λQP QB

CP D

]
= rank Q + rank

[
CP D

]
. (5.25)

Similarly, (5.6) is strongly stabilizable for all A ∈ A if and only if ker Q ⊆ B ker D
and (5.25) holds for all λ ∈ C such that |λ| ⩾ 1.

Since a given pair (A, B) is controllable (stabilizable) if and only if the
quadruple (A, B, 0, 0) is strongly controllable (strongly stabilizable), the follow-
ing also follows immediately.

Corollary 5.14 (Uniform Hautus test). Given (P, Q, R) and B, the pair (A, B)
is controllable for all A ∈ A if and only if ker Q ⊆ im B and for any λ ∈ C

rank
[
R− λQP QB

]
= rank Q. (5.26)

Furthermore (A, B) is stabilizable if and only if ker Q ⊆ im B and (5.26) holds
for all λ ∈ C such that |λ| ⩾ 1.

By appying the above in the context of informativity, we immediately obtain
the following.

Corollary 5.15. Let (M N) be such that (5.16) holds. Given the data
(U−, X, Y−), let R be given by (5.17). The data are informative for strong
controllability if and only if ker M ⊆ im B and for all λ ∈ C we have

rank
[
R− λMX− MB

CX− D

]
= rank M + rank[CX− D]. (5.27)

The data are informative for strong stabilizability if and only if ker M ⊆ im B
and (5.27) holds for all λ ∈ C with |λ| ⩾ 1.
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Corollary 5.16. Let [M N ] be such that (5.16) holds and let R be given by
(5.17). The data (U−, X, Y−) are informative for controllability if and only if
ker M ⊆ im B and for all λ ∈ C we have

rank
[
R− λMX− MB

]
= rank M. (5.28)

The data are informative for stabilizability if and only if ker M ⊆ im B and
(5.28) holds for all λ ∈ C with |λ| ⩾ 1.

As before, in the special case of independent process and measurement noise,
Corollary 5.15 and 5.16 hold verbatim with M such that ker M = im E and
R given by (5.19). In this special case, the rank test for controllability and
stabilizability can be simplified to rank M

[
X+ − λX− B

]
= rank M for all λ ∈

C, and λ ∈ C with |λ| ⩾ 1, respectively.
If there is no process noise, in the rank tests (5.27) and (5.28) we should

take M = In and R = X+ − BU−. For this special case, the rank test for
controllability and stabilizability can even be simplified to

rank
[
X+ − λX− B

]
= n (5.29)

for all λ ∈ C, and λ ∈ C with |λ| ⩾ 1, respectively. Note that this proves the
claim made in Example 5.1

Remark 5.17. The rank test (5.29) can also be derived from Theorem 3.3.
Indeed, that theorem states that all pairs (A, B) that satisfy the linear equation
X+ = AX− + BU− are controllable if and only if rank

[
X+ − λX−

]
= n for all

λ ∈ C. This result can be applied to our set up, where we assume that only A
is unknown and that B is given. Indeed, by defining ‘new data’ by

X̃+ :=
[
X+ B

]
, X̃− :=

[
X− 0

]
, Ũ− :=

[
U− Im

]
(5.30)

we have that a matrix A satisfies X+ = AX−+BU− if and only if (A, B) satisfies
X̃+ = AX̃− + BŨ−. By applying Theorem 3.3. to the new data (5.30) we then
get that (A, B) is controllable for all A satisfying X+ = AX− +BU− if and only
if (5.29) holds.

Example 5.18. Again take as the true system the one specified in Example 5.11.
Also, let the data be given by (5.24). Note that the condition ker M ⊆ im B
is violated, so the data are neither informative for strong controllability nor
for strong stabilizability. They are also not informative for controllability or
stabilizability. ■
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5.4 A geometric approach to informativity

It is well known, see for example [160], that observability and strong observability
also allow tests in terms of certain subspaces of the state space, more specifically,
the unobservable subspace and weakly unobservable subspace. Properties of the
weakly unobservable subspace also characterize left-invertibility of the system.
In this section we will use these ideas to characterize informativity for strong
observability, observability and left-invertibility.

Again consider the system (5.6). We call a subspace V ⊆ Rn output-nulling
controlled invariant if [

A
C

]
V ⊆ V × {0}+ im

[
B
D

]
(5.31)

(see [160]). Since any finite sum of such subspaces retains this property, there
exists a unique largest output-nulling controlled invariant subspace, which will
be denoted by V(A, B, C, D). This subspace is called the weakly unobservable
subspace of the system (5.6). The system (5.6) is strongly observable if and only
if V(A, B, C, D) = {0}, see [160, pp. 159-160 and Theorem 7.16].

Now, again consider the situation that the matrices B, C and D are specified,
but that A can be any matrix from the affine set A given by (5.5), where the
matrices P ∈ Rn×r, Q ∈ Rℓ×n and R ∈ Rℓ×r are given. We consider the set of
all subspaces J ⊆ Rr that satisfy the following inclusion:[

R
CP

]
J ⊆ QPJ × {0}+ im

[
QB
D

]
. (5.32)

It is easily verified that any finite sum of such subspaces J retains this property,
and therefore there exists a largest subspace of Rr that satisfies the inclusion
(5.32). We will denote this subspace by J ⋆.

Remark 5.19. It is straightforward to check that J ⋆ can be found from B, C,
D, P , Q and R in at most r steps by letting J0 = Rr, and iterating

Jt+1 =
[

R
CP

]−1(
QPJt × {0}+ im

[
QB
D

])
. (5.33)

The following result will be instrumental in the remainder of this section.

Theorem 5.20. Let (P, Q, R) and (B, C, D) be such that C−1 im D ⊆ im P .
Then the following hold:

(a) For all A ∈ A, we have V(A, B, C, D) ⊆ PJ ⋆.

(b) There exists Ā ∈ A such that V(Ā, B, C, D) = PJ ⋆.
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Proof. (a): Assume that C−1 im D ⊆ im P holds. Let A ∈ A and let V ⊆ Rn

be an output nulling controlled invariant subspace. Note that CV ⊆ im D, and
therefore there exists a subspace J such that V = PJ . We now see that[

R
CP

]
J =

[
Q 0
0 I

] [
A
C

]
PJ ⊆ QPJ × {0}+ im

[
QB
D

]
.

Due to the definition of J ⋆, we then obtain V(A, B, C, D) ⊆ PJ ⋆.
(b): Let J satisfy (5.32). Then for any A ∈ A and x ∈ PJ there exists

u ∈ Rm such that:

Cx + Du = 0, and QAx + QBu ∈ QPJ .

This implies that

im(Ax + Bu) ⊆ Q−1 im Q(Ax + Bu) ⊆ Q−1QPJ = PJ + ker Q.

Now let {x1, . . . , xk} be a basis of the subspace PJ . By the previous discussion,
for all i = 1, . . . , k there exists a ui ∈ Rm such that Cxi + Dui = 0 and
Axi + Bui = yi + zi, where yi ∈ PJ and zi ∈ ker Q. Let A0 be any real n × n
matrix such that A0xi = −zi for i = 1, . . . , k and QA0P = 0. Then, by defining
Ā = A + A0 we see that Ā ∈ A. By definition Āxi + Bui = yi ∈ PJ , and
therefore, by writing V = PJ , we have:[

Ā
C

]
V ⊆ V × {0}+ im

[
B
D

]
.

Hence PJ ⊆ V(Ā, B, C, D), proving that PJ ⋆ ⊆ V(Ā, B, C, D) and thus PJ ⋆ =
V(Ā, B, C, D) by (a). □

Using Theorem 5.20 we immediately obtain the following.

Theorem 5.21. Let (B, C, D) and (P, Q, R) be given. Then the system (5.6) is
strongly observable for all A ∈ A if and only if C−1 im D ⊆ im P and J ⋆ ⊆ ker P .

Proof. From Theorem 5.7 we see that C−1 im D ⊆ im P is a necessary condi-
tion. The rest follows from Theorem 5.20. □

The procedure can be mimicked in order to characterize observability. For the
system (5.21), the unobservable subspace N is the largest A-invariant subspace
contained in ker C, and (5.21) is observable if and only if N = {0}. In the
situation that only C and matrices (P, Q, R) are given, while A can be any
matrix in the affine set A, we should look at the largest subspace L ⊆ Rr with
the properties that

RL ⊆ QPL and CPL = {0}. (5.34)
Denote this subspace by L⋆ Then, we obtain the following corollary.



112 Analysis of further system properties

Corollary 5.22. Given (P, Q, R) and C, then (5.21) is observable for all A ∈ A
if and only if ker C ⊆ im P and L⋆ ⊆ ker P .

The subspace L⋆ is obtained in at most r steps by applying the iteration
(5.33) with B = 0 and D = 0.

We now very briefly put the above in the context of informativity of input-
state-output data. As before, let (U−, X, Y−) be the noisy data obtained from
the system (5.1). Let [M N ] be any matrix such that (5.16) holds. Then, by
Theorem 5.20, these data are informative for strong observability of (5.6) if and
only if C−1 im D ⊆ im X− and J ⋆ ⊆ ker X−, where J ⋆ is the largest subspace
satisfying (5.32) with R given by (5.17), P = X− and Q = M . Likewise,
informativity for observability holds if and only if ker C ⊆ im X− and L⋆ ⊆
ker X−.

Obviously, the above can, again, be dualized to obtain alternative tests for
informativity for controllability and strong controllability. We omit the details
here. Instead, we will turn to informativity for the property of left-invertibility
of the system (5.6) now. We briefly recall the definition.

Definition 5.23. The system (5.6) is called left-invertible if for each input
sequence u the following holds: y(t, 0, u) = 0 for all t ∈ Z+ implies that u(t) = 0
for all t ∈ Z+.

The following characterization of left-invertibility was given in [160, Thm.
8.26].

Proposition 5.24. The following are equivalent:

(a) The system (5.6) is left-invertible.

(b) V(A, B, C, D) ∩B ker D = {0} and
[
B
D

]
has full column rank.

The next result then, again, follows from Theorem 5.20.

Theorem 5.25. Let (P, Q, R) and (B, C, D) be given. Assume that C−1 im D ⊆
im P . Then the system (5.6) is left-invertible for all A ∈ A if and only if

PJ ⋆ ∩B ker D = {0} and
[
B
D

]
has full column rank.

As before, this can immediately be applied in the context of informativity.
We omit the details.

Remark 5.26. Note that Theorem 5.25 requires C−1 im D ⊆ im P , which,
unfortunately, for left-invertibility for all A ∈ A is not a necessary condition.
This can be seen, for example, by taking D = I. Then, regardless of our choice
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of (P, Q, R), B and C, we see that (5.6) is left-invertible for all A ∈ A. However,
in this case C−1 im D = Rn, so the condition C−1 im D ⊆ im P is violated if P
does not have full row rank.

To conclude this section, we note that Theorem 5.25 can be dualized in
a straightforward way to obtain a characterization of right-invertibility for all
A ∈ A, and conditions for informativity of data for right-invertibility. Again, we
omit the details.

To illustrate the the theory developed in this section we give the following
example.

Example 5.27. Consider the system (5.1) with

Atrue =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , B =


1
0
0
0

 , E =


0
0
0
1

 ,

C =
[
1 0 0 0

]
, D = 0, F = 0.

Let data be given by

X =


0 0 0 5
0 0 1 0
0 1 0 0
1 0 0 0

 , U− =
[
0 0 4

]
, Y− =

[
0 0 0

]
.

Since there is only process noise, we should take M such that ker M = im E.
Define

M :=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 .

Then

R = M [X+ −BU−] =


0 0 1
0 1 0
1 0 0
0 0 0

 .

It is easily verified that the set of all matrices consistent with the data is equal
to

AD =




a11 1 0 0
a21 0 1 0
a31 0 0 1
a41 a42 a43 a44

 | aij ∈ R

 .
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Note that C−1 im D ⊆ im X−. In this case J ⋆ = R3, and therefore the data are
not informative for strong observability. On the other hand, L⋆ = {0}, proving
that we do have informativity for observability.

If we modify our system by taking B = ei, the ith standard basis vector in
R4 (i = 2, 3, 4), and adapt the data X accordingly, we get J ⋆ = R4−i × {0}i−1.
This means that X−J ⋆ = {0}i × R4−i. Thus, only for i = 4, the data are
informative for strong observability. For i = 2, 3, 4 the data are informative for
left-invertibility. ■

5.5 Notes and references

The results of this chapter are based on the publication [50]. They are a follow-
up to those in Chapter 3. In Chapter 3, we have studied data-driven analysis
of system properties using noise-free and noisy data, where the noise matrix
was assumed to satisfy a bound dictated by a quadratic matrix inequality. In
contrast, in this chapter, we have assumed that the noise is contained in a
subspace. In addition, we have treated system properties that were not studied
in this book before, like strong observability, strong detectability, and the dual
properties of strong controllability and strong stabilizability.

These structural properties are relevant in a wide range of observer, filter
and control design problems. For definitions and extensive treatments we refer
to [69,114,117,147,153,194], and [160] and the references therein.

Analysis of system properties based on data has been studied also in [94,119,
182, 199], which deal with data-based controllability and observability analysis.
Whereas in the present chapter general data sets are allowed, these references
impose restrictions on the data. The paper [125] deals with the problem of
determining stability properties of input-output systems using time series data.
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Data-driven stabilization

This chapter deals with informativity for control. The control objective will be
stabilization. The aim is to find controllers that stabilize some unknown linear
system. In the situation that the data obtained from this unknown system do
not determine the system uniquely, we need to find controllers that stabilize all
systems that are consistent with the data. If the data enable us to find such
controllers, they are called informative for stabilization. The subsequent design
step is then to determine suitable controllers using only these informative data.
In this chapter we will first study the design of static state feedback controllers
based on noiseless input-state data. Next, we will consider the problem of de-
signing dynamic output feedback controllers based on input-state-output data.
We will also take a look at the situation that we only have input-output data.
The final section of this chapter deals with the design of quadratically stabilizing
static state feedback controllers based on noisy input-state data.

6.1 Stabilization by state feedback

Consider the model class M of all linear input-state systems of the form

x(t + 1) = Ax(t) + Bu(t)

where x is the n-dimensional state and u is the m-dimensional input. Suppose
that we collect input-state data on the time interval [0, T ], leading to data D :=
(U−, X) as given by (2.1). The set ΣD of all systems in M that are consistent
with the data is then equal to Σ(U−,X) defined by

Σ(U−,X) :=
{

(A, B) ∈M | X+ =
[
A B

] [X−
U−

]}
. (6.1)

Again, by assumption we have (Atrue, Btrue) ∈ Σ(U−,X), where (Atrue, Btrue)
represents the true, unknown system.

In the context of stabilization by state feedback we take as the control objec-
tive O: ‘interconnection with a state feedback controller yields a stable closed
loop system’. In line with Definition 2.4 we then have the following definition of
informativity for stabilization by state feedback.
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Definition 6.1. We say that the data (U−, X) are informative for stabilization
by state feedback if there exists a K ∈ Rm×n such that A + BK is stable for all
(A, B) ∈ Σ(U−,X).

In other words, the input-state data (U−, X) are informative for stabilization
by state feedback if there exists a single real m×n matrix K such that A + BK
is stable for all systems (A, B) that are consistent with the data.

At this point, one may wonder about the relation between informativity for
stabilizability (as in Definition 3.2) and informativity for stabilization. It is
clear that the data (U−, X) are informative for stabilizability if (U−, X) are
informative for stabilization by state feedback. However, the reverse statement
does not hold in general. This is due to the fact that all systems (A, B) in
Σ(U−,X) may be stabilizable, but there may not exist a common feedback gain
K such that A+BK is stable for all of these systems. This is further illustrated
in the following example.

Example 6.2. Consider the scalar system

x(t + 1) = u(t)

where x(t), u(t) ∈ R. Suppose that we collect data on the time interval [0, 1],
specifically, x(0) = 0, u(0) = 1 and x(1) = 1. This means that U− =

[
1
]

and X =
[
0 1
]
. It can be shown that Σ(U−,X) = {(a, 1) | a ∈ R}. Clearly, all

systems in Σ(U−,X) are stabilizable. Nonetheless, the data are not informative for
stabilization. This is because the systems (−1, 1) and (1, 1) in Σ(U−,X) cannot
be stabilized by the same controller of the form u(t) = Kx(t). We conclude
that informativity of the data for stabilizability does not imply informativity for
stabilization by state feedback. ■

The notion of informativity for stabilization by state feedback is a specific
example of informativity for control. As described in Problem 2.6 of the intro-
duction, we will first find necessary and sufficient conditions for informativity
for stabilization by state feedback. After this, we will design a corresponding
controller, as described in Problem 2.7.

In order to be able to characterize informativity for stabilization, we first
state a useful lemma. Recall that (A, B) ∈M is consistent with the data (U−, X)
if and only if it satisfies the inhomogeneous equation appearing in (6.1). The
solution set of the corresponding homogeneous equation is denoted by Σhom

(U−,X)
and is equal to

Σhom
(U−,X) :=

{
(A0, B0) | 0 =

[
A0 B0

] [X−
U−

]}
. (6.2)
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Lemma 6.3. Suppose that the data (U−, X) are informative for stabilization
by state feedback and let K be a feedback gain such that A+BK is stable for all
(A, B) ∈ Σ(U−,X). Then A0 +B0K = 0 for all (A0, B0) ∈ Σhom

(U−,X). Equivalently,

im
[

I
K

]
⊆ im

[
X−
U−

]
.

Proof. We first prove that A0 +B0K is nilpotent for all (A0, B0) ∈ Σhom
(U−,X). By

hypothesis, A+BK is stable for all (A, B) ∈ Σ(U−,X). Let (A, B) ∈ Σ(U−,X) and
(A0, B0) ∈ Σhom

(U−,X) and define the matrices F := A + BK and F0 := A0 + B0K.
Then, the matrix F + αF0 is stable for all α ⩾ 0. By dividing by α, it follows
that, for all α ⩾ 1, the spectral radius of the matrix

Mα := 1
α

F + F0

is smaller than 1/α. From the continuity of the spectral radius by taking the
limit as α tends to infinity, we see that F0 = A0 + B0K is nilpotent for all
(A0, B0) ∈ Σhom

(U−,X). Note that we have

((A0 + B0K)⊤A0, (A0 + B0K)⊤B0) ∈ Σhom
(U−,X)

whenever (A0, B0) ∈ Σhom
(U−,X). This means that (A0 + B0K)⊤(A0 + B0K) is

nilpotent. Since the only symmetric nilpotent matrix is the zero matrix, we see
that A0 + B0K = 0 for all (A0, B0) ∈ Σhom

(U−,X). This is equivalent to

ker
[
X⊤

− U⊤
−
]
⊆ ker

[
I K⊤]

which is equivalent to im
[

I
K

]
⊆ im

[
X−
U−

]
. □

The previous lemma is instrumental in proving the following theorem that
gives necessary and sufficient conditions for informativity for stabilization by
state feedback.

Theorem 6.4. The data (U−, X) are informative for stabilization by state feed-
back if and only if the matrix X− has full row rank and there exists a right inverse
X♯

− of X− such that X+X♯
− is stable.

Moreover, K is such that A + BK is stable for all (A, B) ∈ Σ(U−,X) if and
only if K = U−X♯

−, where X♯
− satisfies the above properties. In that case,

A + BK = X+X♯
− for all (A, B) ∈ Σ(U−,X).
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Proof. To prove the ‘if’ part of the first statement, suppose that X− has full
row rank and there exists a right inverse X♯

− of X− such that X+X♯
− is stable.

We define K := U−X♯
−. Next, we see that

X+X♯
− =

[
A B

] [X−
U−

]
X♯

− = A + BK (6.3)

for all (A, B) ∈ Σ(U−,X). Therefore, A + BK is stable for all (A, B) ∈ Σ(U−,X).
We conclude that the data (U−, X) are informative for stabilization by state
feedback, proving the ‘if’ part of the first statement. This also immediately
proves ‘if’ part of the second statement as a byproduct.

Next, to prove the ‘only if’ part of the first statement, suppose that the data
(U−, X) are informative for stabilization by state feedback. Let K be such that
A + BK is stable for all (A, B) ∈ Σ(U−,X). By Lemma 6.3 we know that

im
[

I
K

]
⊆ im

[
X−
U−

]
.

This implies that X− has full row rank and there exists a right inverse X♯
− such

that [
I
K

]
=
[
X−
U−

]
X♯

−. (6.4)

By (6.3), we obtain A + BK = X+X♯
−, which shows that X+X♯

− is stable. This
proves the ‘only if’ part of the first statement. Finally, by (6.4), the stabilizing
feedback gain K is indeed of the form K = U−X♯

−, which also proves the ‘only
if’ part of the second statement. □

Theorem 6.4 gives a characterization of all input-state data that are infor-
mative for stabilization by state feedback and provides a stabilizing controller.
Nonetheless, the procedure to compute this controller might not be entirely sat-
isfactory since it is not clear how to find a right inverse of X− that makes X+X♯

−
stable. In general, X− has many right inverses, and X+X♯

− can be stable or un-
stable depending on the particular right inverse X♯

−. To deal with this problem
and to solve the design problem, we give a characterization of informativity for
stabilization in terms of linear matrix inequalities. The feasibility of such LMIs
can be verified using standard tools.

Theorem 6.5. The data (U−, X) are informative for stabilization by state feed-
back if and only if there exists a matrix Θ ∈ RT ×n satisfying

X−Θ = (X−Θ)⊤ and
[

X−Θ X+Θ
Θ⊤X⊤

+ X−Θ

]
> 0. (6.5)
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Moreover, K is such that A + BK is stable for all (A, B) ∈ Σ(U−,X) if and only
if K = U−Θ(X−Θ)−1 for some matrix Θ satisfying (6.5).

Example 6.6. Consider an unstable system (Atrue, Btrue), where Atrue and
Btrue are given by

Atrue =
[
1.5 0
1 0.5

]
, Btrue =

[
1
0

]
.

We collect data from this system on a the time interval from t = 0 to t = 2,
which results in the data matrices

X =
[
1 0.5 −0.25
0 1 1

]
, U− =

[
−1 −1

]
.

Clearly, the matrix X− is square and invertible, and it can be verified that

X+X−1
− =

[
0.5 −0.5
1 0.5

]
is stable, since its eigenvalues are 1

2 (1±
√

2i). We conclude by Theorem 6.4 that
the data (U−, X) are informative for stabilization by state feedback. The same
conclusion can be drawn from Theorem 6.5 since

Θ =
[
1 −1
0 2

]
solves (6.5). Next, we can conclude from either Theorem 6.4 or Theorem
6.5 that the stabilizing feedback gain in this example is unique, and given by
K = U−X−1

− =
[
−1 −0.5

]
. Finally, it is worth noting that the data are not

informative for system identification. In fact, (A, B) ∈ Σ(U−,X) if and only if

A =
[
1.5 + a1 0.5a1
1 + a2 0.5 + 0.5a2

]
, B =

[
1 + a1

a2

]
for some a1, a2 ∈ R. ■

Proof of Theorem 6.5. To prove the ‘if’ part of the first statement, suppose
that there exists a Θ satisfying (6.5). In particular, this implies that X−Θ > 0.
Therefore, X− has full row rank. By taking a Schur complement and multiplying
by −1, we obtain

X+Θ(X−Θ)−1(X−Θ)(X−Θ)−1Θ⊤X⊤
+ −X−Θ < 0.

Since X−Θ is positive definite, this implies that X+Θ(X−Θ)−1 is stable. In
other words, there exists a right inverse X♯

− := Θ(X−Θ)−1 of X− such that
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X+X♯
− is stable. By Theorem 6.4, we conclude that (U−, X) are informative for

stabilization by state feedback, proving the ‘if’ part of the first statement. Using
Theorem 6.4 once more, we see that K := U−Θ(X−Θ)−1 stabilizes all systems
in Σ(U−,X), which in turn proves the ‘if’ part of the second statement.

Subsequently, to prove the ‘only if’ part of the first statement, suppose that
the data (U−, X) are informative for stabilization by state feedback. Let K be
any feedback gain such that A + BK is stable for all (A, B) ∈ Σ(U−,X). By
Theorem 6.4, X− has full row rank and K is of the form K = U−X♯

−, where
X♯

− is a right inverse of X− such that X+X♯
− is stable. The stability of X+X♯

−
implies the existence of a P > 0 such that

(X+X♯
−)P (X+X♯

−)⊤ − P < 0.

Next, we define Θ := X♯
−P and note that

X+ΘP −1(X+Θ)⊤ − P < 0.

Via the Schur complement we conclude that[
P X+Θ

Θ⊤X⊤
+ P

]
> 0.

Since X−X♯
− = I, we see that P = X−Θ, which proves the ‘only if’ part of the

first statement. Finally, by definition of Θ, we have X♯
− = ΘP −1 = Θ(X−Θ)−1.

Recall that K = U−X♯
−, which shows that K is of the form K = U−Θ(X−Θ)−1

for Θ satisfying (6.5). This proves the ‘only if’ part of the second statement and
hence the proof is complete. □

In addition to the stabilizing controllers discussed in Theorems 6.4 and 6.5,
we may also look for a controller of the form u(t) = Kx(t) that stabilizes the
system in finite time. Such a controller is called a deadbeat controller and is
characterized by the property that (Atrue + BtrueK)tx0 = 0 for all t ⩾ n and
all x0 ∈ Rn. Thus, K is a deadbeat controller if and only if Atrue + BtrueK is
nilpotent. Then, analogous to the definition of informativity for stabilization
by state feedback, we have the following definition of informativity for deadbeat
control.
Definition 6.7. We say that the data (U−, X) are informative for deadbeat
control if there exists a feedback gain K such that A + BK is nilpotent for all
(A, B) ∈ Σ(U−,X).

In other words, the data are informative for deadbeat control if there exists
a real m× n matrix K such that A + BK is nilpotent for all systems consistent
with the data. Similarly to Theorem 6.4, we obtain the following necessary and
sufficient conditions for informativity for deadbeat control.
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Theorem 6.8. The data (U−, X) are informative for deadbeat control if and
only if the matrix X− has full row rank and there exists a right inverse X♯

− of
X− such that X+X♯

− is nilpotent.
Moreover, if this condition is satisfied then the feedback gain K := U−X♯

−
yields a deadbeat controller, that is, A+BK is nilpotent for all (A, B) ∈ Σ(U−,X).

Proof. The proof is similar to that of Theorem 6.4. For the ‘only if’ part, note
that a square matrix is nilpotent if and only if it has only zero eigenvalues, which
implies that a nilpotent matrix is stable. □

Remark 6.9. In order to check the existence of, and to compute a suitable
right inverse X♯

− such that X+X♯
− is nilpotent, we can proceed as follows. Since

X− has full row rank, we have T ⩾ n. We now distinguish two cases: T = n and
T > n. In the former case, X− is nonsingular and we should just check whether
X+X−1

− is nilpotent.
In the latter case, there exist matrices F ∈ RT ×n and G ∈ RT ×(T −n) such

that
[
F G

]
is nonsingular and X−

[
F G

]
=
[
In 0n,(T −n)

]
. It is easily checked

that X♯
− is a right inverse of X− if and only if X♯

− = F + GH for some H ∈
R(T −n)×n. Finding a right inverse X♯

− such that X+X♯
− is nilpotent therefore

amounts to finding H such that X+F + X+GH is nilpotent, i.e. has only zero
eigenvalues. Computation of such a matrix H amounts to a state feedback
stabilization problem for the pair (X+F, X+G) with stability domain equal to
{0}, or, equivalently, a state feedback deadbeat control problem for the pair
(X+F, X+G).

6.2 Stabilization by dynamic output feedback

Whereas in the previous section we have considered stabilization by static state
feedback using data obtained from input and state measurements, in the present
section we will take also output measurements into account. In particular, we
will consider the problem of stabilization by dynamic ouput feedback. We now
first consider this problem based on input, state and output measurements.
Subsequently, we turn our attention to the case of input-output data.

6.2.1 Stabilization using input, state and output data

Suppose that our model class M consists of all systems of the form

x(t + 1) = Ax(t) + Bu(t) (6.6a)
y(t) = Cx(t) + Du(t). (6.6b)
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Here, x is the n-dimensional state, u is the m-dimensional input and y is the
p-dimensional output. The dimensions n, m and p are given, fixed, integers. The
unknown, true system S belongs to the model class M, and is given by

x(t + 1) = Atruex(t) + Btrueu(t) (6.7a)
y(t) = Ctruex(t) + Dtrueu(t). (6.7b)

Suppose that we have collected input-state-output data on the time interval
[0, T ]. Let U−, X, X−, and X+ be defined as in Section 2.2 and let Y− be defined
in a similar way as U−. Our data are now given by D = (U−, X, Y−). Since these
data are assumed to be generated by the true system (Atrue, Btrue, Ctrue, Dtrue)
we have [

X+
Y−

]
=
[
Atrue Btrue
Ctrue Dtrue

] [
X−
U−

]
.

The set ΣD of all systems that are consistent with these data is then given by:

Σ(U−,X,Y−) :=
{

(A, B, C, D) |
[
X+
Y−

]
=
[
A B
C D

] [
X−
U−

]}
. (6.8)

We want to design a stabilizing dynamic controller K of the form

z(t + 1) = Kz(t) + Ly(t) (6.9a)
u(t) = Mz(t). (6.9b)

Here, the controller state z is q-dimensional, where the controller dimension q
needs to be designed as well.

As design objective O we now take: ‘interconnection with a dynamic con-
troller yields a stable closed loop system’. For a given dynamic controller K =
(K, L, M) of the form (6.9), the closed-loop system obtained from interconnect-
ing the controller with any system (A, B, C, D) ∈ Σ(U−,X,Y−) is governed by the
matrix [

A BM
LC K + LDM

]
. (6.10)

Informativity of input-state-output data for stabilization by dynamic output
feedback requires the existence of a controller K that stabilizes all systems inM
that are consistent with the data:

Definition 6.10. The data (U−, X, Y−) are called informative for stabilization
by dynamic output feedback if there exists a controller K = (K, L, M) such that
(6.10) is stable for all (A, B, C, D) ∈ Σ(U−,X,Y−).

As in the general case of informativity for control, we consider two consequent
problems: first, to characterize informativity for stabilization by dynamic output
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feedback in terms of necessary and sufficient conditions on the data and next to
design a controller based on these data.

To aid in solving these problems, we will first investigate the case where U−
does not have full row rank. In this case, we will show that the problem can be
‘reduced’ to the full row rank case. For this, we start with the observation that
any U− ∈ Rm×T of row rank k < m can be decomposed as U− = SÛ−, where
S ∈ Rm×k has full column rank and Û− ∈ Rk×T has full row rank. We now have
the following lemma:

Lemma 6.11. Consider the data (U−, X, Y−) and the corresponding set of sys-
tems Σ(U−,X,Y−) consistent with these data given by (6.8). Let S be a matrix of
full column rank such that U− = SÛ− with Û− a matrix of full row rank. Let
S♯ be a left inverse of S.

Then the data (U−, X, Y−) are informative for stabilization by dynamic out-
put feedback if and only if the data (Û−, X, Y−) are informative for stabilization
by dynamic output feedback.

In particular, if we let Σ(Û−,X,Y−) be the set of systems (Â, B̂, Ĉ, D̂) con-
sistent with the ‘reduced’ data set (Û−, X, Y−)1, and if K̂, L̂ and M̂ are real
matrices of appropriate dimensions, then the following two statements hold:

(a) If (K, L, M) stabilizes all systems in Σ(U−,X,Y−) then (K, L, S♯M) stabilizes
all systems in Σ(Û−,X,Y−).

(b) If (K̂, L̂, M̂) stabilizes all systems in Σ(Û−,X,Y−) then (K̂, L̂, SM̂) stabilizes
all systems in Σ(U−,X,Y−).

Proof. First note that

Σ(Û−,X,Y−) =
{

(Â, B̂, Ĉ, D̂) |
[
X+
Y−

]
=
[
Â B̂

Ĉ D̂

] [
X−
Û−

]}
.

We will start by proving the following two implications:

(A, B, C, D) ∈ Σ(U−,X,Y−)=⇒ (A, BS, C, DS) ∈ Σ(Û−,X,Y−) (6.11)

(Â, B̂, Ĉ, D̂) ∈ Σ(Û−,X,Y−)=⇒ (Â, B̂S♯, Ĉ, D̂S♯) ∈ Σ(U−,X,Y−). (6.12)

To prove implication (6.11), assume that (A, B, C, D) ∈ Σ(U−,X,Y−). Then, by
definition [

X+
Y−

]
=
[
A B
C D

] [
X−
U−

]
.

1Note that, here, B̂ and D̂ have dimensions n × k and p × k, respectively.
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From the definition of S, we have U− = SÛ−. Substitution of this results in[
X+
Y−

]
=
[
A B
C D

] [
X−
SÛ−

]
=
[
A BS
C DS

] [
X−
Û−

]
.

This implies that (A, BS, C, DS) ∈ Σ(Û−,X,Y−). The implication (6.12) can be
proven similarly by substitution of Û− = S♯U−.

To prove the lemma, suppose that the data (U−, X, Y−) are informative for
stabilization by dynamic output feedback, and that K, L, and M are such that
the matrix [

A BM
LC K + LDM

]
is stable for all (A, B, C, D) ∈ Σ(U−,X,Y−). If (Â, B̂, Ĉ, D̂) ∈ Σ(Û−,X,Y−) then
(Â, B̂S♯, Ĉ, D̂S♯) ∈ Σ(U−,X,Y−) by (6.12). This means that the matrix[

Â B̂S♯M

LĈ K + LD̂S♯M

]
is stable for all (Â, B̂, Ĉ, D̂) ∈ Σ(Û−,X,Y−). Hence the data (Û−, X, Y−) are
informative for stabilization by dynamic measurement feedback and (K, L, S♯M)
is a stabilizing controller for all systems in Σ(Û−,X,Y−). This proves the ‘only if’
part of the lemma and statement (a). The proofs of (b) and the ‘if’ part of the
lemma are analogous and hence omitted. □

We will now solve the informativity and design problems under the condition
that U− has full row rank. Before embarking on this, we however first need to
consider the issue of informativity for identification in the context of input-state-
output data. We have already studied this property in the context of input-state
data in Section 3.1. Here, we will extend these results to input-state-output data.

Recall that our model class M is now given by (6.6).
Definition 6.12. The input-state-output data (U−, X, Y−) are called informa-
tive for identification if Σ(U−,X,Y−) contains exactly one element.

In other words informativity for identification requires the set of systems
consistent with the data to be a singleton. If this is the case, it only contains
the unknown, true, system (Atrue, Btrue, Ctrue, Dtrue).

The following theorem gives necessary and sufficient conditions for this to
hold:
Theorem 6.13. The data (U−, X, Y−) are informative for system identification
if and only if

rank
[
X−
U−

]
= n + m. (6.13)
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Furthermore, if (6.13) holds, there exists a matrix
[
V1 V2

]
such that[

X−
U−

] [
V1 V2

]
=
[
I 0
0 I

]
(6.14)

and, for any such right inverse, Atrue = X+V1, Btrue = X+V2, Ctrue = Y−V1 and
Dtrue = Y−V2.

Proof. The proof is similar to that of Theorem 3.1. □

It turns out that, under the assumption that U− has full row rank, a necessary
condition for informativity for stabilization by dynamic output feedback is that
the data (U−, X, Y−) are informative for identification. In fact, we have the
following result.

Theorem 6.14. Consider the data (U−, X, Y−) and assume that U− has full
row rank. Then (U−, X, Y−) are informative for stabilization by dynamic mea-
surement feedback if and only if the following conditions are satisfied:

(a) We have

rank
[
X−
U−

]
= n + m

equivalently, there exists a matrix
[
V1 V2

]
such that[

X−
U−

] [
V1 V2

]
=
[
I 0
0 I

]
.

(b) The pair (X+V1, X+V2) is stabilizable and (Y−V1, X+V1) is detectable.

Moreover, if the above conditions are satisfied, a stabilizing controller (K, L, M)
can be constructed as follows:

(i) Select a matrix M such that X+(V1 + V2M) is stable.

(ii) Choose a matrix L such that (X+ − LY−)V1 is stable.

(iii) Define K := (X+ − LY−)(V1 + V2M).

Remark 6.15. Under the condition that U− has full row rank, Theorem 6.14
asserts that informativity for stabilization by dynamic output feedback holds if
and only if the only system consistent with the data is the true system, and this
true system is both stabilizable and detectable. The controller proposed in (i),
(ii), (iii) is a so-called observer-based controller. The feedback gains M and L
can be computed using standard methods, for example via pole placement or
LMIs.
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Proof of Theorem 6.14. To prove the ‘if’ part, suppose that conditions (a)
and (b) are satisfied. This implies the existence of the matrices (K, L, M) as
defined in items (i), (ii) and (iii). We will now show that these matrices indeed
constitute a stabilizing controller. Note that by condition (a), Σ(U−,X,Y−) =
{(Atrue, Btrue, Ctrue, Dtrue)} with[

Atrue Btrue
Ctrue Dtrue

]
=
[
X+V1 X+V2
Y−V1 Y−V2

]
. (6.15)

By definition of K, L and M , the matrices Atrue +BtrueM and Atrue−LCtrue are
stable and K = Atrue+BtrueM−LCtrue−LDtrueM . This implies that (K, L, M)
is a stabilizing controller for (Atrue, Btrue, Ctrue, Dtrue) since the matrices[

Atrue BtrueM
LCtrue Atrue + BtrueM − LCtrue

]
and

[
Atrue + BtrueM BtrueM

0 Atrue − LCtrue

]
are similar and thus have the same eigenvalues. We conclude that (U−, X, Y−)
are informative for stabilization by dynamic output feedback and that the recipe
given by (i), (ii) and (iii) leads to a stabilizing controller (K, L, M).

It remains to prove the ‘only if’ part. To this end, suppose that the data
(U−, X, Y−) are informative for stabilization by dynamic output feedback. Let
(K, L, M) be such that [

A BM
LC K + LDM

]
is stable for all (A, B, C, D) ∈ Σ(U−,X,Y−). Let ζ ∈ Rn and η ∈ Rm be such that

[
ζ⊤ η⊤] [X−

U−

]
= 0.

Note that (A + ζζ⊤, B + ζη⊤, C, D) ∈ Σ(U−,X,Y−) if (A, B, C, D) ∈ Σ(U−,X,Y−).
Therefore, the matrix[

A BM
LC K + LDM

]
+ α

[
ζζ⊤ ζη⊤M

0 0

]
is stable for all α ∈ R. We conclude that for α > 0 the spectral radius of the
matrix

Wα := 1
α

[
A BM

LC K + LDM

]
+
[
ζζ⊤ ζη⊤M

0 0

]
is smaller than 1/α. By taking the limit as α → ∞, we see that the spectral
radius of ζζ⊤ must be zero due to the continuity of spectral radius. Therefore,
ζ must be zero. Since U− has full column rank, we can conclude that η must
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be zero too. This proves that condition (a) holds and therefore Σ(U−,X,Y−) =
{(Atrue, Btrue, Ctrue, Dtrue)}. Since the controller (K, L, M) stabilizes the system
(Atrue, Btrue, Ctrue, Dtrue), the pair (Atrue, Btrue) is stabilizable and (Ctrue, Atrue)
is detectable. By (6.15) we conclude that condition (b) is also satisfied. This
proves the theorem. □

The following corollary follows from Lemma 6.11 and Theorem 6.14 and gives
necessary and sufficient conditions for informativity for stabilization by dynamic
output feedback. Note that we do not make any a priori assumptions on the
rank of U−.

Corollary 6.16. Let S be any full column rank matrix such that U− = SÛ−
with Û− full row rank k. The data (U−, X, Y−) are informative for stabilization
by dynamic output feedback if and only if the following two conditions are
satisfied:

(a) We have

rank
[
X−
Û−

]
= n + k

equivalently, there exists a matrix
[
V1 V2

]
such that[

X−
Û−

] [
V1 V2

]
=
[
I 0
0 I

]
.

(b) The pair (X+V1, X+V2) is stabilizable and (Y−V1, X+V1) is detectable.

Moreover, if the above conditions are satisfied, a stabilizing controller (K, L, M)
is constructed as follows:

(i) Select a matrix M̂ such that X+(V1 + V2M̂) is stable. Define M := SM̂ .

(ii) Choose a matrix L such that (X+ − LY−)V1 is stable.

(iii) Define K := (X+ − LY−)(V1 + V2M̂).

Remark 6.17. In the previous corollary it is clear that the system matrices of
the data-generating system are related to the data via[

Atrue BtrueS
Ctrue DtrueS

]
=
[
X+
Y−

] [
V1 V2

]
.

Therefore the corollary shows that informativity for stabilization by dynamic
output feedback requires that Atrue and Ctrue can be identified uniquely from
the data. However, this does not hold for Btrue and Dtrue in general.
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6.2.2 Stabilization using only input and output data

Again, consider the model class of all systems of the form (6.6) with fixed
state space dimension n, input dimension m and output dimension p. The
(unknown) true system is given by (6.7). When given input, state and output
data (U−, X, Y−), any system (A, B, C, D) consistent with these data satisfies[

X+
Y−

]
=
[
A B
C D

] [
X−
U−

]
. (6.16)

In this subsection, we will consider the situation where we have access to input
and output measurements only. Moreover, we assume that the data are collected
on the time interval [0, T ]. This means that our data are of the form (U−, Y−),
where U− and Y− are given by

U− := U[0,T −1] (6.17a)
Y− := Y[0,T −1]. (6.17b)

Again, we are interested in informativity of the data, this time given by (U−, Y−).
To this end, we consider all systems in the model class M that admit the same
input-output data2 . This leads to the following set of systems that are consistent
with the data:

Σ(U−,Y−) :=
{

(A, B, C, D) | ∃X ∈ Rn×(T +1) s.t. (6.16) holds
}

.

As in the previous subsection, we wish to find a controller of the form (6.9) that
stabilizes all these systems. In line with Definition 6.10, we have the following
notion of informativity:

Definition 6.18. We say the input-output data (U−, Y−) are informative for
stabilization by dynamic measurement feedback if there exist matrices K, L and
M such that (6.10) is stable for all (A, B, C, D) ∈ Σ(U−,Y−).

In order to obtain conditions under which (U−, Y−) are informative for stabi-
lization, it may be tempting to follow the same steps as in Section 6.2.1. There,
we first proved that we can assume without loss of generality that U− has full
row rank. Subsequently, Theorem 6.14 and Corollary 6.16 characterize informa-
tivity for stabilization by dynamic measurement feedback based on input, state
and output data. It turns out that we can perform the first of these two steps
for input-output data as well. Indeed, in line with Lemma 6.11, we can state
the following:

2We assume that the state space dimension n is known a priori.
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Lemma 6.19. Consider the data (U−, Y−) and the corresponding set Σ(U−,Y−).
Let S be a matrix of full column rank such that U− = SÛ− with Û− a matrix
of full row rank. Then the data (U−, Y−) are informative for stabilization by
dynamic measurement feedback if and only if the data (Û−, Y−) are informative
for stabilization by dynamic measurement feedback.

The proof of this lemma is analogous to that of Lemma 6.11 and is therefore
omitted. Lemma 6.19 implies that without loss of generality we can consider the
case where U− has full row rank.

In contrast to the first step, the second step in Subsection 6.2.1 relies heav-
ily on the affine structure of the considered set Σ(U−,X,Y−). However, the set
Σ(U−,Y−) is not an affine set. This means that it is not straightforward to extend
the results of Corollary 6.16 to the case of input-output measurements.

Nonetheless, under certain conditions on the input-output data it is possi-
ble to construct the corresponding state sequence X of (6.6) up to similarity
transformation. As discussed in Subsection 1.2.2, state reconstruction is one
of the main themes of the field of subspace identification. The construction of
a state sequence would allow us to reduce the problem of stabilization using
input-output data to that with input, state and output data. The following
result gives sufficient conditions on the data (U−, Y−) for state construction.

To state the result, first recall from Subsection 1.2.2 the notation concerning
Hankel matrices. Given input and output data u[0,T −1] and y[0,T −1], equivalently,
the matrices U− = U[0,T −1] and Y− = Y[0,T −1], and k such that 2k ⩽ T we
consider H2k(u[0,T −1]) and H2k(y[0,T −1]). Next, we partition our data into so-
called ‘past’ and ‘future’ data as

H2k(u[0,T −1]) =
[
Up

Uf

]
, H2k(y[0,T −1]) =

[
Yp

Yf

]
where Up, Uf , Yp and Yf all have k block rows. Assume now that the true system
(6.7) is observable, i.e. (Ctrue, Atrue) is observable, and that T ⩾ n − 1. Then
there exists a unique state trajectory x[0,T ] of (6.7) corresponding to the finite
input-output data (u[0,T −1], y[0,T −1]). We now denote

Xp = X[0,T −2k]

Xf = X[k,T −k].

Lastly, recall that rsp M denotes the row space of the matrix M . The fol-
lowing theorem is a special case of Proposition 1.4.

Theorem 6.20. Assume that the true system (6.7) is minimal, i.e. (Atrue, Btrue)
is controllable and (Ctrue, Atrue) is observable. Let the data (U−, Y−) be as in
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(6.17). Assume that T and k are such that n ⩽ k ⩽ 1
2 T . If

rank
[
H2k(u[0,T −1])
H2k(y[0,T −1])

]
= 2km + n (6.18)

then

rsp Xf = rsp
[
Up

Yp

]
∩ rsp

[
Uf

Yf

]
and this row space is of dimension n.

Clearly, under the conditions of this theorem, we can now recover the true
state sequence Xf up to similarity transformation. That is, we can find X̄ =
QXf for some unknown invertible matrix Q. This means that, under these
conditions, we obtain an input-state-output trajectory given by the matrices

Ū− = U[k,T −k−1] (6.19a)
Ȳ− = Y[k,T −k−1] (6.19b)
X̄ = QX[k,T −k]. (6.19c)

We can now state the following sufficient condition for informativity for stabi-
lization with input-output data.

Corollary 6.21. Assume that the true system (6.7) is minimal. Let the input-
output data (U−, Y−) be as in (6.17). Assume that T and k are such that
n ⩽ k ⩽ 1

2 T . Then the data (U−, Y−) are informative for stabilization by
dynamic measurement feedback if the following two conditions are satisfied:

(a) The rank condition (6.18) holds.

(b) The data (Ū−, X̄, Ȳ−), as defined in (6.19), are informative for stabilization
by dynamic measurement feedback.

Moreover, if these conditions are satisfied, a controller (K, L, M) that stabilizes
all systems in Σ(U−,Y−) can be found by applying Corollary 6.16 (i),(ii),(iii) to
the data (Ū−, X̄, Ȳ−).

The conditions provided in Corollary 6.21 are sufficient, but not necessary for
informativity for stabilization by dynamic measurement feedback. In addition,
the data satisfying these conditions are also informative for identification, in the
more general sense that Σ(U−,Y−) contains only the true system (6.7) and all
systems similar to it.
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6.3 Quadratic stabilization using noisy data

In the present section we will take a look at the situation that unknown process
noise may enter the system. More specifically, we will study conditions under
which the noisy data D as introduced in Section 3.4 are informative for quadratic
stabilization. This will mean that all systems in the set ΣD of systems consistent
with the data can be stabilized by the same state feedback gain, with a common
Lyapunov function for all closed loop systems. In particular then, this feedback
gain will stabilize the unknown system. Conditions for the existence of such a
feedback gain will be in terms of feasibility of certain linear matrix inequalities
involving the data D = (U−, X) and the (known) matrix Φ representing the
quadratic inequality constraint on the matrix of noise samples. In addition, the
controller gain will be computed in terms of solutions to these linear matrix
inequalities.

Again we will consider the model class M of all noisy input-state systems
with state dimension n and input dimension m of the form (3.17). We have
input-state data (U−, X) on the time interval [0, T ] and we assume that the
possible matrices W− of noise samples satisfy the quadratic inequality (3.18)
for a given, known matrix Φ ∈ Πn,T . As we have seen before, the set ΣD of
all systems consistent with the data is equal to the set of all systems (A, B)
satisfying

X+ = AX− + BU− + W− (6.20)
for some W− satisfying (3.18), i.e.,

ΣD = {(A, B) | (6.20) holds for some W− satisfying (3.18)} . (6.21)

Definition 6.22. The data (U−, X) are called informative for quadratic stabi-
lization if there exist a feedback gain K ∈ Rm×n and an n × n matrix P > 0
such that

P − (A + BK)P (A + BK)⊤ > 0 (6.22)
for all (A, B) ∈ ΣD.

We are interested in quadratic stabilization in the sense that we ask for a
common Lyapunov matrix P for all (A, B) ∈ ΣD. Note that P > 0 satisfies
(6.22) if and only Q := P −1 satisfies Q − (A + BK)⊤Q(A + BK) > 0, which
expresses that V (x) = xT Qx is a Lyapunov function for the system x(t + 1) =
(A + BK)x(t).

Definition 6.22 leads to two natural problems. First, we are interested in the
question under which conditions the data are informative. We formalize this in
the following problem.

Problem 6.23 (Informativity). Find necessary and sufficient conditions under
which the data (U−, X) are informative for quadratic stabilization.
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The second problem is the design issue: we are interested in procedures to
come up with a feedback gain that stabilizes all systems in ΣD.
Problem 6.24 (Control design). Given informative data (U−, X), find a feed-
back gain K such that (6.22) is satisfied for all (A, B) ∈ ΣD.

Recall from Lemma 3.16 that (A, B) ∈ ΣD if and only if I
A⊤

B⊤

⊤ I X+
0 −X−
0 −U−

[Φ11 Φ12
Φ21 Φ22

]I X+
0 −X−
0 −U−

⊤  I
A⊤

B⊤

 ⩾ 0. (6.23)

Next, suppose that we fix a Lyapunov matrix P > 0 and a feedback gain K.
The inequality (6.22) is equivalent to I

A⊤

B⊤

⊤ P 0 0
0 −P −PK⊤

0 −KP −KPK⊤

 I
A⊤

B⊤

 > 0 (6.24)

which is also a quadratic matrix inequality in A and B. Therefore, finding con-
ditions for quadratic stabilization as stated in Problem 6.23 amounts to finding
conditions under which the quadratic matrix inequality (6.24) holds for all (A, B)
satisfying the quadratic matrix inequality (6.23). As before, let N be defined by
(3.30), and define

M :=
[

M11 M12

M⊤
12 M22

]
:=

 P 0 0
0 −P −PK⊤

0 −KP −KPK⊤

 . (6.25)

Then we need to find conditions on the data such that there exist P > 0 and K
such that the inclusion

Zn+m(N) ⊆ Z+
n+m(M) (6.26)

holds. In order to find such conditions, we will apply Corollary A.23. To do so,
we need to verify its assumptions. In particular, we need to verify that N22 ⩽ 0,
ker N22 ⊆ ker N12, N |N22 ⩾ 0 and M22 ⩽ 0. The first three of these conditions
indeed hold, as was already verified in Section 3.6. Also M22 ⩽ 0 since P > 0
and

M22 = −
[

I
K

]
P

[
I
K

]⊤

. (6.27)

Corollary A.23 then asserts that (6.26) holds if and only if there exist scalars
α ⩾ 0 and β > 0 such that

M − αN ⩾

βI 0 0
0 0 0
0 0 0

 . (6.28)
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From a design point of view, the matrices P and K that appear in M are not
given. However, the idea is now to compute matrices P , K and scalars α and β
such that (6.28) holds. In fact, by the above discussion, the data (U−, X) are
informative for quadratic stabilization if and only if there exist an n×n matrix
P > 0, K ∈ Rm×n and two scalars α ⩾ 0 and β > 0 such that (6.28) holds. We
note that (6.28) (in particular, M) is not linear in P and K. Nonetheless, by a
rather standard change of variables and a Schur complement argument, we can
transform (6.28) into a linear matrix inequality. Moreover, it turns out that the
scalar α is necessarily positive. By a scaling argument then, it can be chosen to
be equal to 1. We summarize our progress in the following theorem.

Theorem 6.25. The data (U−, X) are informative for quadratic stabilization
if and only if there exist an n × n matrix P > 0, an L ∈ Rm×n and a scalar
β > 0 satisfying

P − βI 0 0 0
0 −P −L⊤ 0
0 −L 0 L
0 0 L⊤ P

−


I X+
0 −X−
0 −U−
0 0

[Φ11 Φ12
Φ21 Φ22

]
I X+
0 −X−
0 −U−
0 0


⊤

⩾ 0. (6.29)

Moreover, if P and L satisfy (6.29) then K := LP −1 is a stabilizing feedback
gain for all (A, B) ∈ ΣD.

Proof. To prove the ‘if’ statement, suppose that there exist P , L and β sat-
isfying (6.29). Define K := LP −1. By computing the Schur complement of
(6.29) with respect to its fourth diagonal block, we obtain (6.28) with α = 1.
As such, (6.26) holds. We conclude that the data (U−, X) are informative for
quadratic stabilization and K = LP −1 is indeed a stabilizing controller for all
(A, B) ∈ ΣD.

Conversely, to prove the ‘only if’ statement, suppose that the data (U−, X)
are informative for quadratic stabilization. This means that there exist P > 0
and K such that (6.26) holds. By Corollary A.23 there exist α ⩾ 0 and β > 0
satisfying (6.28). Then, by defining L := KP and using a Schur complement
argument, we conclude that the LMI

P − βI 0 0 0
0 −P −L⊤ 0
0 −L 0 L
0 0 L⊤ P

− α


I X+
0 −X−
0 −U−
0 0

[Φ11 Φ12
Φ21 Φ22

]
I X+
0 −X−
0 −U−
0 0


⊤

⩾ 0

is feasible. Zooming in on the (2, 2) block, this yields −P − αX−Φ22X⊤
− ⩾ 0.

Since P > 0 this implies α > 0. As a consequence, by scaling P , L and β by 1
α

we may assume that α = 1, so the LMI (6.29) is feasible. □
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Theorem 6.25 provides a powerful necessary and sufficient condition under
which quadratically stabilizing controllers can be obtained from noisy data. The
theorem leads to an effective design procedure for obtaining stabilizing con-
trollers directly from data. Indeed, the approach entails solving the linear ma-
trix inequality (6.29) for P, L and β and computing a controller as K = LP −1.
Below, we discuss some of the features of our control design procedure.

(i) First of all, we stress that the procedure is non-conservative since Theo-
rem 6.25 provides a necessary and sufficient condition for obtaining quadrat-
ically stabilizing controllers from data.

(ii) The variables P, L and β are independent of the time horizon T of the
experiment. In fact, note that P ∈ Rn×n, L ∈ Rm×n and β ∈ R. Also,
the LMI (6.29) is of dimension (3n + m)× (3n + m) and thus independent
of T . This T -independent design method can play a crucial role in control
design from larger data sets. We note that collections of big data sets are
often unavoidable, for example because the signal-to-noise ratio is small,
or because the data-generating system is large-scale.

We note that, in an analogous way as Theorem 3.18, under the extra as-
sumptions Φ22 < 0 and

rank
[
X−
U−

]
= n + m (6.30)

it is possible to prove a variant of Theorem 6.25 in which the non-strict inequality
is replaced by a strict inequality, and the term −βI is removed. This can be
done by invoking Theorem A.20, which is possible since the conditions Φ22 < 0
and (6.30) yield N22 < 0. Thus we obtain the following theorem.

Theorem 6.26. Assume that Φ22 < 0 and the rank condition (6.30) holds.
Then the data (U−, X) are informative for quadratic stabilization if and only if
there exist an n× n matrix P > 0 and an L ∈ Rm×n satisfying

P 0 0 0
0 −P −L⊤ 0
0 −L 0 L
0 0 L⊤ P

−


I X+
0 −X−
0 −U−
0 0

[Φ11 Φ12
Φ21 Φ22

]
I X+
0 −X−
0 −U−
0 0


⊤

> 0. (6.31)

Moreover, if P and L satisfy (6.31) then K := LP −1 is a stabilizing feedback
gain for all (A, B) ∈ ΣD.

Following up on this theorem, we will show that under the assumption that
Φ22 < 0, if the data (U−, X) are informative for quadratic stabilization and if
K stabilizes all systems in ΣD with a common Lyapunov matrix P > 0, then,
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in fact, X− must have full row rank, and K must be of the form K = U−X♯
− for

some right inverse X♯
− of X−. Thus, the following theorem extends Lemma 6.3

to the noisy case.

Theorem 6.27. Assume Φ22 < 0. Let the data (U−, X−) be informative for
quadratic stabilization and suppose that P > 0 and K are such that (6.26)
holds. Then

im
[

I
K

]
⊆ im

[
X−
U−

]
. (6.32)

Consequently, X− has full row rank n and there exists a right-inverse X♯
− of X−

such that K = U−X♯
−.

Proof. We will first prove that ker N22 ⊆ ker M22. Let Z :=
[
A⊤

B⊤

]
∈ Zn+m(N).

Let Ẑ ∈ R(n+m)×n be such that N22Ẑ = 0. Since ker N22 ⊆ ker N12 we have
Z + γẐ ∈ Zn+m(N) for any γ ∈ R. Thus, we obtain

[
I
Z

]⊤

M

[
I
Z

]
+ γ(M12 + Z⊤M22)Ẑ + γ

(
(M12 + Z⊤M22)Ẑ

)⊤
+ γ2Ẑ⊤M22Ẑ > 0.

(6.33)
We will argue that M22Ẑ = 0. Indeed, recall that M22 ⩽ 0. Thus, if we assume
that M22Ẑ ̸= 0 then there exists a sufficiently large γ such that (6.33) is violated.
Next, since P > 0, by (6.27) we have ker M22 = ker

[
I K⊤] . Also, since Φ22 < 0

and

N22 =
[
X−
U−

]
Φ22

[
X−
U−

]⊤

we have

ker N22 = ker
[
X−
U−

]⊤

.

Thus ker
[
X⊤

− U⊤
−
]
⊆ ker

[
I K⊤], equivalently

im
[

I
K

]
⊆ im

[
X−
U−

]
.

Therefore, any controller K that stabilizes all systems in ΣD with a common
Lyapunov matrix P is necessarily of the form K = U−X♯

− for some right inverse
X♯

− of X−. □
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6.3.1 Reducing computational complexity

The computational complexity of determining feasibility of an LMI depends on
the size of the LMI and the number of unknowns. The LMI (6.29), together
with the constraints P > 0 and β > 0, has size 4n + m + 1 and contains
n(n+1)

2 +nm+1 unknowns. Using Theorem A.7, we can separate the computation
of the Lyapunov matrix P and the controller K. Below it will be shown that
this leads to another LMI with size 4n+1 and n(n+1)

2 +1 unknowns. This result
thus has a significant computational advantage over Theorem 6.25.
Theorem 6.28. Let Θ := Φ12 + X+Φ22. The following statements hold.

(a) The data (U−, X) are informative for quadratic stabilization if and only if
there exist an n× n matrix P > 0 and a scalar β > 0 satisfying

P − βI −
[
I X+

]
Φ
[

I
X⊤

+

]
+ Θ

[
X−
U−

]⊤([
X−
U−

]
Φ22

[
X−
U−

]⊤)† [
X−
U−

]
Θ⊤ ⩾ 0

(6.34a)[
P − βI 0

0 −P

]
−
[
I X+
0 −X−

] [
Φ11 Φ12
Φ21 Φ22

] [
I X+
0 −X−

]⊤

⩾ 0.

(6.34b)

Moreover, if P > 0 and β > 0 satisfy (6.34a) and (6.34b) then
K =

(
U−(Φ22 + Θ⊤Γ†Θ)X⊤

−
)(

X−(Φ22 + Θ⊤Γ†Θ)X⊤
−
)† (6.35)

is a stabilizing gain for all (A, B) ∈ ΣD, where Γ = P−βI−
[
I X+

]
Φ
[

I
X⊤

+

]
.

(b) Assume, in addition, that Φ22 < 0 and rank
[
X⊤

− U⊤
−
]⊤ = n + m. Then

the data (U−, X) are informative for quadratic stabilization if and only if
there exists an n× n matrix P > 0 satisfying

P −
[
I X+

]
Φ
[

I
X⊤

+

]
+ Θ

[
X−
U−

]⊤([
X−
U−

]
Φ22

[
X−
U−

]⊤)−1 [
X−
U−

]
Θ⊤ > 0

(6.36a)[
P 0
0 −P

]
−
[
I X+
0 −X−

] [
Φ11 Φ12
Φ21 Φ22

] [
I X+
0 −X−

]⊤

> 0.

(6.36b)

Moreover, if P > 0 satisfies (6.36a) and (6.36b) then K in (6.35) is a
stabilizing feedback gain for all systems (A, B) ∈ ΣD, where Γ is defined as

Γ := P −
[
I X+

]
Φ
[

I
X⊤

+

]
.
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Proof. We first prove (a). Let P > 0 be an n × n matrix and β > 0 be a
real number. According to Theorem 6.25, it is enough to show that there exists
L ∈ Rm×n satisfying (6.29) if and only if (6.34a) and (6.34b) are satisfied. By
taking the Schur complement of the left hand side in (6.29) with respect to P ,
one can see that there exists L ∈ Rm×n satisfying (6.29) if and only if there
exists L ∈ Rm×n satisfyingP − βI 0 0

0 −P −L⊤

0 −L −LP −1L⊤

−
I X+

0 −X−
0 −U−

[Φ11 Φ12
Φ21 Φ22

]I X+
0 −X−
0 −U−

⊤

⩾ 0. (6.37)

By direct inspection, one can verify that (6.37) is equivalent to the following
QMI: 

In 0 0
0 In 0
0 0 Im

0 0 P −1L⊤


⊤ [

Ψ11 Ψ12
Ψ21 Ψ22

]
︸ ︷︷ ︸

:=Ψ


In 0 0
0 In 0
0 0 Im

0 0 P −1L⊤

 ⩾ 0 (6.38)

where

Ψ11 =

P − βI 0 0
0 −P 0
0 0 0

−
I X+

0 −X−
0 −U−

[Φ11 Φ12
Φ21 Φ22

]I X+
0 −X−
0 −U−

⊤

, Ψ12 =

 0
−P
0

 ,

and Ψ22 = −P . Observe that (6.38) is equivalent to[
0 P −1L⊤] ∈ Zn(Ψ). (6.39)

Now, by defining W =
[
I2n 0

]⊤ and Y = 0 it follows from Corollary A.9
that there exists an L such that (6.39) holds if and only if

Ψ ∈ Π2n+m,n and 0 ∈ Zn(ΨW ) (6.40)

where ΨW is defined in (A.19). Next, we observe that Ψ ∈ Π2n+m,n if and only
if Ψ |Ψ22 ⩾ 0 since Ψ22 = −P < 0. Note that

Ψ |Ψ22 =

P − βI 0 0
0 0 0
0 0 0

−
I X+

0 −X−
0 −U−

[Φ11 Φ12
Φ21 Φ22

]I X+
0 −X−
0 −U−

⊤

.

By a Schur complement argument, we see that Ψ |Ψ22 ⩾ 0 if and only if (6.34a)
holds. Now, observe that 0 ∈ Zn(ΨW ) if and only if W ⊤Ψ11W ⩾ 0. Note that

W ⊤Ψ11W =
[
P − βI 0

0 −P

]
−
[
I X+
0 −X−

] [
Φ11 Φ12
Φ21 Φ22

] [
I X+
0 −X−

]⊤

. (6.41)
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Therefore, 0 ∈ Zn(ΨW ) if and only if (6.34b) holds. Consequently, the data are
informative for quadratic stabilization if and only if there exists an n×n matrix
P > 0 and a scalar β > 0 satisfying (6.34a) and (6.34b).

For the construction of the controller, assume that P > 0 and β > 0 sat-
isfy (6.34a) and (6.34b). By (6.41), this implies that W ⊤Ψ11W ⩾ 0. This is
equivalent to −W ⊤Ψ12Ψ−1

22 Ψ21W ⩽ W ⊤(Ψ |Ψ22)W .
Using Lemma A.1 with A =−(−Ψ22)− 1

2 Ψ21W and B = (Ψ |Ψ22) 1
2 W there

exists a matrix S ∈ Rn×(2n+m) satisfying S⊤S ⩽ I and

−(−Ψ22)− 1
2 Ψ21W = S(Ψ |Ψ22) 1

2 W. (6.42)

In fact, the matrix S := −(−Ψ22)− 1
2 Ψ21W

(
(Ψ |Ψ22) 1

2 W
)†

works. Since Ψ22 <

0 and S⊤S ⩽ I, Theorem A.6 yields Z := −Ψ−1
22 Ψ21 + (−Ψ22)− 1

2 S(Ψ |Ψ22) 1
2 ∈

Zn(Ψ). It follows from (6.42) that ZW = 0. Now define K :=
[
0 Im

]
Z⊤. Then,

by (6.39) and Theorem 6.25, K is a stabilizing feedback for all (A, B) ∈ ΣD. It
remains to be shown that K is equal to (6.35).

First, observe that

Z

[
0

Im

]
= Ψ−1

22 Ψ21W
(

(Ψ |Ψ22) 1
2 W

)†
(Ψ |Ψ22) 1

2

[
0

Im

]

because Ψ21

[
0

Im

]
= 0. It can be shown that

(
(Ψ |Ψ22) 1

2 W
)†

= (ΨW |Ψ22)†W ⊤(Ψ |Ψ22) 1
2 .

Then, using the fact that Ψ−1
22 Ψ21W =

[
0 In

]
, this yields

Z

[
0

Im

]
=
[
0 In

]
(ΨW |Ψ22)†W ⊤(Ψ |Ψ22)

[
0

Im

]
which implies

K =
[
0 Im

]
(Ψ |Ψ22)W (ΨW |Ψ22)†

[
0
In

]
. (6.43)

Observe that [
0 Im

]
(Ψ |Ψ22)W = U−

[
Θ⊤ −Φ22X⊤

−
]

. (6.44)

Moreover, note that ΨW | Ψ22 = W ⊤(Ψ | Ψ22)W =
[

Γ ΘX⊤
−

X−Θ⊤ Ω

]
, where

Ω = −X−Φ22X⊤
− . It follows from [159, Thm. 2.10] that

(ΨW |Ψ22)†
[

0
In

]
=
[
Γ†ΘX⊤

−
−In

] (
X−(Φ22 + Θ⊤Γ†Θ)X⊤

−
)†

. (6.45)
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By substituting (6.44) and (6.45) into (6.43), we see that K is equal to (6.35).
The proof of (b) can be established by following the same steps as the proof

of (a), but replaces the term P − βI by P and non-strict inequalities by strict
ones. Note that in this case, the proof of the if and only if statement relies
on Corollary A.10 rather than Corollary A.9 and on Theorem 6.26 instead of
Theorem 6.25. Also the construction of the controller builds on the results for
strict inequalities in Lemma A.1(b) and Theorem A.6(b), rather than their non-
strict counterparts. This proves the theorem. □

6.3.2 Illustrative example: bounds on the noise samples

In this subsection we illustrate the theory on stabilization using noisy data as
developed in this section before. Consider an unstable system of the form (3.17)
with the true but unknown system matrices Atrue and Btrue given by

Atrue =

 0.850 −0.038 −0.380
0.735 0.815 1.594
−0.664 0.697 −0.064

 , Btrue =

1.431 0.705
1.620 −1.129
0.913 0.369

 .

In this example, we assume that the noise samples w(t) are bounded in norm
as ∥w(t)∥2

2 ⩽ ε for all t. As explained in Section 3.4, we can capture this prior
knowledge using the noise model (3.18) with Φ11 = TεI, Φ12 = 0 and Φ22 = −I,
where T is the time horizon used for data sampling.

In this example, we pick a time horizon of T = 20 and draw the entries of the
inputs and initial state randomly from a Gaussian distribution with zero mean
and unit variance. The noise samples are drawn uniformly at random from
the ball

{
w ∈ R3 | ∥w∥2

2 ⩽ ε
}

. We aim at constructing stabilizing controllers
from the input-state data for various values of ε. In particular, we investigate
six different noise levels: ε ∈ {0.5, 1, 1.5, 2, 2.2, 2.4}. For each noise level, we
generate 100 data sets using the method described above.

For each noise level, we record the percentage of data sets from which a
stabilizing controller was found for (Atrue, Btrue) using the formulation (6.29).
We display the results in the following table.

ε = 0.5 ε = 1 ε = 1.5 ε = 2 ε = 2.2 ε = 2.4
100% 96% 90% 82% 75% 73%

For ε = 0.5 we find a stabilizing controller in all 100 cases. When the noise
level increases, the percentage of data sets for which the LMI (6.29) is feasible
decreases. The interpretation is that by increasing the noise we enlarge the set
of explaining systems ΣD. It thus becomes harder to simultaneously stabilize
the systems in ΣD. Nonetheless, even for the larger noise level of ε = 2.4 we
find a stabilizing controller in 73 out of the 100 data sets.
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6.4 Noise-free versus noisy data

In the case of noise-free data, Theorem 6.5 gives a necessary and sufficient con-
dition for informativity for stabilization. Moreover, in the case of noisy data,
Theorem 6.25 provides a necessary and sufficient condition for informativity for
quadratic stabilization. A natural question is now the following: what is the re-
lation between these two theorems, and can the former be obtained as a special
case from the latter? In this section, we will address these issues.

As in Section 6.1, consider the model class M of all noise free discrete-time
linear input-state systems of the form

x(t + 1) = Ax(t) + Bu(t)

where x is the n-dimensional state and u is the m-dimensional input. We assume
that input-state data have been collected on the time interval [0, T ], leading
to the data D := (U−, X). We assume that these data are generated by the
unknown system (Atrue, Btrue). The set of all systems in M that are consistent
with the data is again denoted by ΣD. Since the unknown system is assumed to
be consistent with the data, we have that ΣD is nonempty.

As an alternative for Theorem 6.5 we will now prove that informativity for
stabilization by state feedback in the noise free case can be characterized as
follows.

Theorem 6.29. The data (U−, X) are informative for stabilization by state
feedback if and only if there exist an n× n matrix P > 0, an L ∈ Rm×n, and a
scalar β > 0 satisfying

P − βI 0 0 0
0 −P −L⊤ 0
0 −L 0 L
0 0 L⊤ P

+


X+
−X−
−U−

0




X+
−X−
−U−

0


⊤

⩾ 0. (6.46)

Moreover, if P and L satisfy (6.46) then K := LP −1 is a stabilizing feedback
gain for all (A, B) ∈ ΣD.

The idea behind Theorem 6.29 is the following: in order to recover the noise-
free case from Theorem (6.25) it is helpful to consider the noise model (3.18) as
introduced in Section 3.4 with

Φ =
[
0 0
0 −I

]
. (6.47)

Indeed, this noise model implies that W−W ⊤
− ⩽ 0, i.e., W− = 0 which corre-

sponds exactly to the case in which the data are noise-free. We then see that
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Theorem 6.29 bridges the exact and noisy case in the following sense. Note that
the matrix on the right of (6.46) equals

−


I X+
0 −X−
0 −U−
0 0

[0 0
0 −I

]
I X+
0 −X−
0 −U−
0 0


⊤

,

which is nothing but a special case of the matrix on the right of (6.29) for the
choices Φ11 = 0, Φ12 = 0 and Φ22 = −I. Theorem 6.29 states that feasibility of
the LMI (6.29) (with specific Φ) is necessary and sufficient for informativity for
stabilization in the case of exact data. Moreover, in that case the assumption of a
common Lyapunov function is not restrictive, i.e., informativity for stabilization
is equivalent to informativity for quadratic stabilization in the case that w is
absent.

Proof of Theorem 6.29. It follows from Theorem 6.4 that in the noise-free
setting, if the data (U−, X) are informative for stabilization and K is a suitable
controller, then A + BK = X+X♯

− for all (A, B) ∈ ΣD. In other words, the
matrix A + BK is the same for all systems (A, B) consistent with the data.
This means that in the noise-free case, the data (U−, X) are informative for
stabilization if and only if they are informative for quadratic stabilization as
in Definition 6.22 with the specific noise model (6.47). As such, the theorem
follows readily from Theorem 6.25. □

Given the two equivalent conditions in Proposition 6.5 and Theorem 6.29 it
is natural to question the relative merits of both approaches. First of all, we
note that the LMI conditions in (6.5) and (6.46) are different in nature: the
variable Θ in (6.5) has dimension T × n which depends on the time horizon
of the experiment, while the dimensions of the variables P, L and β in (6.46)
are independent of T . From a computational point of view, Theorem 6.29 may
thus be preferred in cases where the time horizon T is large, for example if the
inputs of the experiment are chosen to be persistently exciting, since this puts
a lower bound T ⩾ n + m + nm on the required number of samples (see (1.6) in
Chapter 1).

On the other hand, in Chapter 12 it will be shown that for controllable pairs
(Atrue, Btrue), the data (U−, X) can be made informative for stabilization with
at most T = n + m samples, using an online input design method. In this
case, the LMI (6.5) may be preferred since (6.5) has dimension 2n × 2n which
is smaller than the dimension (3n + m)× (3n + m) of (6.46).
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6.5 Data-driven stabilization of Lur’e systems

In this section, we will consider the stabilization of a class of Lur’e systems, i.e.,
linear systems in feedback with a static nonlinearity. First, we will explain the
classical problem of absolute stability analysis for such systems. Consider the
Lur’e system

x(t + 1) = Ax(t) + Bu(t) + Eφ(y(t))
y(t) = Cx(t) + Du(t)

(6.48)

where x is the n-dimensional state, u the m-dimensional input, y the p-dimensional
output and φ : R → R is a continuous function satisfying the so-called sector
condition

φ(y)(φ(y)− 2y) ⩽ 0 ∀y ∈ R. (6.49)
We note that more general sector conditions can be transformed to (6.49) by
means of loop transformations. The real matrices A, B, C, D and E are of appro-
priate dimensions. Suppose that we apply a state feedback controller u = Kx
resulting in

x(t + 1) = (A + BK)x(t) + Eφ(y(t))
y(t) = (C + DK)x(t).

(6.50)

For systems of the form (6.50), a problem with a rich history is that of absolute
stability, i.e. global asymptotic stability of the equilibrium point 0 of (6.50)
for all continuous sector-bounded nonlinearities satisfying (6.49). We focus on
showing absolute stability of (6.50) by means of a quadratic Lyapunov function
V (x) := x⊤Px where P > 0. To this end, it is sufficient to show that the
Lyapunov inequality V (x(t + 1)) < V (x(t)) holds for all continuous φ satisfying
(6.49) and all nonzero x(t) and resulting x(t + 1) satisfying (6.50). Let AK :=
A + BK and CK := C + DK.

The Lyapunov inequality holds if

(AKx + Ew)⊤P (AKx + Ew)− x⊤Px < 0

for all w ∈ R and nonzero x ∈ Rn satisfying w(w − 2CKx) ⩽ 0. Equivalently,[
x
w

]⊤ [
P −A⊤

KPAK −A⊤
KPE

−E⊤PAK −E⊤PE

] [
x
w

]
> 0 (6.51)

for all w ∈ R and nonzero x ∈ Rn satisfying[
x
w

]⊤ [ 0 C⊤
K

CK −1

] [
x
w

]
⩾ 0. (6.52)

Since (6.52) is not satisfied when x = 0 and w ̸= 0, the latter statement is
equivalent to (6.51) being satisfied for all nonzero (x, w) satisfying (6.52). If
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CK ̸= 0 then the inequality (6.52) is strictly feasible. Moreover, if CK = 0 then
the inequality (6.52) reduces to the equality[

x
w

]⊤ [0 0
0 −1

] [
x
w

]
= 0.

Thus, by applying the S-lemma (Proposition A.12) in the former case and
Finsler’s lemma (Proposition A.13) in the latter, we conclude that (6.51) is
satisfied for all nonzero (x, w) satisfying (6.52) if and only if[

P −A⊤
KPAK −A⊤

KPE
−E⊤PAK −E⊤PE

]
− α

[
0 C⊤

K

CK −1

]
> 0 (6.53)

for some scalar α ⩾ 0. Proving absolute stability of (6.50) by a quadratic
Lyapunov function thus boils down to finding P > 0 and α ⩾ 0 such that (6.53)
holds. Since −E⊤PE ⩽ 0, we must have α > 0 and therefore, by homogeneity,
we can even get rid of α and look for P > 0 satisfying[

P −A⊤
KPAK −A⊤

KPE − C⊤
K

−E⊤PAK − CK 1− E⊤PE

]
> 0. (6.54)

Next, we focus on data-based stabilization of Lur’e systems. Consider the system

x(t + 1) = Atruex(t) + Btrueu(t) + Eφ(y(t)) + w(t)
y(t) = Ctruex(t) + Dtrueu(t) + v(t)

(6.55)

where Atrue, Btrue, Ctrue and Dtrue are unknown real matrices and the matrix E
is known. The signals w and v are process and measurement noise terms that
are unknown. We obtain state and input measurements from (6.55), collected
in the matrices X and U− as before, in addition to corresponding measurements
of the form

Y− := Y[0,T −1]

F− :=
[
φ(y(0)) φ(y(1)) · · · φ(y(T − 1))

]
.

(6.56)

This means that the data are given by D = (U−, F−, X, Y−). During the exper-
iment, the noise samples

W− :=
[
W[0,T −1]
V[0,T −1]

]
are assumed to satisfy W ⊤

− ∈ ZT (Φ) for some known matrix Φ ∈ Πn+1,T . If we
define X+ and X− as before then all systems (A, B, C, D) consistent with the
data are given by the set ΣD defined by

ΣD :=
{

(A, B, C, D) |
[
X+ − EF−

Y−

]
−
[
A B
C D

][
X−
U−

]
=W− for some W ⊤

− ∈ZT (Φ)
}

.

This leads to the following definition of informative data.
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Definition 6.30. Let Φ ∈ Πn+1,T . Suppose that the data (U−, F−, X, Y−)
have been generated by (6.55) for some noise matrix W ⊤

− ∈ ZT (Φ). Then
(U−, F−, X, Y−) are called informative for absolute quadratic stabilization if there
exist an n × n matrix P > 0 and a K ∈ Rm×n such that (6.54) holds for all
(A, B, C, D) ∈ ΣD.

Next, we state the following theorem that gives a necessary and sufficient
condition for informativity for absolute quadratic stabilization.

Theorem 6.31. Let Φ ∈ Πn+1,T and consider the data (U−, F−, X, Y−), gen-
erated by (6.55) for some W ⊤

− ∈ ZT (Φ). Then (U−, F−, X, Y−) are informative
for absolute quadratic stabilization if and only if there exist an n × n matrix
Q > 0, an L ∈ Rm×n and scalars α ⩾ 0 and β > 0 such that

Q− βI −E 0 0 0
−E⊤ 1− β 0 0 0

0 0 0 0 Q
0 0 0 0 L
0 0 Q L⊤ Q

− α


I 0 X+ − EF−
0 1 Y−
0 0 −X−
0 0 −U−
0 0 0

Φ


I 0 X+ − EF−
0 1 Y−
0 0 −X−
0 0 −U−
0 0 0


⊤

⩾ 0.

In this case, the feedback gain K := LQ−1 is such that (6.50) is absolutely stable
for all (A, B, C, D) ∈ ΣD.

The proof follows similar lines as that of Theorem 6.25. It uses a dualization
step (see Lemma A.3) on the inequality (6.54) and relies on Corollary A.23 using
the relation Q = P −1 between P and Q.

6.6 Notes and references

For exact input-state data, informativity for stabilization was introduced in
[175]. This paper also provided the characterizations in Theorems 6.4 and 6.5.
It is noteworthy that the linear matrix inequality condition (6.5) was consid-
ered before in [44] under the additional assumptions that the input sequence is
persistently exciting of order n + 1 and the true system is controllable. Under
these assumptions, the true system is the only system consistent with the data.
However, as we have demonstrated in Example 6.6, there are situations in which
the set of consistent systems is not a singleton, but there does exist a stabilizing
controller for all systems consistent with the data. In this sense, the notion of
informativity for stabilization is weaker than the notion of informativity for iden-
tification as studied in Section 3.1. The concept of informativity for deadbeat
control and the corresponding characterization in Theorem 6.8 were introduced
in [175].
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Subsection 6.2.1 on stabilization by dynamic output feedback using exact
input-(state)-output data is based on [175]. In order to obtain a sufficient condi-
tion for the informativity of input-output data in Corollary 6.21, we have relied
on an idea from subspace identification. In particular, Theorem 6.20 shows how
to obtain a state sequence from input-output data, assuming that a certain rank
condition on data Hankel matrices is satisfied. This result is a reformulation
of [115, Thm. 3]. For further details on subspace identification see [165,178].

In the context of noisy input-state data, several sufficient conditions for infor-
mativity for quadratic stabilization can be found in the literature, see [44, Thm.
2] and [18, Thm. 4]. The paper [169] provided necessary and sufficient conditions
by making use of a matrix version of the S-lemma (see Section A.3). These con-
ditions were formulated under the assumption of a so-called generalized Slater
condition on a matrix constructed from the noise model and the data. This
assumption was removed in [168]. Theorem 6.25 of this book is based on the
latter paper. For bounded sets of consistent systems, data-driven stabilization
was also approached from the perspective of Petersen’s lemma in [23]. The re-
lation between Petersen’s lemma and the matrix S-lemma was further clarified
in [168], where it was shown that the former can be obtained as a special case
of the latter.

In Section 6.4 we have clarified the relation between data-driven stabilization
using noise-free data and quadratic stabilization using noisy data. This section
is based on the paper [167].

The problem of absolute stability of Lur’e systems dates back to work by
Lur’e and Postnikov [100] and Popov [131]. The approach to stabilize Lur’e
systems in Section 6.5 mimics the continuous-time setting of [26, Ch. 5]. The
data-driven stabilization of Lur’e systems in this section is based on [168]. We
also refer to [26] for a discussion on the topic of loop transformations.





7

LQR control design from data

In this chapter we study the data-driven linear quadratic regulator (LQR) prob-
lem. We will consider both the optimal as well as the suboptimal version of the
the problem, in Sections 7.1 and 7.2, respectively. For these problems, we will
present conditions under which a given data set is informative for control design.
We will also establish design methods for obtaining suitable controllers from the
data, in terms of data based linear matrix inequalities.

7.1 The data-driven optimal LQR problem

Consider the linear system

x(t + 1) = Atruex(t) + Btrueu(t) (7.1)

where Atrue and Btrue are unknown matrices of given (known) dimensions n×n
and n × m, and where x is the n-dimensional state and u the m-dimensional
input.

Suppose that we want to quantify the performance of the system using a given
cost functional J(x0, u). In the context of linear quadratic optimal control, this
cost functional is a quadratic functional of the state trajectory x and the input
u. The optimal linear quadratic regulator problem is then to find, for each initial
state x0 of the system, an optimal input, i.e. an input that minimizes the cost
functional. In the situation that the system matrices Atrue and Btrue are known,
minimization of this cost functional can be performed using existing methods.
In a data-driven context however, these system matrices are not known, so the
existing methods are not applicable. Instead, data on the system should be used
to find optimal inputs.

Before embarking on this data-driven version of the optimal linear quadratic
regulator problem, we will first briefly review some of the basics of discrete-time
linear quadratic optimal control. In the sequel, we will use the abbreviation
‘LQR’ for ‘linear quadratic regulator’.

Consider, in general, the discrete-time linear system

x(t + 1) = Ax(t) + Bu(t) (7.2)
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with, as before, x the n-dimensional state and u is the m-dimensional input. For
any initial state x0, let xx0,u be the state sequence of (7.2) resulting from the
input u and initial condition x(0) = x0. We omit the subscript and simply write
x whenever the dependence on x0 and u is clear from the context.

Associated to system (7.2), we define the quadratic cost functional

J(x0, u) =
∞∑

t=0
x⊤(t)Qx(t) + u⊤(t)Ru(t) (7.3)

where Q ∈ Sn is positive semidefinite and R ∈ Sm is positive definite. Then, the
optimal LQR problem is the following:
Problem 7.1. Determine for every initial state x0 an input u∗, such that
limt→∞ xx0,u∗(t) = 0, and the cost functional J(x0, u) is minimized under this
constraint.
Such an input u∗ is called optimal for the given x0. Of course, an optimal input
does not necessarily exist for all x0. We say that the optimal LQR problem is
solvable for (A, B, Q, R) if for every x0 there exists an input u∗ such that

(a) The cost J(x0, u∗) is finite.

(b) The limit limt→∞ xx0,u∗(t) = 0.

(c) The input u∗ minimizes the cost functional, i.e.,

J(x0, u∗) ⩽ J(x0, ū)

for all ū such that limt→∞ xx0,ū(t) = 0.
In the sequel, we will require the notion of observable eigenvalue. An eigenvalue
λ of A is called (Q, A)-observable if

rank
(

A− λI
Q

)
= n.

The following theorem provides necessary and sufficient conditions for the solv-
ability of the optimal LQR problem for (A, B, Q, R). This theorem is the
discrete-time analogue of the continuous-time case stated in [160, Thm. 10.18].
Theorem 7.2. Let Q ⩾ 0 and R > 0. Then the following statements hold:

(a) If (A, B) is stabilizable, there exists a unique largest real symmetric solu-
tion P + to the discrete-time algebraic Riccati equation (DARE)

P = A⊤PA−A⊤PB(R + B⊤PB)−1B⊤PA + Q, (7.4)

in the sense that P + ⩾ P for every real symmetric P satisfying (7.4). The
matrix P + is positive semidefinite.
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(b) If, in addition to stabilizability of (A, B), every eigenvalue of A on the
unit circle is (Q, A)-observable then for every x0 a unique optimal input
u∗ exists. Furthermore, this input sequence is generated by the feedback
law u = Kx, where

K := −(R + B⊤P +B)−1B⊤P +A. (7.5)

Moreover, the matrix A + BK is stable.

(c) In fact, the optimal LQR problem is solvable for (A, B, Q, R) if and only
if (A, B) is stabilizable and every eigenvalue of A on the unit circle is
(Q, A)-observable.

If the optimal LQR problem is solvable for (A, B, Q, R), we say that the
matrix K given by (7.5) is the optimal feedback gain for (A, B, Q, R).

We will now turn to the data-driven version of the optimal LQR problem.
For given state and input dimensions n and m, we consider the model class M
of all discrete-time linear input-state systems of the form (7.2). Assume we have
input-state samples on the time interval [0, T ], generated by the true system
(7.1), leading to data D := (U−, X) as given by (2.1). As before, the set ΣD
of all systems in M that are consistent with the data is then equal to Σ(U−,X)
defined by

Σ(U−,X) :=
{

(A, B) ∈M | X+ =
[
A B

] [X−
U−

]}
. (7.6)

Note that the true system (Atrue, Btrue) is a member of Σ(U−,X). In the context
of the optimal LQR problem the control objective O is: ‘the system must be con-
trolled using the optimal feedback gain’. In order to formalize this, we introduce
the following notation. For any given K, let ΣQ,R

K denote the set of all systems
of the form (7.2) for which K is the optimal feedback gain corresponding to Q
and R, that is,

ΣQ,R
K := {(A, B) ∈M | K is the optimal gain for (A, B, Q, R)} .

This gives rise to yet another notion of informativity in line with Definition 2.4.
Indeed, informativity requires the existence of a feedback gain that is optimal
for all systems consistent with the data.

Definition 7.3. Given matrices Q and R, we say that the data (U−, X) are
informative for optimal linear quadratic regulation if the optimal LQR problem
is solvable for all (A, B) ∈ Σ(U−,X) and there exists K such that Σ(U−,X) ⊆ ΣQ,R

K .

In order to provide necessary and sufficient conditions for the corresponding
informativity problem, we need the following auxiliary lemma.
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Lemma 7.4. Let Q ⩾ 0 and R > 0. Suppose the data (U−, X) are informative
for optimal linear quadratic regulation. Let K be such that Σ(U−,X) ⊆ ΣQ,R

K .
Then, there exist a square matrix M and a matrix P + ⩾ 0 such that for all
(A, B) ∈ Σ(U−,X)

M = A + BK (7.7)
P + = A⊤P +A−A⊤P +B(R + B⊤P +B)−1B⊤P +A + Q (7.8)
P + −M⊤P +M = K⊤RK + Q (7.9)
K = −(R + B⊤P +B)−1B⊤P +A. (7.10)

Proof. Since the data (U−, X) are informative for optimal linear quadratic reg-
ulation, A + BK is stable for every (A, B) ∈ Σ(U−,X). By Lemma 6.3, this
implies that A0 + B0K = 0 for all (A0, B0) ∈ Σ0

(U−,X). Thus, there exists M

such that M = A + BK for all (A, B) ∈ Σ(U−,X). For the rest, note that The-
orem 7.2 implies that for every (A, B) ∈ Σ(U−,X) there exists P +

(A,B) satisfying
the DARE

P +
(A,B) = A⊤P +

(A,B)A−A⊤P +
(A,B)B(R + B⊤P +

(A,B)B)−1B⊤P +
(A,B)A + Q

(7.11)

such that
K = −(R + B⊤P +

(A,B)B)−1B⊤P +
(A,B)A. (7.12)

It is important to note that, although K is independent of the choice of (A, B),
the matrix P +

(A,B) might depend on (A, B). We will, however, show that also
P +

(A,B) is independent of the choice of (A, B).
By rewriting (7.11), we see that

P +
(A,B) −M⊤P +

(A,B)M = K⊤RK + Q. (7.13)

Since M is stable, P +
(A,B) is the unique solution to the discrete-time Lyapunov

equation (7.13). Moreover, since M and K do not depend on the choice of
(A, B) ∈ Σ(U−,X), it indeed follows that P +

(A,B) does not depend on (A, B). It
follows from (7.11)–(7.13) that P + := P +

(A,B) satisfies (7.8)–(7.10). □

Recall from Definition 2.12 that the data (U−, X) are called informative for
identification if Σ(U−,X) contains exactly one element, equivalently Σ(U−,X) =
{(Atrue, Btrue)} (see also Theorem 3.1). Then the following theorem solves the
informativity problem for optimal linear quadratic regulation.
Theorem 7.5. Let Q ⩾ 0 and R > 0. Then the data (U−, X) are informative
for optimal linear quadratic regulation if and only if at least one of the following
two conditions hold:
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(a) The data (U−, X) are informative for identification and the optimal LQR
problem is solvable for (Atrue, Btrue, Q, R). In this case, the optimal feed-
back gain K is given by (7.5) where P + is the largest real symmetric
solution to (7.4) with A = Atrue and B = Btrue.

(b) For all (A, B) ∈ Σ(U−,X) we have A = Atrue. Moreover, Atrue is stable and
QAtrue = 0. In this case the optimal feedback gain is given by K = 0.

Remark 7.6. Condition (b) of Theorem 7.5 is a pathological case in which
A is stable and QA = 0 for all matrices A that are consistent with the data.
In this case, if the input function is chosen as u = 0 then x(t) ∈ im A for all
t > 0, so Qx(t) = 0 for all t > 0. Additionally, since A is stable, this shows
that the optimal input is equal to u∗ = 0. If we set aside the pathological
case (b), the main message of Theorem 7.5 is the following: if the data are
informative for optimal linear quadratic regulation they are also informative for
system identification.

Proof of Theorem 7.5. We first prove the ‘if’ part. Sufficiency of the condition
(a) readily follows from Theorem 7.2. To prove the sufficiency of the condition
(b), assume that the matrix A is stable and QA = 0 for all (A, B) ∈ Σ(U−,X).
By the discussion in Remark 7.6 implies that u∗ = 0 for all (A, B) ∈ Σ(U−,X).
Hence, for K = 0 we have Σ(U−,X) ⊆ ΣQ,R

K , i.e., the data are informative for
linear quadratic regulation.

To prove the ‘only if’ part, suppose that the data (U−, X) are informative
for optimal linear quadratic regulation. From Lemma 7.4, we know that there
exist M and P + satisfying (7.7)–(7.10) for all (A, B) ∈ Σ(U−,X). By substituting
(7.10) into (7.8) and using (7.7), we obtain

A⊤P +M = P + −Q. (7.14)

In addition, it follows from (7.10) that −(R + B⊤P +B)K = B⊤P +A. By using
(7.7), we have

B⊤P +M = −RK. (7.15)
Since (7.14) and (7.15) hold for all (A, B) ∈ Σ(U−,X), we have that[

A⊤
0

B⊤
0

]
P +M = 0

for all (A0, B0) ∈ Σ0
(U−,X). Note that (FA0, FB0) ∈ Σ0

(U−,X) for all F ∈ Rn×n

whenever (A0, B0) ∈ Σ0
(U−,X). This means that[

A⊤
0

B⊤
0

]
F ⊤P +M = 0
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for all F ∈ Rn×n. Therefore, either
[
A0 B0

]
= 0 for all (A0, B0) ∈ Σ0

(U−,X) or
P +M = 0. The former is equivalent to Σ0

(U−,X) = {0}. In this case, we see
that the data (U−, X) are informative for identification, equivalently Σ(U−,X) =
{(Atrue, Btrue)}, and the optimal LQR problem is solvable for (Atrue, Btrue, Q, R).
Therefore, condition (a) holds. On the other hand, if P +M = 0 then we have

0 = P +M = P +(A + BK)
= P +(A−B(R + B⊤P +B)−1B⊤P +A

)
=
(
I − P +B(R + B⊤P +B)−1B⊤)P +A.

for all (A, B) ∈ Σ(U−,X). From the identity

(I + P +BR−1B⊤)−1 = I − P +B(R + B⊤P +B)−1B⊤

we see that P +A = 0 for all (A, B) ∈ Σ(U−,X). Then, it follows from (7.10)
that K = 0. Since A0 + B0K = 0 for all (A0, B0) ∈ Σ0

(U−,X) due to Lemma 6.3,
we see that A0 must be zero. Hence, we have A = Atrue for all (A, B) ∈
Σ(U−,X) and Atrue is stable. Moreover, it follows from (7.14) that P + = Q.
Therefore, QAtrue = 0. In other words, condition (b) is satisfied, which proves
the theorem. □

Theorem 7.5 gives necessary and sufficient conditions under which the data
are informative for optimal linear quadratic regulation. However, it might not
be directly clear how these conditions can be verified given input-state data.
Therefore, in what follows we rephrase the conditions of Theorem 7.5 in terms
of the data matrices X and U−.

Theorem 7.7. Let Q ⩾ 0 and R > 0. Then the data (U−, X) are informative
for optimal linear quadratic regulation if and only if at least one of the following
two conditions hold:

(a) The data (U−, X) are informative for identification. Equivalently, there
exists

[
V1 V2

]
such that (6.14) holds. Moreover, the optimal LQR problem

is solvable for (Atrue, Btrue, Q, R), where Atrue = X+V1 and Btrue = X+V2.

(b) There exists Θ ∈ RT ×n such that X−Θ = (X−Θ)⊤, U−Θ = 0,[
X−Θ X+Θ

Θ⊤X⊤
+ X−Θ

]
> 0 (7.16)

and QX+Θ = 0.
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Proof. The equivalence of condition (a) of Theorem 7.5 and condition (a) of
Theorem 7.7 is obvious. It remains to be shown that condition (b) of Theorem
7.5 and condition (b) of Theorem 7.7 are equivalent as well. To this end, suppose
that there exists a matrix Θ ∈ RT ×n such that the conditions of (b) holds. By
Theorem 6.5, we have that A + BK is stable for K = 0 for all (A, B) ∈ Σ(U−,X),
that is, A is stable for all (A, B) ∈ Σ(U−,X). In addition, note that

QX+Θ(X−Θ)−1 = Q
[
A B

] [X−
U−

]
Θ(X−Θ)−1 = QA (7.17)

for all (A, B) ∈ Σ(U−,X). This shows that QA = 0 and therefore that condition
(b) of Theorem 7.5 holds. Conversely, suppose that A is stable and QA = 0 for
all (A, B) ∈ Σ(U−,X). This implies that K = 0 is a stabilizing controller for all
(A, B) ∈ Σ(U−,X). By Theorem 6.5, there exists a matrix Θ ∈ RT ×n satisfying
the first three conditions of (b). Finally, it follows from QA = 0 and (7.17) that
Θ also satisfies the fourth equation of (b). This proves the theorem. □

7.1.1 From data to optimal LQR gain

In this subsection we will devise a method to compute the optimal LQR feedback
gain K directly from the data. For this, we will employ ideas from the study of
Riccati inequalities.

The following theorem asserts that P + as in Lemma 7.4 can be found as the
unique solution to an optimization problem involving only the data. Further-
more, the optimal feedback gain K can subsequently be found by solving a set
of linear equations. Recall that, for a given square matrix M , tr(M) denotes the
trace of M .

Theorem 7.8. Let Q ⩾ 0 and R > 0. Suppose that the data (U−, X) are
informative for optimal linear quadratic regulation. Consider the linear trans-
formation P 7→ L(P ) defined by

L(P ) := X⊤
− PX− −X⊤

+ PX+ −X⊤
− QX− − U⊤

− RU−.

Let P + be as in Lemma 7.4. The following statements hold:

(a) The matrix P + is equal to the unique solution to the optimization problem

maximize tr(P )
subject to P ⩾ 0 and L(P ) ⩽ 0.

(b) There exists a right inverse X♯
− of X− such that

L(P +)X♯
− = 0. (7.18)
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Moreover, if X♯
− satisfies (7.18), then the optimal feedback gain is given

by K = U−X♯
−.

Remark 7.9. From a design viewpoint, the optimal feedback gain K can be
found in the following way. First solve the semidefinite program in Theorem
7.8((a)). Subsequently, compute a solution X♯

− to the linear equations X−X♯
− =

I and (7.18). Then, the optimal feedback gain is given by K = U−X♯
−.

Proof of Theorem 7.8. We begin with proving statement (i). We claim that
the following implication holds:

P ⩾ 0 and L(P ) ⩽ 0 =⇒ P + ⩾ P. (7.19)

To prove this claim, let P be such that P ⩾ 0 and L(P ) ⩽ 0. Since the data are
informative for optimal linear quadratic regulation, they are also informative for
stabilization by state feedback. Therefore, the optimal feedback gain K satisfies

im
[

I
K

]
⊆ im

[
X−
U−

]
due to Lemma 6.3. In addition, note that

L(P ) =
[
X−
U−

]⊤[
P −A⊤PA−Q −A⊤PB
−B⊤PA −(R + B⊤PB)

] [
X−
U−

]
for all (A, B) ∈ Σ(U−,X). Therefore[

I
K

]⊤[
P −A⊤PA−Q −A⊤PB
−B⊤PA −(R + B⊤PB)

] [
I
K

]
⩽ 0

for all (A, B) ∈ Σ(U−,X). This yields

P −M⊤PM ⩽ K⊤RK + Q

where M is as in Lemma 7.4. By subtracting this from (7.9), we obtain

(P + − P )−M⊤(P + − P )M ⩾ 0.

Since M is stable, this discrete-time Lyapunov inequality implies that P +−P ⩾ 0
and hence P + ⩾ P . This proves the claim (7.19).

Note that R + B⊤P +B is positive definite. Then, it follows from (7.8) that
for all (A, B) ∈ Σ(U−,X) we have[

P + −A⊤P +A−Q −A⊤P +B
−B⊤P +A −(R + B⊤P +B)

]
⩽ 0
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via a Schur complement argument. Hence, L(P +) ⩽ 0. Since P + ⩾ P , we have
tr(P +) ⩾ tr(P ). Together with (7.19), this shows that P + is a solution to the
optimization problem stated in the theorem.

Next, we prove uniqueness. Let P̄ be any solution of the optimization prob-
lem. Then, we have that P̄ ⩾ 0, L(P̄ ) ⩽ 0, and tr(P̄ ) = tr(P +). From (7.19),
we see that P + ⩾ P̄ . In particular, this implies that (P +)ii ⩾ P̄ii for all i.
Together with tr(P̄ ) = tr(P +), this implies that (P +)ii = P̄ii for all i. Now, for
any i and j, we have

(ei − ej)⊤P +(ei − ej) ⩾ (ei − ej)⊤P̄ (ei − ej) and
(ei + ej)⊤P +(ei + ej) ⩾ (ei + ej)⊤P̄ (ei + ej)

where ei denotes the i-th standard basis vector. This leads to (P +)ij ⩽ P̄ij and
(P +)ij ⩾ P̄ij , respectively. We conclude that (P +)ij = P̄ij for all i, j. This
proves uniqueness.

Finally, we prove the statement (ii). It follows from (7.8) and (7.10) that

L(P +) = − (U− −KX−)⊤ (R + B⊤P +B) (U− −KX−) . (7.20)

The optimal feedback K is stabilizing, therefore it follows from Theorem 6.4 that
K can be written as K = U−Γ, where Γ is some right inverse of X−. Note that
this implies the existence of a right inverse X♯

− of X− satisfying (7.18). Indeed,
X♯

− := Γ is such a matrix by (7.20). Moreover, if X♯
− is a right inverse of X−

satisfying (7.18) then (U−−KX−)X♯
− = 0 by (7.20) and positive definiteness of

R. We conclude that the optimal feedback gain is equal to K = U−X♯
−, which

proves the second statement. □

7.2 The data-driven suboptimal LQR problem

Again assume that our true (but unknown) system is given by (7.1) and that
we want to quantify the performance of the system using a given quadratic
cost functional (7.3). Whereas the optimal linear quadratic regulator problem
is to find, for each initial state x0 of the system, an optimal input sequence,
i.e. an input sequence that minimizes the cost functional, the suboptimal linear
quadratic regulator problem aims at finding an input such that its cost does not
exceed a given tolerance. In the situation that the system matrices Atrue and
Btrue are known, methods for computing such suboptimal inputs exist. In the
data-driven version of the problem, only data on the true system are available
to compute suboptimal inputs.

Before considering this data driven version of the suboptimal linear quadratic
regulator problem, we will first briefly review some basics on the discrete-time
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suboptimal linear quadratic regulator problem. Again, in the sequel we will use
the abbreviation ‘LQR’ for ‘linear quadratic regulator’.

Consider the linear system (7.2). Let x0 be a given initial state. Let (7.3)
be a given quadratic cost functional, where Q ⩾ 0 and R > 0 are real matrices.
Whenever the input function u results from a state feedback law u = Kx, we
will write J(x0, K) instead of J(x0, u).

The suboptimal LQR problem is now formulated as follows. Given x0 ∈ Rn

and a tolerance γ > 0, find (if it exists) a feedback law u = Kx such that
A + BK is stable, and the cost satisfies J(x0, K) < γ. Such a K is called a
suboptimal feedback gain for the system (7.2) with cost functional (7.3). The
following proposition gives necessary and sufficient conditions under which a
given matrix K is a suboptimal feedback gain.

Proposition 7.10. Let x0 ∈ Rn and γ > 0. The matrix K is a suboptimal
feedback gain if and only if there exists a matrix P > 0 such that

(A + BK)⊤P (A + BK)− P + Q + K⊤RK < 0 (7.21)
x⊤

0 Px0 < γ. (7.22)

To prove this proposition, we make use of the following lemma on the solution
of Lyapunov equations. A proof of this lemma can be found in [12, Thm. 4.50].

Lemma 7.11. Let A ∈ Rn×n be stable. For any matrix Q ∈ Sn, there exists a
unique solution P ∈ Sn to the Lyapunov equation

P −A⊤PA = Q. (7.23)

Moreover, this solution P is given by P =
∑∞

t=0(A⊤)tQAt.

Proof of Proposition 7.10. Assume that there exists a matrix P > 0 such
that (7.21) and (7.22) hold. Since Q ⩾ 0 and R > 0, the inequality (7.21) implies
that

(A + BK)⊤P (A + BK)− P < 0.

We conclude that A + BK is stable. Thus, by Lemma 7.11 there exists a unique
solution P̂ ∈ Sn to the Lyapunov equation

P̂ − (A + BK)⊤P̂ (A + BK) = Q + K⊤RK. (7.24)

Moreover, we have that

P̂ =
∞∑

t=0
((A + BK)⊤)t(Q + K⊤RK)(A + BK)t. (7.25)
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Therefore, we can express the cost J(x0, K) in (7.3) in terms of P̂ as

J(x0, K) = x⊤
0 P̂ x0.

By adding (7.21) to (7.24) we obtain

P̂ − P − (A + BK)⊤(P̂ − P )(A + BK) = N

for some matrix N < 0. Invoking Lemma 7.11 once again, we conclude that

P̂ − P =
∞∑

t=0
((A + BK)⊤)tN(A + BK)t ⩽ 0.

Therefore, J(x0, K) = x⊤
0 P̂ x0 ⩽ x⊤

0 Px0 < γ. We conclude that K is a subopti-
mal feedback gain.

Conversely, suppose that K is a suboptimal feedback gain. This means that
A + BK is stable and J(x0, K) = x⊤

0 P̂ x0 < γ, where P̂ ∈ Sn is the unique
solution to (7.24). Since Q ⩾ 0 and R > 0, we have that P̂ ⩾ 0. By Lemma 7.11
there exists a unique solution P ∈ Sn to the Lyapunov equation

P − (A + BK)⊤P (A + BK) = I. (7.26)

Moreover, since P =
∑∞

t=0((A + BK)⊤)t(A + BK)t, we have that P > 0. It
follows from (7.26) that εP satisfies

εP − (A + BK)⊤(εP )(A + BK) > 0 (7.27)

for all scalars ε > 0. Clearly, P̂ + εP > 0 for all ε > 0. Moreover, by adding
(7.27) and (7.24) we obtain

(A + BK)⊤(P̂ + εP )(A + BK)− (P̂ + εP ) + Q + K⊤RK < 0

for all ε > 0. For ε > 0 sufficiently small, we also have that x⊤
0 (P̂ + εP )x0 < γ.

We conclude that for such ε, P̂ + εP > 0 is a solution to (7.21) and (7.22). This
proves the proposition. □

Next, we turn to the data-driven version of the suboptimal LQR problem.
As in Section 7.1, we consider the model class M of all discrete-time linear
input-state systems of the form (7.2) with given state space dimension n and
input dimension m. Assume we have input-state data D := (U−, X) on the
time interval [0, T ] as given by (2.1). The set ΣD of all systems in M that are
consistent with the data is then equal to Σ(U−,X) defined by (7.6). We assume
that the data are generated by the true (but unknown) system (Atrue, Btrue),
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which is therefore assumed to be in Σ(U−,X) itself. In the context of the subop-
timal LQR problem the control objective O is: ‘for the system with initial state
x0, interconnection with a state feedback controller yields a stable closed loop
system and the associated cost is strictly less than γ’. With this in mind, we
introduce the following notion of data informativity.
Definition 7.12. Let x0 ∈ Rn and γ > 0. The data (U−, X) are informative
for suboptimal linear quadratic regulation if there exists a matrix K that is a
suboptimal feedback gain for all (A, B) ∈ Σ(U−,X).

We want to find conditions under which the data are informative for subop-
timal linear quadratic regulation, and we want to obtain suboptimal controllers
from data. These problems are stated more formally as follows.
Problem 7.13. Let x0 ∈ Rn and γ > 0. Provide necessary and sufficient
conditions under which the data (U−, X) are informative for suboptimal linear
quadratic regulation. Moreover, for data (U−, X) that are informative, find a
feedback gain K that is suboptimal for all (A, B) ∈ Σ(U−,X).

An important ingredient in tackling this problem will be the observation that
if the data (U−, X) are informative for suboptimal linear quadratic regulation,
they are necessarily informative for stabilization by state feedback. By Theorem
6.4, this holds if and only if there exists a right inverse X♯

− of X− such that X+X♯
−

is stable. Moreover, K is a stabilizing feedback for all systems in Σ(U−,X) if and
only if K = U−X♯

− for some X♯
− satisfying the above properties. This observation

will be essential in proving the necessity parts in the following theorem.
Theorem 7.14. Let x0 ∈ Rn and γ > 0. The data (U−, X) are informative for
suboptimal linear quadratic regulation if and only if there exists a matrix P > 0
and a right inverse X♯

− of X− such that

(X+X♯
−)⊤PX+X♯

− − P + Q + (U−X♯
−)⊤RU−X♯

− < 0 (7.28)
x⊤

0 Px0 < γ. (7.29)

Moreover, K is a suboptimal feedback gain for all systems (A, B) ∈ Σ(U−,X) if
and only if it is of the form K = U−X♯

− for some right inverse X♯
− satisfying

(7.28) and (7.29).
Proof. To prove the ‘if’ parts of both statements, suppose that there exists a
matrix P > 0 and a right inverse X♯

− such that (7.28) and (7.29) are satisfied.
Define the controller K := U−X♯

−. For any (A, B) ∈ Σ(U−,X) we have X+ =
AX− + BU−, which implies that X+X♯

− = A + BK. Substitution of the latter
expression into (7.28) yields

(A + BK)⊤P (A + BK)− P + Q + K⊤RK < 0
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which shows that there exists a K and P > 0 satisfying (7.21) and (7.22) for all
(A, B) ∈ Σ(U−,X). By Proposition 7.10, the data are informative for suboptimal
LQR.

To prove the ‘only if’ parts of both statements, suppose that the data (U−, X)
are informative for suboptimal linear quadratic regulation. This means that
there exists a feedback gain K and a matrix P(A,B) > 0 such that

(A + BK)⊤P(A,B)(A + BK)− P(A,B) + Q + K⊤RK < 0
x⊤

0 P(A,B)x0 < γ

for all (A, B) ∈ Σ(U−,X). We emphasize that the matrix P(A,B) may depend
on the particular system (A, B), but the feedback gain K is fixed by definition.
Since K is such that A+BK is stable for all (A, B) ∈ Σ(U−,X), by the observation
preceding the theorem statement we obtain that K is of the form K = U−X♯

−
for some right inverse X♯

− of X−. This yields A + BK = X+X♯
−. The matrix

A+BK is therefore the same for all (A, B) ∈ Σ(U−,X). This implies the existence
of a (common) P > 0 such that (7.28) and (7.29) are satisfied. □

Note that the conditions of Theorem 7.14 are not ideal from a computational
point of view since (7.28) depends nonlinearly on P and X♯

−. Nonetheless,
it is straightforward to reformulate these conditions in terms of linear matrix
inequalities. In order to do so, let C and D be any choice of real matrices such
that [

Q 0
0 R

]
=
[
C D

]⊤ [
C D

]
.

In addition, define Z− := CX− + DU−. Then the following holds.

Corollary 7.15. Let x0 ∈ Rn and γ > 0. The data (U−, X) are informative for
suboptimal linear quadratic regulation if and only if there exist Y ∈ Sn, Y > 0
and Θ ∈ RT ×n such that  Y Θ⊤X⊤

+ Θ⊤Z⊤
−

X+Θ Y 0
Z−Θ 0 I

 > 0 (7.30)

[
γ x⊤

0
x0 Y

]
> 0 (7.31)

X−Θ = Y. (7.32)

Moreover, K is a suboptimal feedback gain for all (A, B) ∈ Σ(U−,X) if and only
if K = U−ΘY −1 for some Y and Θ satisfying (7.30), (7.31) and (7.32).
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Corollary 7.15 follows from Theorem 7.14 using standard manipulations.
First a congruence transformation P −1 is applied to (7.28), after which a Schur
complement argument and change of variables Y := P −1 and Θ := X♯

−Y yields
(7.30), (7.31) and (7.32).

Remark 7.16. It is noteworthy that the conditions of Theorem 7.14 and Corol-
lary 7.15 do not require that the data (U−, X) contain enough information to
uniquely identify the true system matrices (Atrue, Btrue). Clearly, Theorem 7.14
and Corollary 7.15 require the matrix X− to have full row rank. This means that
at least T ⩾ n samples are needed to obtain a suboptimal controller from data.
In comparison, recall from Theorem 3.1 that informativity for identification, i.e.
the ability to uniquely recover (Atrue, Btrue) from the data, is equivalent to the
full rank condition

rank
[
X−
U−

]
= n + m

which requires the larger lower bound T ⩾ n + m on the number of samples.

7.2.1 Illustrative example

As an illustration of the theory on the data-driven suboptimal LQR problem, in
this subsection we will study controlled consensus dynamics of the form

x(t + 1) = (I − 0.15L) x(t) + Bu(t) (7.33)

where x(t) ∈ R20, u(t) ∈ R10, L is the Laplacian matrix of the graph G in Figure
7.1, and B =

[
I 0
]⊤, meaning that inputs are applied to the first 10 nodes. The

goal of this example is to apply Corollary 7.15 to construct suboptimal controllers
for the system (7.33) using data.

We choose the weight matrices as Q = I and R = I, and define x0 ∈ R20

entry-wise as (x0)i = i.
We start with a time horizon of T = 20 and collect data (U−, X) where the

entries of U− and the initial state of the experiment x(0) are drawn uniformly
at random from (0, 1). Given these data, we attempt to solve a semidefinite
program (SDP) where the objective is to minimize γ subject to the constraints
(7.30), (7.31) and (7.32). We use Yalmip, with Mosek as a solver. Next, we
collect one additional sample of the input and state, and we solve the SDP
again for the augmented data set. We continue this process up to a time horizon
of T = 30.

We repeat this entire experiment for 100 trials and display the results in
Figures 7.2 and 7.3. Figure 7.2 depicts the fraction of successful trials in which
the constraints (7.30), (7.31) and (7.32) were feasible and a stabilizing controller
was found. Note that a stabilizing controller was only found in 2 out of the 100
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Figure 7.1: Graph G with leader vertices colored black.

trials for T = 20. This fraction rapidly increases to 0.88 for T = 22, while 100%
of the trials were successful for T ⩾ 24. Figure 7.3 displays the minimum cost
γ of the controller, averaged over all successful trials. The cost is very large
for small sample size (T = 20) but decreases rapidly as the number of samples
increases. Figure 7.3 therefore highlights an interesting trade-off between the
sample size and the cost. Note that for T = 30, γ coincides with the optimal
cost obtained from the (model-based) solution to the Riccati equation. This is
as expected since 30 = n + m is the minimum number of samples from which
the state and input matrices can be uniquely identified.
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Figure 7.2: Fraction of successful trials as a function of T .
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Figure 7.3: Average minimum cost as a function of T .

7.3 Notes and references

The basic material on the linear quadratic regulator problem provided in Sec-
tion 7.1 is the discrete-time analogue of [160, Ch. 10]. See, in particular, [160,
Thm. 10.18]. The solutions to the data-driven LQR problem in Theorems 7.5
and 7.8 are based on the paper [175]. The data-driven LQR problem was also
solved using semidefinite programming in [44, Thm. 4], under the additional
assumptions that the true system is controllable and the input sequence is per-
sistently exciting of order n + 1. In this chapter, we have not assumed that the
input data are persistently exciting. Instead, we have provided necessary and
sufficient conditions under which the data are informative for linear quadratic
regulation, i.e., conditions under which there exists a single feedback gain that
is optimal for all data-consistent systems. Unlike in the case of stabilization
(Section 6.1), these conditions basically imply that the data are informative for
system identification.

In [44], the optimal feedback gain was found by minimizing the trace of
a weighted sum of two matrix variables, subject to two LMI constraints. An
attractive feature of the semidefinite program in Theorem 7.8 of this book is that
the dimension of the unknown P is (only) n×n. In comparison, the dimensions
of the two unknowns in [44, Thm. 4] are T × n and m × m, respectively. In
general, the number of samples T is larger than n. In fact, in the case that the
input is persistently exciting of order n + 1, we have T ⩾ nm + n + m. An
additional feature of Theorem 7.8 is that P +, i.e., the largest solution to the
Riccati equation, is obtained from the data. This is useful since the optimal cost
associated to any initial state x0 can be computed as x⊤

0 P +x0.
The paper [63] also studies data-driven LQR, but using a different perspec-

tive. Indeed, in [63], the solution to the Riccati equation is approximated using
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a batch-form solution to the Riccati difference equation. A similar approach was
used in the papers [1, 57, 152, 154] for the finite horizon data-driven LQR/LQG
problem. In the setup of [63], the approximate solution to the Riccati equation
is exact only if the number of data points tends to infinity. The main difference
between our approach and the one in [63] is hence that the solution P + to the
Riccati equation can be obtained exactly from finite data via Theorem 7.8.

The solution to the data-driven suboptimal LQR problem in Section 7.2 is
based on the paper [176]. These results rely on an LMI characterization under
which a given feedback gain is suboptimal, see Proposition 7.10. In order to prove
this proposition, we have used the auxiliary Lemma 7.11 on the uniqueness of
solutions to (discrete-time) Lyapunov equations. A proof of this lemma can be
found in [12], see Theorem 4.50.
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Data-driven h2 and h∞ control design

In this chapter we will study two main design problems, namely the data-driven
h2 suboptimal control design problem and the data-driven h∞ control problem.

Two versions of data-driven h2 suboptimal control design will be considered.
In the first of these, to be treated in Section 8.1, measurements of the external
disturbance input will be part of the data. In the second version, in Section 8.2,
the disturbance input will be assumed to be unknown, and we will deal with
noisy data.

The second main subject of this chapter is the data-driven h∞ control prob-
lem. We define the property of informativity for h∞ control for noisy input-state
data, and establish necessary and sufficient conditions on the data to be infor-
mative. These conditions are formulated in terms of feasibility of certain LMIs
involving the data matrices and the desired performance. Solutions to these
LMIs also lead to h∞ suboptimal state feedback control laws.

8.1 h2 suboptimal control design with disturbance data

In this section we will study the data-driven h2 suboptimal control problem.
Before embarking on data-driven design, we will first review some basic material
on h2 suboptimal control. In that context, we consider a given system

x(t + 1) = Ax(t) + Bu(t) + Ew(t) (8.1a)
z(t) = Cx(t) + Du(t) (8.1b)

where x is the n-dimensional state, u the m-dimensional control input, w a d-
dimensional disturbance input (in the sequel also referred to as noise input) and
z the p-dimensional performance output. The real matrices A, B, C, D and E are
of appropriate dimensions. A given feedback law u = Kx yields the closed-loop
system

x(t + 1) = (A + BK)x(t) + Ew(t) (8.2a)
z(t) = (C + DK)x(t). (8.2b)
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Associated with (8.2), we consider the cost functional

Jh2(K) :=
∞∑

t=0
tr
(
T ⊤

K (t)TK(t)
)

where TK(t) := (C+DK)(A+BK)tE is the closed-loop impulse response matrix
from w to z and, as before, tr(·) denotes trace. The cost Jh2(K) is called the
h2 cost of the feedback gain K since it is equal to the squared h2 norm of the
transfer function from w to z in (8.2). It is well-known that the h2 cost of a
given stabilizing K can be computed using the observability Gramian. Indeed
for a stabilizing K, the unique solution P to the Lyapunov equation

(A + BK)⊤P (A + BK)− P + (C + DK)⊤(C + DK) = 0 (8.3)

is related to the h2 cost by tr(E⊤PE) = Jh2(K). For a given tolerance γ > 0,
the h2 suboptimal control problem is now the problem of finding a gain K (if it
exists) such that A + BK is stable and Jh2(K) < γ. Such a K is called an h2
suboptimal feedback gain. Similar to Proposition 7.10 the following proposition
gives conditions under which a given K is an h2 suboptimal feedback gain.

Proposition 8.1. Let γ > 0. The matrix K is an h2 suboptimal feedback gain
if and only if there exists a matrix P > 0 such that

(A + BK)⊤P (A + BK)− P + (C + DK)⊤(C + DK) < 0
tr
(
E⊤PE

)
< γ.

Clearly, the suboptimal LQR problem can be viewed as a special case of the
h2 suboptimal control problem. Indeed, the h2 problem boils down to the LQR
problem if E = x0, C⊤C = Q, D⊤D = R and C⊤D = 0. However, as we will
see in the sequel, the data-driven versions of these problems are different in the
way that data are collected.

With the basic material now available, we turn our attention to the data-
driven version of the h2 suboptimal control problem. For this, consider the true
(but unknown) system

x(t + 1) = Atruex(t) + Btrueu(t) + Etruew(t) (8.4)

where the system matrices Atrue, Btrue and Etrue are unknown real matrices of
given (known) dimensions. In order to quantify the performance of the system,
we introduce a performance output

z(t) = Cx(t) + Du(t)
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where the matrices C and D are known real matrices. We embed the unknown
system (8.4) into the model class M of all discrete-time linear systems (with
given state space dimension n, control input dimension m and disturbance input
dimension d) of the form

x(t + 1) = Ax(t) + Bu(t) + Ew(t). (8.5)

Suppose we collect data on the time interval [0, T ]. This leads to input-state
data (U−, X). We also collect corresponding measurements of the disturbance
leading to disturbance data

W− := W[0,T −1] =
[
w(0) w(1) · · · w(T − 1)

]
.

Note that we assume that samples W− of the disturbance inputs are available
as part of the data.

In this setup, all systems (A, B, E) in the model classM that are consistent
with the data (U−, W−, X) are given by

Σ(U−,W−,X) :=

(A, B, E) | X+ =
[
A B E

] X−
U−
W−

 .

We can now state the following notion of data informativity for h2 suboptimal
control.

Definition 8.2. Let γ > 0. The data (U−, W−, X) are informative for h2
suboptimal control if there exists a K that is an h2 suboptimal feedback gain for
all (A, B, E) ∈ Σ(U−,W−,X).

As before, we are interested in both data informativity conditions and a
control design procedure. We formalize this in the following problem.

Problem 8.3. Let γ > 0. Provide necessary and sufficient conditions under
which the data (U−, W−, X) are informative for h2 suboptimal control. More-
over, for data (U−, W−, X) that are informative, find a feedback gain K that is
h2 suboptimal for all (A, B, E) ∈ Σ(U−,W−,X).

In the remainder of this section we will resolve the data-driven h2 suboptimal
control problem as formulated in Problem 8.3. In order to do so, as a first step
we need to extend Theorem 6.4 to systems with disturbances. We call the data
(U−, W−, X) informative for stabilization by state feedback if there exists K such
that A + BK is stable for all (A, B, E) ∈ Σ(U−,W−,X).

Lemma 8.4. The data (U−, W−, X) are informative for stabilization by state
feedback if and only if there exists a right inverse X♯

− of X− with the properties
that X+X♯

− is stable and W−X♯
− = 0.
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Moreover, K is a stabilizing controller for all systems in Σ(U−,W−,X) if and
only if K = U−X♯

−, where X♯
− satisfies the above properties.

Proof. The proof follows a similar line as that of Theorem 6.4. To prove the ‘if’
part of both statements, suppose that there exists a right inverse X♯

− such that
X+X♯

− is stable and W−X♯
− = 0. Define K := U−X♯

−. Then X+X♯
− = A + BK

for all (A, B, E) ∈ Σ(U−,W−,X). Hence A + BK is stable for all (A, B, E) ∈
Σ(U−,W−,X) and K = U−X♯

− is stabilizing.
To prove the ‘only if’ parts, suppose that the data are informative for stabi-

lization by state feedback. Let K be stabilizing for all systems in Σ(U−,W−,X).
Define the subspace

Σ0
(U−,W−,X) :=

(A0, B0, E0) | 0 =
[
A0 B0 E0

] X−
U−
W−

 .

The matrix A+BK +α(A0 +B0K) is stable for all α ∈ R and all (A0, B0, E0) ∈
Σ0

(U−,W−,X). Thus we have

ρ

(
1
α

(A + BK) + A0 + B0K

)
⩽

1
α
∀ α ⩾ 1

where ρ(·) denotes spectral radius. We take the limit as α→∞, and conclude by
continuity of the spectral radius that A0 +B0K is nilpotent for all (A0, B0, E0) ∈
Σ0

(U−,W−,X). Note that (A0, B0, E0) ∈ Σ0
(U−,W−,X) implies that(

(A0 + B0K)⊤A0, (A0 + B0K)⊤B0, (A0 + B0K)⊤E0
)

is also a member of Σ0
(U−,W−,X). This implies that the matrix (A0+B0K)⊤(A0+

B0K) is nilpotent for all (A0, B0, E0). The only symmetric nilpotent matrix is
zero, thus A0 + B0K = 0 for all (A0, B0, E0) ∈ Σ0

(U−,W−,X). We conclude that

ker
[
X⊤

− U⊤
− W ⊤

−
]
⊆ ker

[
I K⊤ 0

]
equivalently,

im

 I
K
0

 ⊆ im

X−
U−
W−

 .

This means that there exists a right inverse X♯
− of X− such that K = U−X♯

−
and W−X♯

− = 0. Clearly, X+X♯
− = A + BK for all (A, B, E) ∈ Σ(U−,W−,X),

hence X+X♯
− is stable. □
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The following theorem provides necessary and sufficient conditions for data
informativity for the suboptimal h2 problem. It also characterizes all suboptimal
controllers in terms of the data. Again define Z− := CX− + DU−.

Theorem 8.5. Let γ > 0. The data (U−, W−, X) are informative for h2 sub-
optimal control if and only if at least one of the following two conditions is
satisfied:

(a) There exists a right inverse X♯
− such that X+X♯

− is stable and[
W−
Z−

]
X♯

− = 0. (8.6)

(b) There exist right inverses X♯
− and W ♯

− such that X+X♯
− is stable, W−X♯

− =
0, [

X−
U−

]
W ♯

− = 0 (8.7)

and the unique solution P to

(X♯
−)⊤ (X⊤

+ PX+ −X⊤
− PX− + Z⊤

− Z−
)

X♯
− = 0 (8.8)

has the property that

tr
(

(X+W ♯
−)⊤PX+W ♯

−

)
< γ. (8.9)

Moreover, K is an h2 suboptimal controller for all (A, B, E) ∈ Σ(U−,W−,X) if and
only if K = U−X♯

−, where X♯
− satisfies the conditions of (a) or (b).

Remark 8.6. The interpretation of Theorem 8.5 is as follows. Note that both
condition (a) and (b) require the existence of X♯

− such that X+X♯
− is stable and

W−X♯
− = 0. These conditions are necessary for the existence of a stabilizing

controller by Lemma 8.4. In condition (a) it is further required that X♯
− satisfies

Z−X♯
− = 0, which means that the output of all systems in Σ(U−,W−,X) can be

made identically equal to zero (hence their h2 norm is zero). In condition (b),
the properties of W ♯

− imply that Etrue = X+W ♯
− can be uniquely identified from

the data. Similar to the suboptimal LQR problem, it is generally not required
that Atrue and Btrue can be uniquely identified from the data.

Proof. We first prove the ‘if’ parts of both statements. Suppose that condition
(a) is satisfied and let K := U−X♯

−. By Lemma 8.4, A + BK is stable for all
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(A, B, E) ∈ Σ(U−,W−,X). As Z−X♯
− = 0 we have C + DU−X♯

− = C + DK = 0.
This means that the h2 cost of (8.2) is zero for all (A, B, E) ∈ Σ(U−,W−,X). We
conclude that the data are informative for h2 suboptimal control and K is an h2
suboptimal controller.

Next suppose that condition (b) is satisfied, and let K := U−X♯
− where

X♯
− satisfies the conditions of (b). Clearly, A + BK = X+X♯

− is stable for all
(A, B, E) ∈ Σ(U−,W−,X). By the properties of W ♯

−, (A, B, E) ∈ Σ(U−,W−,X)

implies E = Etrue = X+W ♯
−. In view of (8.8) and (8.9) we see that for any

(A, B, Etrue) ∈ Σ(U−,W−,X) the unique solution P to (8.3) satisfies

tr(E⊤
truePEtrue) < γ.

Therefore, the data are informative for h2 suboptimal control and K is h2 sub-
optimal.

Subsequently, we prove the ‘only if’ parts of both statements. Suppose that
the data are informative for h2 suboptimal control and let K be an h2 suboptimal
controller for all (A, B, E) ∈ Σ(U−,W−,X). By Lemma 8.4, there exists a right
inverse X♯

− such that X+X♯
− is stable and W−X♯

− = 0. Also, the feedback K is
of the form K = U−X♯

− and A + BK = X+X♯
− for all (A, B, E) ∈ Σ(U−,W−,X).

By stability of X+X♯
− the Lyapunov equation (8.8) has a unique solution P ⩾ 0.

The matrix P satisfies tr(E⊤PE) < γ for all (A, B, E) ∈ Σ(U−,W−,X). Therefore,
we have

tr
(
(E + αE0)⊤P (E + αE0)

)
< γ (8.10)

for all (A, B, E) ∈ Σ(U−,W−,X), (A0, B0, E0) ∈ Σ0
(U−,W−,X) and α ∈ R. We

divide both sides of (8.10) by α2 and take the limit as α → ∞. Then, by
continuity of the trace we obtain tr(E⊤

0 PE0) = 0, which yields PE0 = 0 for
all (A0, B0, E0) ∈ Σ0

(U−,W−,X). We claim that this implies that either P = 0 or
E0 = 0 for all (A0, B0, E0) ∈ Σ0

(U−,W−,X).
Indeed, suppose that this claim is not true. Then P ̸= 0 and there exists a

triple (A0, B0, E0) ∈ Σ0
(U−,W−,X) such that E0 ̸= 0. Then, clearly, there exists

f, g ∈ Rn such that Pf ̸= 0 and g⊤E0 ̸= 0, so Pfg⊤E0 ̸= 0. Note that for
any F ∈ Rn×n we have (FA0, FB0, FE0) ∈ Σ0

(U−,W−,X). On the other hand, for
F := fg⊤ we have PFE0 ̸= 0. This is a contradiction, which proves our claim.

Now, in the case that P = 0 we obtain Z−X♯
− = 0 so condition (a) is satisfied.

In the case that E0 = 0 for all (A0, B0, E0) ∈ Σ0
(U−,W−,X) we obtain

ker
[
X⊤

− U⊤
− W ⊤

−
]
⊆ ker

[
0 0 I

]
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equivalently,

im

0
0
I

 ⊆ im

X−
U−
W−

 .

As a consequence, there exists a right inverse W ♯
− such that X−W ♯

− = 0 and
U−W ♯

− = 0. This means that (A, B, E) ∈ Σ(U−,W−,X) implies E = Etrue =
X+W ♯

−. Hence (8.9), and therefore (b), holds. In both cases, the controller K

is of the form K = U−X♯
−, where X♯

− satisfies either (a) or (b). □

Similar to Corollary 7.15 we can reformulate Theorem 8.5 in terms of linear
matrix inequalities.

Corollary 8.7. Let γ > 0. The data (U−, W−, X) are informative for h2 sub-
optimal control if and only if at least one of the following two conditions is
satisfied:

(a) There exists a Θ ∈ RT ×n such that X−Θ = (X−Θ)⊤,[
W−
Z−

]
Θ = 0 and

[
X−Θ Θ⊤X⊤

+
X+Θ X−Θ

]
> 0. (8.11)

(b) There exist a right inverse W ♯
− and matrices Y ∈ Sn, Y > 0 and Θ ∈ RT ×n

such that X−Θ is symmetric, the matrices W−Θ, X−W ♯
− and U−W ♯

− are
zero, and X−Θ Θ⊤X⊤

+ Θ⊤Z⊤
−

X+Θ X−Θ 0
Z−Θ 0 I

 > 0 (8.12)

[
Y (W ♯

−)⊤X⊤
+

X+W ♯
− X−Θ

]
> 0 (8.13)

tr(Y ) < γ. (8.14)

Moreover, K is an h2 suboptimal controller for all (A, B, E) ∈ Σ(U−,W−,X) if and
only if K = U−Θ(X−Θ)−1, where Θ satisfies the conditions of (a) or (b).

Proof. We first prove the ‘if’ part. We will first show that condition (a) implies
condition (a) of Theorem 8.5. Let Θ be such that X−Θ is symmetric and (8.11)
holds. Then X−Θ > 0 and X♯

− := Θ(X−Θ)−1 is a right-inverse of X−. Also,
(8.6) holds. Now define Q := (X−Θ)−1. By taking a suitable Schur complement
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we then obtain Q− (X+X♯
−)⊤Q(X+X♯

−) > 0, from which it follows that X+X♯
−

is stable.
Next, we will prove that condition (b) implies condition (b) of Theorem 8.5.

By (8.12), again X−Θ > 0, X♯
− := Θ(X−Θ)−1 is a right-inverse of X− and

X+X♯
− is stable. Also W−X♯

− = 0 and (8.7) holds. Applying standard Schur
complement arguments to (8.12), it is the easily seen that Q = (X−Θ)−1 satisfies
the strict Lyapunov inequality

(X♯
−)⊤ (X⊤

+ QX+ −X⊤
− QX− + Z⊤

− Z−
)

X♯
− < 0.

Now let P ⩾ 0 be the unique solution to the Lyapunov equation (8.8). Then the
difference ∆ := Q− P satisfies

(X♯
−)⊤ (X⊤

+ ∆X+ −X⊤
− ∆X−

)
X♯

− < 0,

which implies ∆ > 0 so P < Q. Using (8.13) we find

Y − (X+W ♯
−)⊤Q(X+W ♯

−) > 0

which leads to
(X+W ♯

−)⊤P (X+W ♯
−) < Y.

By applying (8.14) this then yields (8.9).
We now turn to the proof of the ‘only if’ part. We will show that condition

(a) of Theorem 8.5 implies condition (a) of Corollary 8.7. Let X− be a right
inverse of X− such that X+X♯

− is stable. The stability of X+X♯
− implies the

existence of a Q > 0 such that

Q− (X+X♯
−)⊤Q(X+X♯

−) > 0.

Next, define Θ := X♯
−Q−1. Then Q = (X−Θ)−1 and it is easily verified that

X−Θ− (X+Θ)⊤(X−Θ)−1(X+Θ) > 0.

Using the Schur complement we conclude that (8.11) holds.
Next, we show that condition (b) of Theorem 8.5 implies condition (b) of

Corollary 8.7. For any ε > 0, let Qε > 0 be the unique solution of the Lyapunov
equation

(X♯
−)⊤ (X⊤

+ QεX+ −X⊤
− QεX− + Z⊤

− Z−
)

X♯
− + εI = 0.

Clearly, Qε converges to the solution P of (8.8) as ε ↓ 0. Using this fact together
with (8.9), pick an ε > 0 sufficiently small such that

tr
(

(X+W ♯
−)⊤QεX+W ♯

−

)
< γ.
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In the sequel, denote this Qε simply by Q. Note that Q satisfies

(X♯
−)⊤ (X⊤

+ QX+ −X⊤
− QX− + Z⊤

− Z−
)

X♯
− < 0.

Define Θ := X♯
−Q−1. Using Schur complements it is then easily seen that the

inequality (8.12) holds. It remains to be proven that Y exists such that (8.13)
and (8.14) hold. Note that tr((X+W ♯

−)⊤(X−Θ)−1X+W ♯
−) < γ. Choose any

Y > (X+W ♯
−)⊤(X−Θ)−1X+W ♯

− such that tr(Y ) < γ.
Finally, the statement about the the feedback gain K is an immediate con-

sequence of the previous. This completes the proof of Corollary 8.7. □

8.2 h2 suboptimal control design without disturbance data

In the setup considered in the previous section, part of our data consisted of
samples of the noise input acting on the true, unknown system. Thus, our data
set D consisted of data on the control input, the state, and the noise input. In
the current section we turn our attention to the situation that the noise input
is unknown, and only input-state data are available to obtain h2 suboptimal
controllers.

Consider the true (but unknown) system

x(t + 1) = Atruex(t) + Btrueu(t) + w(t) (8.15)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input and w(t) ∈ Rn is an
unknown noise input. The matrices Atrue and Btrue denote the unknown state
and input matrices. Different from the setup in Section 8.1, we assume that the
noise input matrix E is known, and, in fact, equal to the n× n identity matrix.

We embed this unknown system into the model class M of all input-state
systems with unknown noise inputs, of fixed dimensions n and m, of the form

x(t + 1) = Ax(t) + Bu(t) + w(t). (8.16)

Suppose that we have data on the time interval [0, T ]. These data are given by
(U−, X). In contrast with the setup in Section 8.1, the noise input w is assumed
to be unknown. In particular this means that w(0), w(1), . . . , w(T − 1) are not
measured, and are therefore not part of the data.

Using the noise model that was introduced in Section 3.4, we will however
assume that the matrix W− = W[0,T −1] of noise samples satisfies the quadratic
matrix inequality (3.18) for a given, known, matrix Φ ∈ Πn,T . The set ΣD of
all systems in M that are consistent with the data (U−, X) is equal to the set
of all systems (A, B) satisfying

X+ = AX− + BU− + W− (8.17)
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for some W− satisfying the quadratic matrix inequality (3.18). In other words,

ΣD = {(A, B) | (8.17) holds for some W− satisfying (3.18)}. (8.18)

Recall from Lemma 3.16 that, in fact,

ΣD = {(A, B) | (3.27) is satisfied}

In order to quantify performance, we associate to (8.15) a performance output

z(t) = Cx(t) + Du(t) (8.19)

where z(t) ∈ Rp, and C and D are known matrices. For any (A, B) ∈ ΣD, the
feedback law u = Kx yields the closed-loop system

x(t + 1) = (A + BK)x(t) + w(t)
z(t) = (C + DK)x(t).

(8.20)

Associated with (8.20), we again consider the h2 cost functional

Jh2(K) :=
∞∑

t=0
tr
(
T ⊤

K (t)TK(t)
)

,

where TK(t) := (C + DK)(A + BK)t is the closed-loop impulse response matrix
from w to z. Let γ > 0. We have that A + BK is stable and Jh2(K) < γ if and
only if there exists a matrix P > 0 such that

(A + BK)⊤P (A + BK)− P + (C + DK)⊤(C + DK) < 0
tr (P ) < γ.

(8.21)

The data-driven h2 suboptimal control problem problem entails the computation
of a feedback gain K from data such that Jh2(K) < γ for all (A, B) that are
consistent with the data. Similar to the setup for quadratic stabilization in
Section 6.3, we restrict attention to a matrix P that is common for all (A, B).
This leads to the following natural definition.

Definition 8.8. Let γ > 0. The data (U−, X) are informative for h2 suboptimal
control if there exist matrices P > 0 and K such that (8.21) holds for all (A, B) ∈
ΣD.

With the theory of Section A.3 available, characterizing informativity for
h2 suboptimal control essentially boils down to massaging the inequalities (8.21)
such that they are amenable to design. To this end, note that the first inequality
of (8.21) is equivalent to

Y −A⊤
Y,LPAY,L − C⊤

Y,LCY,L > 0
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where we defined AY,L := AY + BL and CY,L := CY + DL with Y := P −1 and
L := KY . Using a Schur complement argument, this is equivalent to[

Y − C⊤
Y,LCY,L A⊤

Y,L

AY,L Y

]
> 0. (8.22)

Now, (8.22) holds if and only if

Y − C⊤
Y,LCY,L > 0 (8.23)

Y −AY,L(Y − C⊤
Y,LCY,L)−1A⊤

Y,L > 0. (8.24)

Note that (8.23) is independent of A and B. In turn, we can write (8.24) as I

A⊤

B⊤


⊤ Y 0

0 −
[
Y
L

]
(Y − C⊤

Y,LCY,L)−1
[
Y
L

]⊤


 I

A⊤

B⊤

> 0. (8.25)

The inequality (8.25) is of a form where A and B appear on the left and their
transposes appear on the right, analogous to (6.24). As in Chapter 6, let

N =
[

N11 N12

N⊤
12 N22

]
:=

 I X+

0 −X−

0 −U−

[Φ11 Φ12
Φ21 Φ22

] I X+

0 −X−

0 −U−


⊤

(8.26)

and let M be defined by

M =
[

M11 M12

M⊤
12 M22

]
:=

 Y 0

0 −
[
Y
L

]
(Y − C⊤

Y,LCY,L)−1
[
Y
L

]⊤

 . (8.27)

Then, for given γ > 0, informativity for h2 suboptimal control quadratic stability
holds if and only if there exist matrices Y > 0 and L such that tr(Y −1) < γ,
Y − C⊤

Y,LCY,L > 0 and[
I
Z

]⊤

M

[
I
Z

]
> 0 for all Z ∈ R(n+m)×n such that

[
I
Z

]⊤

N

[
I
Z

]
⩾ 0 (8.28)

with Z given by
Z :=

[
A⊤

B⊤

]
.

Using the sets (A.3) and (A.12) (see Section A.2), condition (8.28) can be equiv-
alently formulated as

Zn+m(N) ⊆ Z+
n+m(M). (8.29)
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As such, we are in a position to apply Corollary A.23. In fact, we derive the
following theorem.

Theorem 8.9. Let γ > 0. Then the data (U−, X) are informative for h2 sub-
optimal control if and only if there exist matrices Y ∈ Sn, Y > 0, Z ∈ Sn and
L ∈ Rm×n, and scalars α ⩾ 0 and β > 0 satisfying


Y − βI 0 0 0 0

0 0 0 Y 0
0 0 0 L 0
0 Y L⊤ Y C⊤

Y,L

0 0 0 CY,L I

− α


I X+
0 −X−
0 −U−
0 0
0 0


[
Φ11 Φ12
Φ21 Φ22

]
I X+
0 −X−
0 −U−
0 0
0 0


⊤

⩾ 0

[
Y C⊤

Y,L

CY,L I

]
> 0,

[
Z I
I Y

]
⩾ 0, tr Z < γ.

(8.30)

Moreover, if Y and L satisfy (8.30) then K := LY −1 is such that A + BK is
stable and Jh2(K) < γ for all (A, B) ∈ ΣD.

Proof. Suppose that (8.30) is feasible and define P := Y −1 and K := LP . The
last two inequalities of (8.30) imply that tr(P ) < γ. We now compute the Schur
complement of the first LMI in (8.30) with respect to the diagonal block[

Y C⊤
Y,L

CY,L I

]
.

We thereby make use of the fact that this block is nonsingular by the second
LMI of (8.30). The computation of the Schur complement results in

M − αN ⩾

[
βI 0
0 0

]
(8.31)

where M is defined in (8.27) and N is defined in (8.26). We thus conclude that
(8.28) is satisfied. As such, (8.24) holds for all (A, B) ∈ ΣD. Note that (8.23)
holds by the second LMI of (8.30). Therefore, we conclude that (8.21) holds
for all (A, B) ∈ ΣD. In other words, the data (U−, X) are informative for h2
suboptimal control, and K = LY −1 is a suitable controller.

Conversely, suppose that the data (U−, X) are informative for h2 suboptimal
control with performance bound γ. Then there exist matrices P > 0 and K such
that (8.21) holds for all (A, B) ∈ ΣD. Define Y := P −1, L := KY and Z := P .
Clearly, the last two inequalities of (8.30) are satisfied by definition of Z. In
addition, we know that (8.23) and (8.24) hold for all (A, B) ∈ ΣD. By (8.23),
the second LMI of (8.30) is satisfied. To prove that the first LMI of (8.30) also



h2 suboptimal control design without disturbance data 179

holds, we want to apply Corollary A.23. Note that we have already verified
the assumptions of this theorem for the matrix N in (8.26), see the discussion
preceding Theorem 3.17. In addition, we note that

M22 = −
[
Y
L

]
(Y − C⊤

Y,LCY,L)−1
[
Y
L

]⊤

⩽ 0

since Y −C⊤
Y,LCY,L > 0. Hence, Corollary A.23 is applicable. We conclude that

there exist α ⩾ 0 and β > 0 such that (8.31) holds. Using a Schur complement
argument, we see that Y , L, α and β satisfy the first LMI of (8.30). Thus, (8.30)
is feasible which proves the theorem. □

Remark 8.10. If we know a priori that the noise w is contained in a given
subspace, say w(t) ∈ im E for all t with E a given, known, n × r matrix, then
this information can easily be exploited in the h2 controller design. In fact, we
only need to replace the LMI involving Z by[

Z E⊤

E Y

]
⩾ 0.

Recall from Section 3.4 that prior knowledge that w(t) ∈ im E can also be
captured by our noise model, see the list of special cases after Assumption 3.12.
A natural choice is thus to use this given E both in the noise model, in particular
using the weighting matrix (3.24), as well as in the system equation (8.16).
However, we remark that this is not necessary: the noise in the experiment may
come from a different subspace than the disturbances that are attenuated by the
h2 controller.

8.2.1 Illustrative example: a fighter aircraft

In order to illustrate the theory of this section, we consider a discretised version
of a continuous-time state-space model of a fighter aircraft. In particular, we
consider the discrete-time (unstable) system of the form (8.15) with the true but
unknown system matrices Atrue and Btrue given by

Atrue =


1.000 −0.374 −0.190 −0.321 0.056 −0.026
0.000 0.982 0.010 −0.000 −0.003 0.001
0.000 0.115 0.975 −0.000 −0.269 0.191
0.000 0.001 0.010 1.000 −0.001 0.001
0.000 0.000 0.000 0.000 0.741 0.000
0.000 0.000 0.000 0.000 0.000 0.741


Btrue =

[
0.007 0.000 −0.043 0.000 0.259 0.000
−0.003 0.000 0.030 0.000 0.000 0.259

]⊤
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respectively. We consider the performance output as in (8.19) with

C =
[
0 0 0 0 0 1

]
and D = 0. First, we look for the smallest γ such that (8.21) is feasible for the
given (Atrue, Btrue). This minimum value of γ is 1.000 and can be regarded as
a benchmark: no data-driven method can perform better than the model-based
solution using full knowledge of (Atrue, Btrue).

Of course, our goal is not to use the knowledge of (Atrue, Btrue) but to seek
a data-driven solution instead. Therefore, we collect T = 750 input and state
samples of (8.15). The entries of the inputs and initial state were drawn ran-
domly from a Gaussian distribution with zero mean and unit variance. Also
the noise samples were drawn randomly from a Gaussian distribution, with zero
mean and variance σ2 with σ = 0.005. In this example, we assume knowledge
of a bound on the energy of the noise as

W−W ⊤
− ⩽ 1.35Tσ2I. (8.32)

We verify that this bound is satisfied for the generated noise sequence. This
energy bound corresponds to chosing Φ11 = 1.35Tσ2I, Φ12 = 0 and Φ22 = −I
in the noise model (3.12).

Next, we want to compute an h2 controller for the unknown system using
the generated data. We do so by minimizing γ subject to (8.30). This is a
semidefinite program that we solve in Matlab, using Yalmip with Mosek as an
LMI solver. The obtained controller K is given by[

−0.023 1.413 0.695 0.227 −1.591 0.090
0.001 −0.041 −0.028 −0.034 0.010 −2.723

]
.

This controller stabilizes the original system (Atrue, Btrue). In addition, the
system, in feedback with K, has an h2 performance of γs = 1.007. We note that
this is almost identical to the smallest possible h2 performance of 1.000.

Subsequently, we repeat the above experiment using only a part of our data
set. In particular, we compute an h2 controller via the semidefinite program as
before, using only the first i samples of X+, X− and U− for i = 50, 100, . . . , 750.
We display the results in Figure 8.1.

In each of the cases a stabilizing controller was found from data. However,
the performance of these controllers when applied to the true system varies, and
is quite poor for i < 500. Starting from i = 500 and onward, the performance is
close to the optimal performance of the true system.

Next, we investigate what happens when we increase the variance σ2 of the
noise. First, we take σ = 0.05. We again generate 750 data samples, and assume
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Figure 8.1: Achieved h2 performance of the true system in feedback with a data-
based controller (top) and the optimal model-based performance of the true
system (bottom).

the same bound on the noise. The h2 controller we obtain is given by[
−0.007 0.179 0.464 −0.284 −1.411 0.100
0.005 −0.014 −0.363 0.184 0.123 −1.514

]
and achieves a performance of γs = 1.146 when interconnected to the true sys-
tem. Increasing the variance of the noise has the effect that the set ΣD of systems
consistent with the data becomes larger. As such, it is more difficult to control
all systems in ΣD resulting in a slightly larger γs. This behavior becomes even
more apparent when increasing the variance of the noise to σ = 0.5. In this case
we obtain the controller[

−0.002 −0.001 0.234 0.016 −0.553 0.020
0.001 −0.071 −0.122 −0.002 0.141 −0.550

]
which yields a performance of γs = 3.579. Increasing σ even more to σ = 1
results in infeasibility of the LMIs (8.30) for any γ; the set of data-consistent
systems has become too large for a quadratically stabilizing controller to exist.

We remark that the size of the set ΣD does not only depend on the variance
of the noise, but also on the available bound on the noise. Throughout this
example, we have used the bound (8.32). However, if we reconsider the case of
σ = 0.5 with the tighter bound W−W ⊤

− ⩽ 1.22Tσ2I we obtain a controller with
better performance γs = 2.706. This illustrates the simple fact that data-driven
controllers not only depend on the particular design strategy, but also on the
prior knowledge on the noise.

We conclude the example with a remark on the dimension of the variables
involved in the formulation (8.30). The symmetric matrices Y and Z both have
21 free variables. The matrix L contains 12 variables, and α and β are both
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scalar variables. Thus, the total number of variables is 56. The size of the
largest LMI in (8.30) is 21× 21.

8.3 h∞ control with noisy data

In this section we study the data-driven h∞ control problem. In order to do this,
we will first review some basic material that will be needed in order to formulate
the problem.

We will denote by ℓq
2(Z+) the linear space of all sequences v with v(t) ∈ Rq

and t ∈ Z+ such that
∑∞

t=0 ∥v(t)∥2 <∞. For any such sequence v, we define its
ℓ2-norm as

∥v∥2 :=
( ∞∑

t=0
∥v(t)∥2

) 1
2

.

Next, consider the discrete-time input-state-output system

x(t + 1) = Ax(t) + Ew(t)
z(t) = Cx(t) + Dw(t)

(8.33)

with w(t) ∈ Rq and z(t) ∈ Rp. Let its transfer matrix be denoted by G(z) :=
C(zI−A)−1E +D. If we take as initial state x(0) = 0, then each input sequence
w on Z+ yields a unique output sequence z on Z+. If A is stable, then this output
sequence z is in ℓp

2(Z+) whenever w is in ℓq
2(Z+). The h∞ performance of (8.33)

is now defined as
Jh∞ := sup

∥w∥2⩽1
∥z∥2.

Due to the fact that A is stable, the h∞ performance is indeed a finite number,
and is in fact equal to the h∞ norm of the transfer matrix G(z), which is given
by

∥G∥h∞ := max
|z|=1

∥G(z)∥.

We now review the so-called bounded real lemma, which gives necessary and
sufficient conditions for the h∞ performance to be strictly less than a given
tolerance.

Proposition 8.11 (Discrete-time bounded real lemma). Consider the system
(8.33). Let γ > 0. Then A is stable and Jh∞ < γ if and only if there exists
P > 0 such that[

P −A⊤PA− C⊤C −A⊤PE − C⊤D
−E⊤PA−D⊤C γ2I − E⊤PE −D⊤D

]
> 0. (8.34)
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We will now turn to the the data-driven h∞ control problem in the context
of noisy data. As before, consider the true (but unknown) system

x(t + 1) = Atruex(t) + Btrueu(t) + w(t) (8.35)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input and w(t) ∈ Rn

is an unknown noise input. The matrices Atrue and Btrue denote the unknown
state and input matrices. As model class M, we take the set of all input-state
systems with unknown noise inputs, with given, known, dimensions n and m, of
the form

x(t + 1) = Ax(t) + Bu(t) + w(t). (8.36)
We assume that data (U−, X) have been collected on the time interval [0, T ].
Since the noise input w is assumed to be unknown, the noise samples

w(0), w(1), . . . , w(T − 1)

are not measured, and are therefore not part of the data. However, we adopt
the noise model of Section 3.4, and assume that the (unknown) matrix W− =
W[0,T −1] satisfies the quadratic matrix inequality (3.18) for a given partitioned
matrix Φ ∈ Πn,T .

As before, by Lemma 3.16 the set ΣD of all systems inM that are consistent
with the data (U−, X) is then equal to the set of all solutions (A, B) to the
inequality  I

A⊤

B⊤

⊤ I X+
0 −X−
0 −U−

[Φ11 Φ12
Φ⊤

12 Φ22

]I X+
0 −X−
0 −U−

⊤  I
A⊤

B⊤

 ⩾ 0. (8.37)

A standing assumption remains that the unknown system (8.35) is consistent
with the data, i.e., is in ΣD, i.e., (Atrue, Btrue) satisfies the inequality (8.37).

We associate to (8.36) the output equation

z(t) = Cx(t) + Du(t) (8.38)

where z(t) ∈ Rp, and C and D are known matrices, chosen in order to quantify
the performance. For any (A, B) ∈ ΣD, the feedback law u = Kx yields the
closed-loop system

x(t + 1) = (A + BK)x(t) + w(t)
z(t) = (C + DK)x(t).

(8.39)

Denote the transfer matrix of the closed loop system (8.39) by GK(z). For any
K such that A + BK is stable, the h∞ performance associated with (8.39) is
then given by

Jh∞(K) := ∥GK∥h∞ .
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Let γ > 0. By applying Proposition 8.11 to the closed loop system (8.39), the
matrix A + BK is stable and Jh∞(K) < γ if and only if there exists a matrix
P > 0 such that [

P −A⊤
KPAK − C⊤

KCK −A⊤
KP

−PAK γ2I − P

]
> 0 (8.40)

where we have defined AK := A + BK and CK := C + DK. In order to make
this applicable to data-driven h∞ control design, we restate (8.40) in a different
form as follows.

Lemma 8.12. Let P > 0. Then P satisfies the linear matrix inequality (8.40)
if and only if

P −A⊤
K(P −1 − 1

γ2 I)−1AK − C⊤
KCK > 0 (8.41)

P −1 − 1
γ2 I > 0. (8.42)

Proof. Clearly, P satisfies (8.40) if and only if

P −A⊤
K

(
P + P (γ2I − P )−1P

)
AK − C⊤

KCK > 0 (8.43)
γ2I − P > 0. (8.44)

Since P − 1
2 (γ2I − P )P − 1

2 = γ2(P −1 − 1
γ2 I), the inequalities (8.42) and (8.44)

are equivalent. Using this, it is also easily verified that P + P (γ2I − P )−1P =
(P −1 − 1

γ2 I)−1, so the left hand sides of (8.41) and (8.43) coincide. □

The above leads to the following definition of informativity for h∞ control.

Definition 8.13. Let γ > 0. The data (U−, X) are informative for h∞ control
with performance γ if there exist matrices P > 0 and K such that (8.41) and
(8.42) hold for all (A, B) ∈ ΣD.

Of course, if K satisfies the conditions of Definition 8.13, then it is a suitable
control gain for all (A, B) ∈ ΣD, in the sense that A+BK is stable and Jh∞(K) <
γ for all (A, B) ∈ ΣD.

By pre- and postmultiplication of (8.41) by P −1 we obtain that (8.41) and
(8.42) are equivalent to

Y −A⊤
Y,L(Y − 1

γ2 I)−1AY,L − C⊤
Y,LCY,L > 0

Y − 1
γ2 I > 0

(8.45)
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where we define Y := P −1, L := KY , AY,L := AY +BL and CY,L := CY +DL.
Next, note that (8.45) holds if and only if[

Y − C⊤
Y,LCY,L A⊤

Y,L

AY,L Y − 1
γ2 I

]
> 0 (8.46)

which in turn is equivalent to

Y − C⊤
Y,LCY,L > 0 (8.47)

Y − 1
γ2 −AY,L(Y − C⊤

Y,LCY,L)−1A⊤
Y,L > 0. (8.48)

Note that (8.47) is independent of A and B. In addition, we can write (8.48) as I

A⊤

B⊤


⊤


Y − 1
γ2 I 0

0 −
[
Y
L

]
(Y − C⊤

Y,LCY,L)−1
[
Y
L

]⊤


 I

A⊤

B⊤

> 0. (8.49)

Observe that the inequality (8.49) is of a form where A and B appear on the
left and their transposes appear on the right, analogous to (6.24) and (8.25). As
before, let

N =
[

N11 N12

N⊤
12 N22

]
:=

 I X+

0 −X−

0 −U−

[Φ11 Φ12
Φ21 Φ22

] I X+

0 −X−

0 −U−


⊤

(8.50)

and let M be defined by

M =
[

M11 M12

M⊤
12 M22

]
:=


Y − 1

γ2 I 0

0 −
[
Y
L

]
(Y − C⊤

Y,LCY,L)−1
[
Y
L

]⊤

 . (8.51)

Then, for given γ > 0, informativity for h∞ control with performance γ holds
if and only if there exist matrices Y > 0 and L that satisfy the inequality
Y − C⊤

Y,LCY,L > 0 with in addition[
I
Z

]⊤

M

[
I
Z

]
> 0 for all Z ∈ R(n+m)×n such that

[
I
Z

]⊤

N

[
I
Z

]
⩾ 0 (8.52)

with Z given by
Z :=

[
A⊤

B⊤

]
.
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Moreover, in that case a suitable control gain is given by K = LY −1.
Using the sets (A.3) and (A.12) introduced in Section A.2, condition (8.52)

is equivalent to
Zn+m(N) ⊆ Z+

n+m(M). (8.53)

This observation brings us in a position to apply Corollary A.23. In fact, we
derive the following theorem.

Theorem 8.14. Let γ > 0. Then the data (U−, X) are informative for h∞
control with performance γ if and only if there exist matrices Y ∈ Sn, L ∈ Rm×n

and scalars α ⩾ 0 and β > 0 satisfying
Y − 1

γ2 I − βI 0 0 0 0
0 0 0 Y 0
0 0 0 L 0
0 Y L⊤ Y C⊤

Y,L

0 0 0 CY,L I

− α


I X+
0 −X−
0 −U−
0 0
0 0


[

Φ11 Φ12
Φ21 Φ22

]
I X+
0 −X−
0 −U−
0 0
0 0


⊤

⩾ 0 (8.54a)

[
Y C⊤

Y,L

CY,L I

]
> 0. (8.54b)

Moreover, if Y and L satisfy (8.54) then K := LY −1 is such that A + BK is
stable and Jh∞(K) < γ for all (A, B) ∈ ΣD.

Proof. Assume that Y and L satisfy (8.54). By the second LMI in (8.54) we
have Y > 0. Next, compute the Schur complement of the first LMI in (8.54)
with respect to the diagonal block[

Y C⊤
Y,L

CY,L I

]
.

Of course, here we use the fact that this block is nonsingular by the second LMI
of (8.54). The computation of this Schur complement yields

M − αN ⩾

[
βI 0
0 0

]
(8.55)

with M and N defined by (8.51) and (8.50), respectively. We thus conclude that
(8.53) is satisfied. The condition Y −C⊤

Y,LCY,L > 0 holds by the second LMI of
(8.54). This shows that the data (U−, X) are informative for h∞ control with
performance γ and K = LY −1 is a suitable controller.

Conversely, suppose that the data (U−, X) are informative for h∞ control
with performance γ. Then there exist Y > 0 and L such that Y −C⊤

Y,LCY,L > 0
and the inclusion (8.53) holds. Clearly, the second LMI of (8.54) is then satisfied.
To prove that the first LMI of (8.54) also holds, we want to apply Corollary A.23.
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Note that we have already verified the assumptions of this theorem for the matrix
N in (8.50), see the discussion preceding Theorem 3.17. In addition, we have

M22 = −
[
Y
L

]
(Y − C⊤

Y,LCY,L)−1
[
Y
L

]⊤

⩽ 0

since Y − C⊤
Y,LCY,L > 0. Hence, Corollary A.23 is applicable. We conclude

that there exist α ⩾ 0 and β > 0 such that (8.55) holds. Using the same Schur
complement argument as above, we see that Y , L, α and β satisfy the first LMI
of (8.54). Thus, (8.54) is feasible. This completes the proof of the theorem. □

If Y and L satisfy (8.54) then K := LY −1 and P := Y −1 satisfy (8.40) for all
(A, B) in the set ΣD of systems consistent with the data. Clearly, (8.40) implies
that

x(t + 1)⊤Px(t + 1)− x(t)⊤Px(t) ⩽
[
w(t)
z(t)

]⊤ [
γ2I 0
0 −I

] [
w(t)
z(t)

]
for all t ∈ R, where x, w and z satisfy the closed loop system equations (8.39).
This can be interpreted as saying that the system (8.39) is dissipative with
respect to the supply rate

s(w, z) :=
[
w
z

]⊤ [
γ2I 0
0 −I

] [
w
z

]
.

with storage function x⊤Px. In other words: the control law u = Kx with
K := LY −1 makes all systems in ΣD dissipative with common storage function
given by P := Y −1.

8.4 Notes and references

The solution to the data-driven suboptimal h2 problem in Section 8.1 is based
on the paper [176]. This result relies on an LMI characterization under which
a given feedback gain is suboptimal, see Proposition 7.10. In order to prove
this proposition, we have used the auxiliary Lemma 7.11 on the uniqueness of
solutions to (discrete-time) Lyapunov equations. A proof of this lemma can be
found in [12, Thm. 4.50].

The treatment of the data-driven h2 control problem in the setting of noisy
data (Section 8.2) is based on the paper [169]. In the case of noise, we have used
the matrix version of the S-lemma in Corollary A.23 to derive necessary and
sufficient conditions for informativity for h2 control in terms of linear matrix
inequalities. Similar to the setting of noise-free data, the number of involved
decision variables is independent of the time horizon of the experiment. We have
exploited this fact by applying our results to a dataset consisting of 750 samples
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obtained from a discrete-time model of a fighter aircraft. In fact, in Subsection
8.2.1 we have considered the discretization of the model used in [155, Ex. 10.1.2].
To obtain this discrete-time model, the system from [155] was discretized using
a sampling time of 0.01.

We refer to the paper [47] for the solution to the h∞ control problem for state-
space systems, requiring the existence of two solutions of Riccati equations that
satisfy a coupling condition. In Section 8.3 we have solved a data-driven version
of the h∞ control problem. An important tool to achieve this, is the discrete-time
bounded real lemma that provides an LMI condition under which the h∞ norm
of a transfer matrix is less than a given tolerance. We refer to the book [155]
for more details on this result. For the data-driven solution to the h∞ control
problem, we refer to [169] and [173].



9

Data-driven analysis and design using
input-output data

In this chapter we will study data-driven analysis and control design for discrete-
time input-output systems described by higher order difference equations. In
particular this means that we will temporarily leave the realm of input-state and
input-state-output systems and instead consider linear systems in autoregressive
(AR) form. Before turning to the subject of data-driven analysis and control for
this class of systems, we will first give a brief review of systems in autoregressive
form in Section 9.1. An important role in this chapter will be played by quadratic
difference forms. A brief introduction to this topic will be provided in Section 9.2.

After the discussions in these two introductory sections, we will turn to the
main subject of this chapter. We will discuss unknown AR systems and data in
Section 9.3, and the special case of uncontrolled AR systems in Section 9.3.1.
In Section 9.4 we will treat the stability analysis of autonomous AR systems.
Based on the results in that section, in Section 9.5 we will study the problem of
data-driven stability analysis of autonomous systems. Subsequently, data-driven
stabilization of input-output systems will be considered in Sections 9.6 and 9.7.
We will close this chapter with a numerical example in Section 9.8.

9.1 Systems represented by AR models

In this section we review some basic material on systems represented by autore-
gressive (AR) models of the form

y(t + L) + PL−1y(t + L− 1) + · · ·+ P1y(t + 1) + P0y(t) =
QLu(t + L) + QL−1u(t + L− 1) + · · ·+ Q1u(t + 1) + Q0u(t).

(9.1)

Here L is a positive integer, called the order of the system. The system variables
u(t) and y(t) are assumed to take their values in Rm and Rp, respectively. The
parameters of the model are real p × p matrices P0, P1, . . . , PL−1 and p × m
matrices Q0, Q1, . . . , QL. By defining the shift operator σ as

(σf)(t) = f(t + 1) (9.2)
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the AR equation (9.1) can be written as

P (σ)y = Q(σ)u (9.3)

where P (ξ) and Q(ξ) are the real p× p and p×m polynomial matrices defined
by

P (ξ) = IξL + PL−1ξL−1 + · · ·+ P1ξ + P0

Q(ξ) = QLξL + QL−1ξL−1 + · · ·+ Q1ξ + Q0.
(9.4)

The polynomial matrix P (ξ) is nonsingular, equivalently det P (ξ) is not the
zero polynomial, and the rational matrix P −1(ξ)Q(ξ) is proper. Hence (9.1)
represents a causal input-output system with input u and output y. We will use
the notation

R(ξ) :=
[
−Q(ξ) P (ξ)

]
and w :=

[
u
y

]
. (9.5)

The equation (9.3) can then be rewritten as

R(σ)w = 0. (9.6)

Clearly, R(ξ) is a real p × q polynomial matrix with q := p + m. Often, (9.6)
is called a kernel representation of the input-output system (9.1). The linear
space of all solutions w : Z+ → Rq of (9.6) is called the behavior of the system,
and will be denoted by B(R). In the special case that m = 0, i.e. there are
no inputs, the polynomial matrix Q(ξ) is void and R(ξ) = P (ξ). In that case
(9.6) represents an autonomous system and the associated behavior, denoted by
B(P ), is a finite-dimensional linear space.

Note that

R(ξ) =
[
−QL I

]
ξL + RL−1ξL−1 + · · ·+ R1ξ + R0

where Ri :=
[
−Qi Pi

]
for i = 0, 1, . . . , L − 1. We collect the matrices Ri and

−QL in the real p× (qL + m) matrix

R :=
[
R0 R1 · · · RL−1 −QL

]
. (9.7)

This matrix will be called the coefficient matrix of R(ξ). Note that it does not
include the identity matrix appearing in

[
−QL I

]
.

For any given T > 0, we define the behavior of B(R) restricted to the interval
[0, T ] by

B(R)|[0,T ] := {w[0,T ] ∈ Rq(T +1) | w ∈ B(R)}.1

Then the following holds.
1For the notation w[i,j] and (later on) u[i,j], y[i,j] we refer to Subsection 1.2.1.
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Lemma 9.1. Consider the system (9.6) with order L. Let B(R) be its behavior.
Then we have

B(R)|[0,L−1] = RqL

and

B(R)|[0,L] = ker
[
R I

]
= im

[
I
−R

]
.

Proof. To prove the first statement, let w0, w1, . . . , wL−1 ∈ Rq. We need to
prove that there exists w ∈ B(R) such that w(t) = wt for t ∈ [0, L − 1]. It
suffices to prove that there exist wL ∈ Rq satisfying

[
R0 R1 · · · RL−1

[
−QL I

]]


w0
w1
...

wL

 = 0.

Since
[
−QL I

]
has full row rank, such wL clearly exists.

To prove the second statement, note that the inclusion B(R)|[0,L] ⊆ ker
[
R I

]
is immediate. To prove the reverse inclusion, let w0, w1, . . . , wL ∈ Rq be such
that

[
R0 R1 · · · RL−1

[
−QL I

]]


w0
w1
...

wL

 = 0.

We will prove that there exists w ∈ B(R) such that w(t) = wt for t = 0, 1, . . . , L.
For this, it suffices to prove that there exist wL+1 ∈ Rq satisfying

[
R0 R1 · · · RL−1

[
−QL I

]]


w1
w2
...

wL+1

 = 0.

Again, since
[
−QL I

]
has full row rank such wL+1 exists. The claim that the

kernel and the image are equal is immediate. This completes the proof of the
lemma. □

Note that the above lemma also applies to the autonomous case, in which
Q(ξ) is void. In that case the coefficient matrix R of R(ξ) as in (9.7) is equal to
the matrix

[
P0 P1 · · · PL−1

]
.
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9.2 Quadratic difference forms

In the stability analysis of systems represented by AR models, an important role
is played by quadratic difference forms. In the present section we will introduce
these, and discuss some important properties.

Let N and q be positive integers and for i, j ∈ [0, N ] let Φi,j ∈ Rq×q be such
that Φi,i ∈ Sq and Φi,j = Φ⊤

j,i for all i ̸= j. Arrange these matrices into the
partitioned matrix Φ ∈ S(N+1)q given by

Φ :=


Φ0,0 Φ0,1 · · · Φ0,N

Φ1,0 Φ1,1 · · · Φ1,N

...
... . . . ...

ΦN,0 ΦN,1 · · · ΦN,N


Then the quadratic difference form (QDF) associated with Φ is the operator QΦ
that maps Rq-valued functions w on Z+ to R-valued functions QΦ(w) on Z+
defined by

QΦ(w)(t) :=
N∑

k,ℓ=0
w(t + k)⊤Φk,ℓ w(t + ℓ). (9.8)

In terms of the matrix Φ this can be written as

QΦ(w)(t) = w⊤
[t,t+N ] Φ w[t,t+N ].

We define the degree of the QDF (9.8) as the smallest integer d such that Φij = 0
for all pairs (i, j) with i > d. The matrix Φ is called a coefficient matrix of the
QDF. Note that a given QDF does not determine the coefficient matrix uniquely.
However, if the degree of the QDF is d, it allows a coeficient matrix Φ ∈ S(d+1)q.

The QDF QΦ is called nonnegative if QΦ(w) ⩾ 0 for all w : Z → Rq. We
denote this as QΦ ⩾ 0. Clearly, this holds if and only if Φ ⩾ 0. The QDF is
called positive if it is nonnegative and, in addition, QΦ(w) = 0 implies w = 0.
This is denoted as QΦ > 0. Likewise we define nonpositivity and negativity.

For a given QDF QΦ, its rate of change along a given w : Z → Rq is given
by QΦ(w)(t + 1)−QΦ(w)(t). It turns out that the rate of change defines a QDF
itself. Indeed, by defining the matrix ∇Φ ∈ S(N+2)q by

∇Φ :=
[
0q 0
0 Φ

]
−
[
Φ 0
0 0q

]
(9.9)

it is easily verified that

Q∇Φ(w)(t) = QΦ(w)(t + 1)−QΦ(w)(t)
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for all w : Z+ → Rq and t ∈ Z+.
Quadratic difference forms are particularly relevant in combination with AR

systems. Let R(ξ) be a real p×q polynomial matrix and consider the AR system

R(σ)w = 0.

Let B(R) be the behavior of this system. The QDF QΦ is called nonnegative
on B(R) if QΦ(w) ⩾ 0 for all w ∈ B(R). It is called positive on B(R) if it is
nonnegative on B(R) and, in addition, QΦ(w) = 0 for w ∈ B(R) implies w = 0.
We denote this as QΦ ⩾ 0 on B(R) and QΦ > 0 on B(R), respectively. Likewise
we define nonpositivity and negativity on B(R).

Two given QDFs QΦ1 and QΦ2 are called B(R)-equivalent if they coincide
on solutions of R(σ)w = 0, i.e. QΦ1(w) = QΦ2(w) for all w ∈ B(R). This is
denoted as QΦ1 = QΦ2 on B(R).

It turns out that for any QDF that is nonnegative on a given input-output
behavior, there exists an equivalent QDF that is nonnegative, equivalently, its
coefficient matrix is positive semidefinite.

Theorem 9.2. Consider the input-output system (9.3), with m > 1 and P (ξ)
and Q(ξ) polynomial matrices of the form (9.4). Let R(ξ) and w be as in (9.5).
For any QDF QΦ′ such that QΦ′ ⩾ 0 on B(R) there exists a QDF QΦ such that
QΦ = QΦ′ on B(R) and QΦ ⩾ 0, equivalently Φ ⩾ 0.

Proof. Let d = deg(QΦ′). Let the columns of the real matrix K form a basis
for B(R) |[0,d]. Since QΦ ⩾ 0 on B(R) we have K⊤Φ′K ⩾ 0. Therefore, there
exists a real matrix C such that K⊤Φ′K = C⊤C. Clearly, ker K ⊆ ker C
and therefore im C⊤ ⊆ im K⊤. We conclude that there exists a real matrix F
such that C⊤ = K⊤F ⊤. As such, K⊤Φ′K = K⊤F ⊤FK. Finally, we see that
Φ := F ⊤F ⩾ 0 and QΦ = QΦ′ on B(R). □

In the autonomous case, i.e. m = 0, a stronger result holds. In that case,
every QDF turns out to be equivalent to a QDF with degree at most the order
of the system. Indeed, let P (ξ) be a square polynomial matrix as in (9.4), with
corresponding autonomous system P (σ)y = 0 of order L. Denote its behavior
by B(P ). Then we have

Lemma 9.3. For any QDF QΦ′ there exists a QDF QΦ with degree at most
L − 1 such that QΦ(y) = QΦ′(y) for all y ∈ B(P ). In addition, if QΦ′ ⩾ 0 on
B(P ) then QΦ ⩾ 0, equivalently, Φ ⩾ 0.

Proof. Let d = deg(QΦ′) and let y ∈ B(P ). Then, we have

QΦ′(y)(t) =
d∑

k=0

d∑
l=0

y⊤(t + k)Φ′
k,ly(t + l). (9.10)
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First consider the case that d ⩽ L − 1. Since B(P ) |[0,L−1]= RpL, we readily
have that if QΦ′ ⩾ 0 on B(P ) then Φ′ ⩾ 0. Next, suppose that d ⩾ L. Let k be
such that L ⩽ k ⩽ d. Then we have

y(t + k) = −PL−1y(t + k − 1)− · · · − P0y(t + k − L).

Therefore, one can substitute y(t + k) for k ∈ [L, d] into (9.10) to obtain

QΦ′(y)(t) =
L−1∑
k=0

L−1∑
l=0

y⊤(t + k)Φk,ly(t + l). (9.11)

where Φi,j are suitable p× p matrices. Define

Φ :=


Φ0,0 Φ0,1 · · · Φ0,L−1
Φ1,0 Φ1,1 · · · Φ1,L−1

...
...

...
ΦL−1,0 ΦL−1,1 · · · ΦL−1,L−1

 .

It follows from (9.11) that QΦ(y) = QΦ′(y) for all y ∈ B(P ). Moreover, again
by the fact that B(P ) |[0,L−1]= RpL, we see that if QΦ ⩾ 0 on B(P ) we have
Φ ⩾ 0, equivalently, QΦ ⩾ 0.

□

9.3 Input-output AR systems and data

In this chapter we will in particular consider input-output systems with noise,
represented by autoregressive (AR) models of the form

y(t + L) + PL−1y(t + L− 1) + · · ·+ P1y(t + 1) + P0y(t) =
QLu(t + L) + QL−1u(t + L− 1) + · · ·+ Q1u(t + 1) + Q0u(t) + v(t).

(9.12)

Here L is a positive integer, again called the order. The control input u(t) and
output y(t) are assumed to take their values in Rm and Rp, respectively. The
term v(t) represents unknown noise. The parameters of the model are real p× p
matrices P0, P1, . . . , PL−1 and p × m matrices Q0, Q1, . . . , QL. As we already
saw in Section 9.1, using the shift operator (σf)(t) = f(t + 1) the difference
equation (9.12) can be written as

P (σ)y = Q(σ)u + v (9.13)

where P (ξ) and Q(ξ) are the real p× p and p×m polynomial matrices defined
by

P (ξ) = IξL + PL−1ξL−1 + · · ·+ P1ξ + P0

Q(ξ) = QLξL + QL−1ξL−1 + · · ·+ Q1ξ + Q0.
(9.14)
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Note that the leading coefficient matrix of P (ξ) is the p×p identity matrix. This
immediately implies that P (ξ) is nonsingular and that P −1(ξ)Q(ξ) is proper.
Thus, indeed, (9.13) represents a causal input-output system with control input
u, noise input v and output y.

Next, we will return to our context of data-driven analysis and control. We
will deal with analysis and control design for systems of the form (9.13), where
the polynomial matrices P (ξ) and Q(ξ) are unknown. The order L and the
dimensions m and p are assumed to be known. We assume that we have obtained
noisy input-output data on a given finite time interval. These data are generated
by an underlying true (but unknown) system. In the special case that this
unknown system has no control inputs then we only have output data, and we
want to use these to check whether the system is stable. On the other hand, in
case that control inputs are present we want to to use the input-output data to
check whether there exists a stabilizing feedback controller and, if so, determine
such controller using only the data. In the present section we will focus on the
case that control inputs are present, i.e. the situation that m > 0.

As stated above, we assume that we have noisy input-output data

(u[0,T ], y[0,T ]) (9.15)

on a given time interval [0, T ], with T ⩾ L. These noisy data are obtained from
the true system. Assume that this true system is represented by (unknown)
polynomial matrices Ptrue(ξ) and Qtrue(ξ) of the form (9.14). In other words,
the true system is represented by the equation Ptrue(σ)y = Qtrue(σ)u + v.

More concretely, we assume that (u[0,T ], y[0,T ]) are samples on the interval
[0, T ] of u and y that satisfy

Ptrue(σ)y = Qtrue(σ)u + v

for some unknown noise signal v. We do make the following assumption on the
noise v during the sampling interval.

Assumption 9.4. The noise samples v[0,T −L], collected in the real p×(T−L+1)
matrix V := V[0,T −L] satisfy the quadratic matrix inequality[

I
V ⊤

]⊤

Π
[

I
V ⊤

]
⩾ 0 (9.16)

where Π ∈ Sp+T −L+1 is a known partitioned matrix

Π =
[
Π11 Π12
Π21 Π22

]
with Π11 ∈ Sp, Π12 ∈ Rp×(T −L+1), Π21 = Π⊤

12 and Π22 ∈ ST −L+1. We assume
that Π ∈ Πp,T −L+1 with, in addition, Π22 < 0. In particular this implies that
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the set ZT −L+1(Π) of matrices V that satisfy (9.16) is nonempty, convex and
bounded (see Theorem A.5).

Assumption (9.4) on the noise samples v(0), . . . , v(T−L) can capture various
types of bounds. For examples we refer the reader to Section 3.4.

Now define q := p + m and denote the unknown p × q polynomial matrix[
−Q(ξ) P (ξ)

]
by R(ξ). Also denote

w :=
[
u
y

]
.

Then (9.13) can be written as

R(σ)w = v. (9.17)

Collect the (unknown) coefficient matrices of R(ξ) in the p× (qL + m) matrix

R :=
[
−Q0 P0 −Q1 P1 · · · −QL−1 PL−1 −QL

]
(9.18)

Note that, with a slight abuse of notation, we denote both the polynomial matrix
and its coefficient matrix by R. We also arrange the data (u[0,T ], y[0,T ]) into the
vectors

w(t) =
[
u(t)
y(t)

]
, t ∈ [0, T ]

and define the associated depth L + 1 Hankel matrix by

H(w) :=


w(0) w(1) · · · w(T − L)
w(1) w(2) · · · w(T − L + 1)

...
...

...
w(L) w(L + 1) · · · w(T )

 . (9.19)

Furthermore, we partition
H(w) =

[
H1(w)
H2(w)

]
(9.20)

where H1(w) contains the first qL + m rows and H2(w) the last p rows. It is
then easily verified that any input-output system (9.17) for which the coefficient
matrix R defined in (9.18) satisfies[

R I
] [H1(w)

H2(w)

]
= V (9.21)

for some V ∈ ZT −L+1(Π), could have generated the noisy input-output data
(9.15). More precisely, w(0), w(1), . . . , w(T ) are also samples on the interval
[0, T ] of a w that satisfies

R(σ)w = v
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for some v satisfying Assumption 9.4. Therefore, if R satisfies (9.21) for some
V ∈ ZT −L+1(Π), we call the AR system corresponding to the matrix R consis-
tent with the data. Recall that, in particular, the true system is consistent with
the data. Now define

N :=
[
I H2(w)
0 H1(w)

]
Π
[
I H2(w)
0 H1(w)

]⊤

. (9.22)

Then by combining (9.16) and (9.21) we see that the system corresponding to
the matrix R is consistent with the data if and only if R⊤ satisfies the QMI[

I
R⊤

]⊤

N

[
I

R⊤

]
⩾ 0 (9.23)

equivalently
R⊤ ∈ ZqL+m(N).

Since the true system is consistent with the data, the set ZqL+m(N) is nonempty.

9.3.1 Uncontrolled AR systems and data

In this section we consider the special case that the unknown system (9.13) has
no control inputs, i.e. m = 0. In that case we only have output data and (9.12)
reduces to

y(t + L) + PL−1y(t + L− 1) + · · ·+ P1y(t + 1) + P0y(t) = v(t) (9.24)

and (9.13) to
P (σ)y = v (9.25)

with P (ξ) a nonsingular polynomial matrix. We will now briefly discuss the
notion of noisy data for this special case. In fact, in this case we have only
output data y[0,T ] on a finite time-interval [0, T ] with T ⩾ L. We assume that
these data come from an unknown true system. Suppose this true system is
represented by the unknown polynomial matrix Ptrue(ξ), with Ptrue(ξ) of the
form (9.14). The true system dynamics are then given by Ptrue(σ)y = v. Again
we assume that the noise v is unknown, but on the time interval [0, T − L] its
samples satisfy Assumption 9.4.

Any system in the model class of systems of the form (9.24) with fixed dimen-
sion p and order L is parametrized by its coefficient matrices P0, P1, . . . , PL−1.
We collect these matrices in the p× pL matrix

P :=
[
P0 P1 · · · PL−1

]
. (9.26)
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Recalling that there are no control inputs, we have w = y. Therefore we denote
the Hankel matrix associated with the data as given by (9.19) by H(y) and as
before partition this matrix as

H(y) =
[
H1(y)
H2(y)

]
where H1(y) contains the first pL rows and H2(y) the last p rows. Also define

N :=
[
I H2(y)
0 H1(y)

]
Π
[
I H2(y)
0 H1(y)

]⊤

. (9.27)

Then, as in Section 9.3, the system (9.25) with coefficient matrices collected in
the matrix P is consistent with the data if and only if[

I
P ⊤

]⊤

N

[
I

P ⊤

]
⩾ 0 (9.28)

equivalently, P ⊤ ∈ ZpL(N). Since the true system is assumed to be consistent
with the data, the set ZpL(N) is nonempty.

9.4 Stability of autonomous AR systems

In this section we review some facts on stability and Lyapunov theory in the
context of autonomous systems represented by AR models. We first define sta-
bility.

Definition 9.5. Let P (ξ) be a nonsingular polynomial matrix. The correspond-
ing autonomous system P (σ)y = 0 is called stable if y(t) → 0 as t → ∞ for all
solutions y on Z+.

Recall from Section 9.1 that the behavior, i.e. the space of all solutions of
P (σ)y = 0 on Z+, is denoted by B(P ). Stability of autonomous AR systems can
be characterized in terms of quadratic difference forms. In fact, the following
proposition holds. For its proof, we refer to [90, Thm. 1].

Proposition 9.6. Let P (ξ) be a nonsingular polynomial matrix. Furthermore,
consider any QDF QΦ such that QΦ < 0 on B(P ). The autonomous system
P (σ)y = 0 is stable if and only if there exists a QDF QΨ such that QΨ ⩾ 0 on
B(P ) and Q∇Ψ = QΦ on B(P ).

For obvious reasons, we refer to the QDF QΨ as a Lyapunov function. In
principle, the above theorem does not specify the degree of QΨ which could be
large. However, it turns out that if P (ξ) is of the form

P (ξ) = IξL + PL−1ξL−1 + · · ·+ P1ξ + P0 (9.29)
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and the corresponding system P (σ)y = 0 of order L is stable, then there exists
a Lyapunov function of degree at most L− 1.

Lemma 9.7. Let P (ξ) be a polynomial matrix of the form (9.29). Let QΦ be
any QDF of degree L such that QΦ < 0 on B(P ). The autonomous system
P (σ)y = 0 is stable if and only if there exists a QDF QΨ of degree at most L−1
such that QΨ ⩾ 0, and Q∇Ψ = QΦ on B(P ).

Proof. We only need to prove the ‘only if’ direction. By Proposition 9.6, there
exists a QDF QΨ′ such that QΨ′ ⩾ 0 on B(P ) and Q∇Ψ′ = QΦ on B(P ).
By Lemma 9.3 there exists a QDF QΨ of degree at most L − 1 that is B(P )-
equivalent to QΨ′ and that satisfies QΨ ⩾ 0. Finally, Q∇Ψ and Q∇Ψ′ are also
B(P )-equivalent and therefore Q∇Ψ = QΦ on B(P ). □

9.5 Data-driven stability of autonomous AR systems

In this section we study data-based stability analysis for systems of the form
(9.25). By stability of this system we mean that if the noise vanishes, i.e. v = 0,
then all solutions y tend to zero as time tends to infinity, equivalently, the
corresponding autonomous system P (σ)y = 0 is stable. Our aim is to develop
a test that determines whether our true system is stable on the basis of the
output data y[0,T ]. As we saw in Subsection 9.3.1, the data do not necessarily
determine the true system uniquely. Thus we are forced to test stability for all
systems that are consistent with the data, that is for all systems for which the
corresponding matrix P (see (9.26)) is in ZpL(N), where N given by (9.27).

In order to proceed, we will first express the existence of a Lyapunov func-
tion QΨ for the autonomous system P (σ)y = 0 in terms of a quadratic matrix
inequality. This QMI involves a symmetric matrix Ψ of dimensions pL×pL lead-
ing to a Lyapunov function QΨ and the matrix P =

[
P0 P1 · · · PL−1

]
. Indeed,

we have:

Theorem 9.8. Let P (ξ) = IξL + PL−1ξL−1 + · · ·+ P1ξ + P0 and let P (σ)y = 0
be the corresponding autonomous system. This system is stable if and only if
there exists Ψ ∈ SpL such that Ψ ⩾ 0 and[

I
−P

]⊤([0p 0
0 Ψ

]
−
[
Ψ 0
0 0p

])[
I
−P

]
< 0. (9.30)

Any such Ψ defines a Lyapunov function QΨ.

Proof. We first prove the ‘if’ part by showing that the QDF QΨ associated
with the matrix Ψ is a Lyapunov function. Since Ψ ⩾ 0 we have QΨ ⩾ 0 so
by Proposition 9.6 it suffices to show that Q∇Ψ < 0 on B(P ). Following (9.9),
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denote the matrix in the middle of (9.30) by ∇Ψ. Let y ∈ B(P ). Then, for all
t ∈ Z+ we have

y(t + L) + PL−1y(t + L− 1) + . . . + P1y(t + 1) + P0y(t) = 0.

This implies that

y[t,t+L] =
[

I
−P

]
y[t,t+L−1]

for all t ∈ Z+. Thus we compute

Q∇Ψ(y)(t) = y⊤
[t,t+L] ∇Ψ y[t,t+L]

= y⊤
[t,t+L−1]

[
I
−P

]⊤

∇Ψ
[

I
−P

]
y[t,t+L−1]

which implies Q∇Ψ(y)(t) ⩽ 0 for all t ∈ Z+ and Q∇Ψ(y)(t) = 0 for all t ∈ Z+ if
and only if y(t) = 0 for all t ∈ Z+. This shows that Q∇Ψ < 0 on B(P ).

Next, we turn to proving the ‘only if’ part. Suppose the system is stable. De-
fine Φ = −Ip(L+1) so that obviously QΦ < 0 on B(P ). According to Lemma 9.7
there exists Ψ ∈ SpL with Ψ ⩾ 0 such that Q∇Ψ = QΦ on B(P ). We claim
that Ψ satisfies (9.30). Indeed, take any y0, y1, . . . , yL−1 not all equal to zero.
Clearly, there exists y ∈ B(P ) such that y(t) = yt, t ∈ [0, L− 1]. Then, y0

...
yL−1


⊤[

I
−P

]⊤

∇Ψ
[

I
−P

] y0
...

yL−1

 = y⊤
[0,L] ∇Ψ y[0,L] = Q∇Ψ(y)(0).

Now, we note that

Q∇Ψ(y)(0) = QΦ(y)(0) = y⊤
[0,L]y[0,L] < 0

which shows that Ψ ⩾ 0 satisfies (9.30). This proves the theorem. □

We now return to our problem of verifying stability on the basis of output
data. To this end, we give the following definition of informativity for quadratic
stability.

Definition 9.9. The noisy output data y[0,T ] are called informative for quadratic
stability if there exists a matrix Ψ ∈ SpL with Ψ ⩾ 0 such that the QMI (9.30)
holds for all P =

[
P0 P1 · · · PL−1

]
that satisfy the QMI (9.28), with N defined

by (9.27).
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Informativity for quadratic stability thus means that there exists a matrix
Ψ ∈ SpL such that the QDF QΨ is a Lyapunov function for all systems that are
consistent with the data, i.e., all systems in ZpL(N) are stable with a common
Lyapunov function.

In the sequel, our aim is to establish necessary and sufficient conditions on
the data y(0), y(1), . . . , y(T ) to be informative in this manner. The idea is to
apply the strict matrix S-lemma, Theorem A.20, to obtain such conditions in
the form of feasibility of a linear matrix inequality. Note however that the QMI
(9.28) is in terms of the matrix P ⊤ whereas (9.30) is in terms of P . Therefore,
immediate application of the matrix S-lemma is not possible. Below, we will
resolve this issue by reformulating the QMI (9.30) in terms of the variable P ⊤.
We first formulate the following instrumental lemma.

Lemma 9.10. Let P (ξ) = IξL + PL−1ξL−1 + · · ·+ P1ξ + P0 and, as before, let
P =

[
P0 P1 · · · PL−1

]
. Define the p(L− 1)× pL matrix J by

J :=
[
0p(L−1),p Ip(L−1)

]
. (9.31)

Then Ψ satisfies (9.30) if and only it satisfies the (standard) Lyapunov inequality[
J
−P

]⊤

Ψ
[

J
−P

]
−Ψ < 0. (9.32)

Moreover, if Ψ ⩾ 0 satisfies (9.30) then Ψ > 0.

Proof. By inspection, it can be seen that (9.30) can be reformulated as (9.32).
Suppose Ψ ⩾ 0 satisfies (9.30). It then immediately follows that

Ψ ⩾ Ψ−
[

J
−P

]⊤

Ψ
[

J
−P

]
> 0.

□

Using two Schur complement arguments, the strict Lyapunov inequality
(9.32) can be seen to be equivalent to

Ψ−1 −
[

J
−P

]
Ψ−1

[
J
−P

]⊤

> 0, Ψ > 0. (9.33)

Using as an intermediate step that, obviously,[
J
−P

]
=
[
J
0

]
−
[

0
P

]
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it can be seen that (9.33) holds if and only if Ψ > 0 and[
IpL

P ⊤ [0 −Ip

]]⊤

M

[
IpL

P ⊤ [0 −Ip

]] > 0 (9.34)

where the 2pL× 2pL matrix M is defined by

M :=

Ψ−1 −
[
J
0

]
Ψ−1

[
J
0

]⊤

−
[
J
0

]
Ψ−1

−Ψ−1
[
J
0

]⊤

−Ψ−1

 . (9.35)

From the above we see that informativity for quadratic stability is equivalent to
the existence of Ψ > 0 such that the QMI (9.34) holds for all coefficient matrices
P =

[
P0 P1 · · · PL−1

]
that satisfy the QMI (9.28). In terms of solution sets of

QMIs (see Section A.2), this can now be restated as

P ⊤ ∈ ZpL(N) =⇒ P ⊤ [0 −Ip

]
∈ Z+

pL(M)

or equivalently,
ZpL(N)

[
0 −Ip

]
⊆ Z+

pL(M). (9.36)

In order to be able to apply the strict matrix S-lemma Theorem A.20 we want
to express the (projected) set on the left in (9.36) as the solution set of a QMI.
To this end, define

N̄ :=
[[

0 −Ip

]
0

0 IpL

]⊤

N

[[
0 −Ip

]
0

0 IpL

]
. (9.37)

Then, indeed, we have the following lemma.

Lemma 9.11. Assume that the Hankel matrix H1(y) of depth L has full row
rank. Then ZpL(N)

[
0 −Ip

]
= ZpL(N̄).

Proof. Note that N is partitioned as

N =
[
N11 N12
N21 N22

]
with N22 = H1(y)Π22H1(y)⊤. By Assumption 9.4 we have Π22 < 0 and therefore
N22 < 0 because H1(y) has full row rank. The true system is consistent with
the data and therefore ZpL(N) is nonempty. From (A.10), we see have that
N |N22 ⩾ 0. The result then follows from Theorem A.7. □
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Summarizing our findings up to now, we see that under the assumption that
H1(y) has full row rank, informativity for quadratic stability is equivalent to
the existence of Ψ > 0 such that the inclusion ZpL(N̄) ⊆ Z+

pL(M) holds. This
inclusion is dealt with by Theorem A.20.

Lemma 9.12. Let Ψ > 0 and let M be given by (9.35). Assume that H1(y)
has full row rank. Then ZpL(N̄) ⊆ Z+

pL(M) if and only if there exists α ⩾ 0
such that

M − αN̄ > 0. (9.38)

Proof. We check the conditions of Theorem A.20 on N̄ . Note that

N̄ =
[
N̄11 N̄12
N̄21 N̄22

]

N̄11 =
[

0
−Ip

]
N11

[
0 −Ip

]
, N̄12 =

[
0
−Ip

]
N12.

We have N̄22 = H1(y)Π22H1(y)⊤ < 0. Finally, the Schur complement N̄ |N̄22 ⩾
0 since N |N22 ⩾ 0. This completes the proof. □

Thus, informativity for quadratic stability is equivalent to the existence of a
scalar α ⩾ 0 and a matrix Ψ > 0 such that (9.38) holds. Note that due to the
negative definite lower right block in M , the scalar α is necessarily positive. By
scaling the inequality (9.38) we can therefore take α = 1. Putting Φ := Ψ−1 we
then finally obtain the following necessary and sufficient condition in terms of
feasibility of an LMI. Recall the definition (9.31) of the matrix J .

Theorem 9.13. Let N̄ be given by (9.37), where N is defined by (9.27). As-
sume that H1(y) has full row rank. Then the output data y[0,T ] are informative
for quadratic stability if and only if there exists Φ ∈ SpL with Φ > 0 such that

Φ−
[
J
0

]
Φ
[
J
0

]⊤

−
[
J
0

]
Φ

−Φ
[
J
0

]⊤

−Φ

− N̄ > 0. (9.39)

In that case the QDF QΨ with Ψ := Φ−1 is a Lyapunov function for all systems
of the form (9.25) consistent with the data.

Remark 9.14. Note that the size of the LMI (9.39) is 2pL whereas the number
of unknowns is 1

2 pL(pL + 1). These are independent of the length T + 1 of the
interval on which the input-output data are collected, and only depend on the
order of the system and the number of outputs.
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9.6 Data-driven stabilization of input-output AR systems

In this section we will discuss data-driven stabilization of input-output systems
in AR form. We will work in the setup of Section 9.3, with systems of the form
(9.12), or equivalently (9.13), with polynomial matrices as in (9.14) of given
degree L. We will slightly restrict our model class and assume that the leading
coefficient matrix QL of Q(ξ) is equal to zero. In other words, we will consider
systems of the form

P (σ)y = Q(σ)u + v (9.40)
with

P (ξ) = IξL + PL−1ξL−1 + · · ·+ P1ξ + P0

Q(ξ) = QL−1ξL−1 + · · ·+ Q1ξ + Q0.
(9.41)

This means that P (ξ)−1Q(ξ) is assumed to be strictly proper. We assume that
we have noisy input-output data (u[0,T ], y[0,T ]) on the interval [0, T ] with T ⩾ L.
These are samples of u and y obtained from the unknown true system

Ptrue(σ)y = Qtrue(σ)u + v

The noise v is unknown, but its samples are assumed to satisfy Assumption 9.4.
Since we have assumed that QL = 0, our model class is now parametrized by
P0, P1, . . . , PL−1 and Q0, Q1, . . . , QL−1. Again denote R(ξ) =

[
−Q(ξ) P (ξ)

]
,

q = p + m, and collect the coefficient matrices in the p× qL matrix

R =
[
−Q0 P0 −Q1 P1 · · · −QL−1 PL−1

]
(9.42)

Associated with the input-output data, we consider the slightly adapted Hankel
matrix H ′(w) defined by

H ′(w) :=


w(0) w(1) · · · w(T − L)
w(1) w(2) · · · w(T − L + 1)

...
...

...
w(L− 1) w(L) · · · w(T − 1)

y(L) y(L + 1) · · · y(T )

 .

Partition
H ′(w) =

[
H ′

1(w)
H ′

2(w)

]
where H ′

1(w) contains the first qL rows and H ′
2(w) the last p rows. Clearly, the

system with coefficient matrix R is consistent with the data if and only if[
I

R⊤

]⊤

N

[
I

R⊤

]
⩾ 0 (9.43)
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equivalently
R⊤ ∈ ZqL(N)

where

N :=
[
I H ′

2(w)
0 H ′

1(w)

]
Π
[
I H ′

2(w)
0 H ′

1(w)

]⊤

. (9.44)

Next, we will address the stabilization problem. A feedback controller for
the input-output system (9.40) with P (ξ) and Q(ξ) of the form (9.41) will be
taken to be of the form

G(σ)u = F (σ)y (9.45)

with
G(ξ) = IξL + GL−1ξL−1 + · · ·+ G1ξ + G0

F (ξ) = FL−1ξL−1 + · · ·+ F1ξ + F0.

The leading coefficient matrix of G(ξ) is assumed to be the m×m identity matrix
and Gi ∈ Rm×m, Fi ∈ Rm×p for i = 0, 1, . . . , L − 1. The closed loop system
obtained by interconnecting the system and the controller is represented by[

G(σ) −F (σ)
−Q(σ) P (σ)

] [
u
y

]
=
[

0
Ip

]
v. (9.46)

Since the leading coefficient matrix is the q × q identity matrix, the controlled
system with noise equal to zero is autonomous. We call the controller (9.45) a
stabilizing controller if the controlled system (9.46) is stable, in the sense that
if v = 0, then all solutions u and y tend to zero as time tends to infinity.

Now define
C(ξ) :=

[
G(ξ) −F (ξ)

]
and recall that w = col(u, y). Then (9.46) can equivalently be written in kernel
representation as [

C(σ)
R(σ)

]
w =

[
0
Ip

]
v. (9.47)

Collect the coefficient matrices of F (ξ) and G(ξ) in the matrix C defined by

C :=
[
G0 −F0 G1 −F1 · · · GL−1 −FL−1

]
(9.48)

and recall definition (9.42) of the matrix R associated likewise with R(ξ). Recall
that the leading coefficient matrix of

[
C(ξ)⊤ R(ξ)⊤]⊤ is the q×q identity matrix.

Furthermore, the matrix
[
C⊤ R⊤]⊤ collects the remaining coefficient matrices.

An immediate application of Theorem 9.8 then yields:
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Lemma 9.15. The controlled system (9.47) is stable if and only if there exists
Ψ ∈ SqL such that Ψ ⩾ 0 andIqL

−C
−R

⊤([
0q 0
0 Ψ

]
−
[
Ψ 0
0 0q

])IqL

−C
−R

 < 0. (9.49)

Moreover, if Ψ ⩾ 0 satisfies (9.49), then Ψ > 0.

This leads to the following definition of informativity.

Definition 9.16. The input-output data (u[0,T ], y[0,T ]) are called informative
for quadratic stabilization if there exist C ∈ Rm×qL and Ψ ∈ SqL such that Ψ ⩾ 0
and the QMI (9.49) holds for all R satisfying (9.43), with N defined by (9.44).

Informativity for quadratic stabilization thus means that there exists a con-
troller C(σ)w = 0 (equivalently, G(σ)u = F (σ)y) and a matrix Ψ ∈ SqL such
that the QDF QΨ is a common Lyapunov function for all closed loop systems
obtained by interconnecting the controller with an arbitrary system that is con-
sistent with the data.

Below, we will derive necessary and sufficient conditions for informativity for
quadratic stabilization. Similar to Section 9.5, the QMI (9.43) is in terms of the
matrix R⊤ whereas (9.49) is in terms of R. We will therefore first reformulate
the QMI (9.49) in terms of the variable R⊤.

Define the q(L− 1)× qL matrix J by

J :=
[
0q(L−1),q Iq(L−1)

]
. (9.50)

By Lemma 9.10, Ψ ∈ SqL, Ψ ⩾ 0 satisfies (9.49) if and only if Ψ > 0 and satisfies
the strict Lyapunov inequality J

−C
−R

⊤

Ψ

 J
−C
−R

−Ψ < 0

which is equivalent to

Ψ−1 −

 J
−C
−R

Ψ−1

 J
−C
−R

⊤

> 0, Ψ > 0. (9.51)

By writing  J
−C
−R

 =

 J
−C
0

−
0

0
R


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it can be seen that (9.51) holds if and only if Ψ > 0 and[
IqL

R⊤ [0 0 −Ip

]]⊤

M

[
IqL

R⊤ [0 0 −Ip

]] > 0. (9.52)

where the 2qL× 2qL matrix M is defined by

M :=


Ψ−1 −

 J
−C
0

Ψ−1

 J
−C
0

⊤

−

 J
−C
0

Ψ−1

−Ψ−1

 J
−C
0

⊤

−Ψ−1


. (9.53)

Thus we see that informativity for quadratic stabilization is equivalent to the
existence of an m × qL matrix C and a matrix Ψ ∈ SqL, Ψ > 0 such that the
QMI (9.52) holds for all coefficient matrices R that satisfy the QMI (9.43). The
matrix C is then the coefficient matrix of a suitable controller. In terms of
solution sets of QMIs this can be restated as

R⊤ ∈ ZqL(N) =⇒ R⊤ [0 0 −Ip

]
∈ Z+

qL(M)

or equivalently,
ZqL(N)

[
0 0 −Ip

]
⊆ Z+

qL(M). (9.54)
As before, in order to be able to apply the strict matrix S-lemma in Theorem
A.20, we want to express the set on the left in (9.54) as the solution set of a
QMI. Define the 2qL× 2qL matrix N̄ by

N̄ :=
[[

0 0 −Ip

]
0

0 IqL

]⊤

N

[[
0 0 −Ip

]
0

0 IqL

]
. (9.55)

Then we have the following lemma, whose proof is similar to that of Lemma 9.11.

Lemma 9.17. Assume that the Hankel matrix H ′
1(w) has full row rank. Then

ZqL(N)
[
0 0 −Ip

]
= ZqL(N̄).

From the above we see that, under the assumption that H ′
1(w) has full row

rank, informativity for quadratic stabilization requires the existence of C and
Ψ > 0 such that the inclusion ZqL(N̄) ⊆ Z+

qL(M). holds. This inclusion is dealt
with by Theorem A.20.

Lemma 9.18. Let Ψ > 0, C ∈ Rm×qL and M be given by (9.53). Assume that
H ′

1(w) has full row rank. Then ZqL(N̄) ⊆ Z+
qL(M) if and only if there exists a

scalar α ⩾ 0 such that
M − αN̄ > 0. (9.56)
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Proof. The proof is similar to that of Lemma 9.12. □

Note that the unknowns C and Ψ appear in the matrix M in a nonlinear
way, and even in the form of an inverse. By putting Φ := Ψ−1 we can get rid of
the inverse, and rewrite the condition M − αN̄ ⩾ 0 as

Φ−

 J
−C
0

Φ

 J
−C
0

⊤

−

 J
−C
0

Φ

−Φ

 J
−C
0

⊤

−Φ


− αN̄ > 0. (9.57)

Thus, informativity for quadratic stabilization holds if and only if there exists
Φ > 0, a matrix C, and a scalar α ⩾ 0 such that (9.57) holds. Note that α must
be positive due to the negative definite lower right block in (9.57). By scaling
Φ we can therefore take α = 1. By introducing the new variable D := −CΦ
and taking a suitable Schur complement, (9.57) can then be reformulated as the
following LMI in the unknowns Φ and D:

Φ −

JΦ
D
0

 JΦ
D
0


−

JΦ
D
0

⊤

−Φ 0

JΦ
D
0

⊤

0 Φ


−
[
N̄ 0
0 0qL

]
> 0. (9.58)

This then immediately leads to the following characterization of informativity for
quadratic stabilization and a method to compute a suitable feedback controller
together with a common Lyapunov function.

Theorem 9.19. Assume that H ′
1(w) has full row rank. Let the matrix N̄

be given by (9.55), with N defined by (9.44). Then the input-output data
(u[0,T ], y[0,T ]) are informative for quadratic stabilization if and only if there exist
matrices D ∈ Rm×qL and Φ ∈ SqL such that Φ > 0 and the LMI (9.58) holds.

In that case, the feedback controller with coefficient matrix C := −DΦ−1

stabilizes all systems of the form (9.40) that are consistent with the input-output
data. Moreover, the QDF QΨ with Ψ := Φ−1 is a common Lyapunov function
for all closed loop systems.
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Remark 9.20. Thus, in order to compute a controller that stabilizes all systems
consistent with the data and which gives a common Lyapunov function, first
compute the matrix N̄ using the Hankel matrix associated with the data. Next,
check feasibility of the LMI (9.58) and, if it is feasible, compute D and Φ. An
AR representation of the controller with coefficient matrix C = −DΦ−1 is then
obtained as follows: partition C :=

[
G0 −F0 G1 −F1 · · · GL−1 −FL−1

]
with

Fi ∈ Rm×p and Gi ∈ Rm×m. Next define F (ξ) := FL−1ξL−1 + · · · + F0 and
G(ξ) := IξL + GL−1ξL−1 + · · ·+ G0. The corresponding controller is then given
in AR representation by G(σ)u = F (σ)y.

Remark 9.21. The size of the LMI (9.58) is 3qL, while the number of unknowns
is 1

2 qL(qL + 2m + 1). Again these numbers do not depend on T .

9.7 Reduction of computational complexity

In this section we will again take a look at the data-driven stabilization problem.
In Section 9.6 we showed that finding a controller that stabilizes all systems that
are consistent with the data requires checking feasibility of the LMI (9.58). The
size of this LMI is 3qL, while the number of unknowns is 1

2 qL(qL + 2m + 1),
both independent of the time horizon T . The unknowns in the LMI (9.58)
are the matrices Φ and D that together lead to a controller and a common
Lyapunov function. In the present section we will decouple the computation
of the common Lyapunov function from that of the controller. This will lead
to checking feasibility of an LMI of smaller size and with a smaller number of
unknowns.

In order to proceed, we will need the following lemma, whose proof follows
from Theorem A.6 and Corollary A.10.

Lemma 9.22. Let Π ∈ Πq,r and let W ∈ Rq×p have full column rank. Let
Y ∈ Rr×p. Then there exists a matrix Z ∈ Rr×q such that

(a) Z ∈ Z+
r (Π)

(b) ZW = Y

if and only if Π |Π22 > 0 and Y ∈ Z+
r (ΠW ). If these two conditions hold and,

in addition, Π22 < 0 then the matrix

Z := −Π−1
22 Π21 +

(
Y + Π−1

22 Π21W
)
(ΠW |Π22)†

W ⊤(Π |Π22) (9.59)

satisfies (a) and (b).

Now consider the inequality (9.57) and recall that the existence of Φ > 0
and C satisfying this inequality with α = 1 is equivalent to informativity for
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quadratic stabilization. We can reformulate (9.57) as
IqL 0
0 IqL J
−C
0

⊤

IqL


⊤[Φ 0

0 0

]
− N̄ 0

0 −Φ




IqL 0
0 IqL J
−C
0

⊤

IqL

 > 0. (9.60)

Then by applying Lemma 9.22 we now obtain necessary and sufficient condi-
tions for informativity for quadradric stabilization, together with a formula for
a stabilizing controller. Define the 2qL× (2qL−m) matrix W by

W :=


Iq(L−1) 0 0

0 0m,p 0
0 Ip 0
0 0 IqL

 .

In addition, partition the matrix N̄ as in (9.55), where N̄11 and N̄22 are in SqL

and N̄12 = N̄⊤
21 ∈ RqL×qL.

Theorem 9.23. Assume that H ′
1(w) has full row rank. Let the matrix N̄

be given by (9.55), with N defined by (9.44). Then the input-output data
(u[0,T ], y[0,T ]) are informative for quadratic stabilization if and only if there exists
Φ ∈ SqL such that

Φ > N̄ |N̄22 (9.61)
and [

W[
J⊤ 0 IqL

]]⊤
[Φ 0

0 0

]
− N̄ 0

0 −Φ

[ W[
J⊤ 0 IqL

]] > 0. (9.62)

Moreover, if Φ satisfies these two LMIs, then the controller with coefficient
matrix C defined by

C⊤ := −
[
J⊤ 0 IqL

](
W ⊤

([
Φ 0
0 0

]
− N̄

)
W

)−1
W ⊤

[
Φ 0
0 0

]0q(L−1),m

Im

0(p+qL),m

 (9.63)

satisifies (9.60). As a consequence, this controller stabilizes all systems consistent
with the data, and the resulting closed loop systems have common Lyapunov
function QΨ with Ψ := Φ−1.

Proof. We first prove the ‘only if’ statement. Since Φ > 0, it follows immedi-
ately from (9.60) that [

Φ 0
0 0

]
− N̄ > 0. (9.64)
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In turn, this implies Φ > N̄ | N̄22. By multiplying (9.60) from the right by W
and from the left by its transpose, we obtain the inequality (9.62).

To prove the converse implication, recall that N̄ | N̄22 ⩾ 0. Hence it follows
from (9.61) that Φ > 0, and, using the fact that N̄22 < 0, that (9.64) holds.
From this it follows that the matrix Π defined by

Π :=

[Φ 0
0 0

]
− N̄ 0

0 −Φ


is in the set Π2qL,qL. Then, applying Lemma 9.22 to Π, W and Y :=

[
J⊤ 0 IqL

]
shows that there exists a matrix C such that (9.60) is satisfied. In other words,
the data are informative for quadratic stabilization.

Finally, we will prove the formula (9.63) for C⊤. To this end, again apply
Lemma 9.22 to Π, W and Y =

[
J⊤ 0 IqL

]
. Introduce the shorthand notation

∆ :=
(

W ⊤
([

Φ 0
0 0

]
− N̄

)
W

)−1
.

By (9.59), a ‘structured’ element
[
J⊤ −C⊤ 0 IqL

]
in the set Z+

qL(Π) is given by

[
J⊤ −C⊤ 0 IqL

]
=
[
J⊤ 0 IqL

]
∆W ⊤

([
Φ 0
0 0

]
− N̄

)
As such, a controller is given by

C⊤ = −
[
J⊤ 0 IqL

]
∆W ⊤

([
Φ 0
0 0

]
− N̄

)0q(L−1),m

Im

0(p+qL),m

 .

It is easily verified that

N̄

0q(L−1),m

Im

0(p+qL),m

 = 0

Thus we conclude that C⊤ is given by (9.63) as claimed. □

Remark 9.24. Note that we have indeed managed to reduce the size and the
number of unknowns. The total size of the LMIs (9.61) and (9.62) is equal to
3qL −m, whereas the number of unknowns has been reduced to 1

2 qL(qL + 1).
The computation of the controller has been decoupled from that of Φ. Indeed,
a stabilizing controller is now computed using (9.63) in terms of Φ.
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ℓ

m

M

ϕ

u

x

Figure 9.1: The cart and pendulum, with the parameters noted.

9.8 Simulation example

In this section we will apply the theory established in Section 9.6 to the design
of a stabilizing controller for an inverted pendulum on a cart.

Consider a standard inverted pendulum on a cart as depicted in Figure 9.1.
Here, m and ℓ denote the mass and length of the pendulum. The mass and
coefficient of friction of the cart are denoted by M and b. Lastly, we consider
the following variables: the horizontal displacement of the cart is given by x,
the angle of the pendulum from the (unstable) equilibrium is ϕ, and the force
applied to the cart is denoted by u.

Assuming that M , m, and ℓ are nonzero, it is straightforward to derive the
following equations of motion:

(M + m)ẍ + bẋ−mℓϕ̈ cos(ϕ) + mℓϕ̇2 sin(ϕ) = u

ℓϕ̈− g sin(ϕ) = ẍ cos(ϕ)

In order to bring this model into the form used in this chapter, we discretize
and then linearize it. Denoting the step size of the discretization by δ, we then
obtain the linear discrete time model[

x(t + 2)
ϕ(t + 2)

]
+
[
−2 + δb

M 0
δb

Mℓ −2

] [
x(t + 1)
ϕ(t + 1)

]
+
[

1− δb
M −

δ2gm
M

− δb
Mℓ 1− δ2g(M+m)

M

] [
x(t)
ϕ(t)

]
=
[

δ2

M
δ2

Mℓ

]
u(t)

(9.65)

of order L = 2. We take y =
[
x ϕ
]⊤. Then after incorporating an additive noise

term v(t) = [v1(t) v2(t)]⊤ in (9.65), we obtain a system of the form (9.40).
In this example we let the parameters take the following values: M = 1kg,

m = 0.7kg, b = 0.1 N
m/s , g = 9.8 m

s2 , l = 0.5m, and δ = 0.01s. The resulting
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system (9.65) with additive unknown noise term v will now be considered as the
true unknown system.

9.8.1 Measurements from the linearization

In the first simulation example, we collect measurements from the noisy lin-
earized system, i.e. the system (9.65) with additive noise. We take T = 20, pro-
vide 2 initial conditions, and generate random inputs from the interval [−1, 1]:

U[0,6] =
[
−0.9960 −0.7388 −0.6322 0.6612 −0.8090 −0.2520 0.1023

]
U[7,13] =

[
−0.7179 −0.0428 −0.8528 0.4309 0.6413 0.6225 0.2019

]
U[14,19] =

[
0.7475 −0.1559 −0.5855 −0.7585 −0.3562 −0.6643

]
.

As for the matrix of noise samples V , we will assume a noise model of the form
(9.16) by considering V V ⊤ ⩽ εI2. Note that, in order to discretize the system
and make the leading coefficient equal to I2, the dynamics were multiplied by
a factor of δ2. Indeed, it is seen in (9.65) that the effect of the input u on
the dynamics is proportional to δ2. Therefore, it is reasonable to assume that
the same holds for the noise signal v. Consequently, ε can be assumed to be
proportional to δ4. In the present example, we therefore take ε = 10−2δ4.

We now generate a random noise signal that satisfies the noise model and
apply the initial conditions, inputs and noise to the linearized system (9.65) with
additive noise. The measurements resulting from this are given as

Y[0,6] =
[

0.1000 0.1010 0.1020 0.1029 0.1039 0.1050 0.1061
0.1000 0.0990 0.0981 0.0974 0.0969 0.0969 0.0970

]
Y[7,13] =

[
0.1072 0.1084 0.1096 0.1108 0.1121 0.1134 0.1149
0.0974 0.0982 0.0991 0.1003 0.1017 0.1035 0.1058

]
Y[14,20] =

[
0.1165 0.1182 0.1200 0.1219 0.1238 0.1258 0.1277
0.1085 0.1116 0.1153 0.1192 0.1235 0.1279 0.1327

]
.

We will use Theorem 9.19 to show that these measurements are informative
for quadratic stabilization. For this, we first form the matrices H ′

1, H ′
2 and N̄ .

It is straightforward to see that H ′
1 has full row rank. We now use Yalmip with

Mosek as a solver in order to find matrices D ∈ R1×6, and Φ ∈ S6, such that
Φ > 0 and the LMI (9.58) holds. Indeed, such matrices exist, and therefore
the data are informative for quadratic stabilization. We can find a stabilizing
controller by taking C = −DΦ−1, which results in

C =
[
0.76 29168.72 −18360.21 0.68 −29515.03 19264.40

]
.
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This corresponds to the controller of the form (9.45) given by

u(t + 2) + 0.68u(t + 1) + 0.76u(t) = 29515.03x(t + 1)
− 19264.40ϕ(t + 1)− 29168.72x(t) + 18360.21ϕ(t).

The large difference in magnitude of the gains corresponding to x and ϕ and
those corresponding to u is caused by the discretization.

In Figure 9.2 we can see the results of applying this controller to the linear
discretized model, with noise v = 0. To be precise, we plot both x in Fig-
ure 9.2(a) and ϕ in Figure 9.2(b) for 200 steps originating from a given initial
condition. This illustrates that the controller stabilizes the linearized system, as
was guaranteed by Theorem 9.19.

9.8.2 Measurements from the nonlinear system

In this example, instead of measuring the linear system (9.65) with a bounded
noise term, we will perform measurements on the (discretized) nonlinear system
directly. This means that we interpret the noise term v(t) of the linear system
as the effect of the nonlinearities. Again, we provide 2 initial conditions and
take T = 20. We will generate measurements close to the equilibrium, in order
to keep the effect of the nonlinearities relatively small. As such, we will assume
that V V ⊤ ⩽ 10−4δ4I2, which we will validate experimentally.

Again, we generate random inputs from the interval [−1, 1], which results in:

U[0,6] =
[
−0.6358 −0.2516 0.6150 −0.1941 −0.4534 −0.8523 0.1926

]
U[7,13] =

[
−0.6554 −0.0237 0.3687 −0.0440 −0.2577 0.3739 0.5910

]
U[14,19] =

[
−0.1870 0.2488 −0.6610 0.7050 −0.3602 0.1016

]
.

If we apply these to the nonlinear system with the given initial conditions,
we obtain the following measurements.

Y[0,6] =
[

0.1000 0.1010 0.1020 0.1029 0.1040 0.1050 0.1061
0.0400 0.0390 0.0380 0.0371 0.0364 0.0358 0.0353

]
Y[7,13] =

[
0.1070 0.1081 0.1090 0.1100 0.1111 0.1121 0.1132
0.0347 0.0342 0.0337 0.0333 0.0332 0.0331 0.0330

]
Y[14,20] =

[
0.1143 0.1155 0.1167 0.1180 0.1192 0.1205 0.1218
0.0332 0.0336 0.0340 0.0346 0.0352 0.0361 0.0370

]
.

For the sake of simulations, we note that the effects of the nonlinearities for
these initial conditions and inputs, as captured in the matrix V , indeed satisfy
the assumed noise model. Similar to earlier, we note that H ′

1 has full row rank,
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and we can find Φ and D such that (9.58) holds. This means that the data are
informative for quadratic stabilization. By taking C = −DΦ−1, we obtain

C =
[
1.03 27778.78 −19129.66 0.85 −27967.57 20120.40

]
.

This corresponds to a controller given by:

u(t + 2) + 0.85u(t + 1) + 1.03u(t) = 27967.57x(t + 1)
− 20120.40ϕ(t + 1)− 27778.78x(t) + 19129.66ϕ(t).

As before, we apply the resulting controller to both the discretization of the
nonlinear model and its linearization (9.65) without noise. For both models and
a given initial condition the values of the position of the cart for 200 steps are
shown in Figure 9.2(c). In Figure 9.2(d) we show the corresponding angles of
the pendulum for the same interval of time.
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Figure 9.2: The results of interconnecting the controllers of Section 9.8.1 (top)
and Section 9.8.2 (bottom) to the linearized and nonlinear model.

9.9 Notes and references

The results of this chapter are based on the paper [174]. They rely heavily
on ideas from the behavioral approach to systems and control [186–189]. For
a textbook reference on this subject we refer to [129]. In particular, one of
the central objects of study has been the concept of quadratic difference forms
(QDFs).

Quadratic differential forms were first introduced in continuous time by
Willems and Trentelman in [191]. There, they were considered as a vehicle for
constructing, among others, Lyapunov functions for linear systems described by
higher order differential equations. In fact, one of the main ideas of that paper is
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to characterize stability of autonomous linear systems in autoregressive form by
means of a QDF Lyapunov function that is a quadratic function of the external
variables of the system and their derivatives up to a certain order. The topic
of controller synthesis using quadratic differential forms has been studied in the
two-part paper [192,193], leading to the solution to the H∞ control problem in
a behavioral setting.

In discrete-time, quadratic difference forms have been studied in the litera-
ture. In particular, we refer to the papers [90, 91] that treat stability analysis
of systems described by higher order difference equations. In this case, QDF
Lyapunov functions are quadratic functions of a number of shifts of the external
variables of the system.

In the context of data-driven analysis, QDFs have been used before to assess
dissipativity properties of linear systems from data. In particular, we point
towards the paper [107] and the more recent work [140].

The problem of stabilization of input-output systems using noisy input-
output data has been considered in the papers [20, 44, 157]. A general strategy,
adopted by all these papers, is to rely on an auxiliary state-space representation
of the system with a state comprised of shifts of the inputs and outputs. This
leads to an input-state-output system to which techniques for state data are
applicable. A potential downside of this approach is that the obtained state-
space systems are structured in the sense that the involved matrices contain
both known and unknown block entries. If this structure is not taken fully into
account, this may lead to rather conservative conditions for data-driven control
design. Exploiting this prior knowledge on the system matrices is an important
problem, which has recently been studied in [20]. The approach in Section 9.6
provides an interesting alternative to the above paper since it avoids the use of
state-space representations. In fact, the idea of this chapter has been to work di-
rectly with Lyapunov functions that are functions of (external) input and output
variables, thereby obviating the need for state-space respresentations. Nonethe-
less, we do point out that the linear matrix inequality condition for the existence
of a QDF Lyapunov function in Theorem 9.8 can be interpreted as a ‘standard’
Lyapunov inequality (9.32) for a state-space representation of the AR system
under consideration. Therefore, the problem of data-driven stabilization using
input-output data could alternatively be solved using state-space representa-
tions. However, an important aspect of our approach is to take into account the
structure of such state-space representations by using Lemmas 9.11 and 9.17.
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Data-driven tracking and regulation

10.1 Introduction

This chapter deals with the classical control design problem of tracking and
regulation. We will study this problem from a data-driven perspective, using
the concept of informativity.

Before embarking on the data-driven approach, we will first briefly review
the main idea behind this problem. Roughly speaking, the problem of tracking
and regulation is the combination of two different control problems, namely the
tracking problem and the output regulation problem, into one single problem.

The tracking problem is the problem of finding a feedback controller such
that the output of the controlled system tracks (i.e., converges to) some a priori
given reference signal. Many relevant reference signals (such as step functions,
ramps, sinusoids) can be generated as solutions of a suitable autonomous lin-
ear system. Given a desired reference signal, one first constructs a suitable
generating autonomous system (called the exosystem). Next, this exosystem is
interconnected to the control system (called the endosystem), and a new output
is defined as the difference between the original system output and the reference
signal. The tracking problem is then to design a feedback controller such that
the output of the interconnection converges to zero as time runs off to infinity.

On the other hand, in the output regulation problem we have a control
system (again called endosystem) subjected to external disturbances, and we
want to design a feedback controller such that the output of the controlled
system converges to zero for any disturbance entering the system and for any
initial state of the system. In the output regulation problem, a distinguishing
feature is that we assume that the disturbance inputs are generated by some
autonomous linear system, again called an exosystem. The output regulation
problem is then to design a feedback controller for the interconnection of endo-
and exosystem such that its output converges to zero for all initial states. Of
course, the above two feedback design problems can be combined into the single
problem of designing a controller such that the output of the controlled system
tracks a given reference signal, regardless of the disturbance input entering the
system, and the initial state. This problem is referred to as the problem of
tracking and regulation, also called the regulator problem.
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In this chapter we will study this problem in a data-driven context. It wil
be assumed that the ‘true’ endosystem is unknown, and that we only have data
on the input, endosystem state, and exosystem state in the form of samples on
a finite time-interval. The exosystem is assumed to be known, since this system
models the reference signals and possible disturbance inputs. Also the matrices
in the output equations are assumed to be known, since these specify the design
specification (namely the output that should converge to zero).

10.2 An illustrative example

We will first illustrate the problem that will be considered in this chapter by
means of a simple extended example.
Example 10.1. Consider the scalar linear time-invariant system

x(t + 1) = atruex(t) + btrueu(t) + d(t) (10.1)

where x is the state, u the control input, and d a disturbance input. The values
of atrue and btrue in this system representation are unknown. We assume that
the disturbance can be any constant signal of finite amplitude. Suppose that
we want the state x(t) to track the given reference signal r(t) = cos π

2 t, for any
constant disturbance input, regardless of the initial state of the system. The
problem is to design a control law for (10.1) that achieves this specification. We
assume that r, x and d are available for feedback and allow control laws of the
form

u(t) = k1r(t) + k2r(t + 1) + k3d(t) + k4x(t). (10.2)
Interconnecting (10.1) and (10.2) results in the controlled system

x(t + 1) = (atrue + btruek4)x(t) + (btruek3 + 1)d(t) + btruek1r(t) + btruek2r(t + 1)

where the gains ki should be designed such that x(t)−r(t)→ 0 as t→∞ for any
constant disturbance input d and initial state x(0). It is also required that the
controlled system is internally stable, in the sense that atrue + btruek4 is stable1.

The values of atrue and btrue that represent the true system are unknown,
but in the data-driven context it is assumed that we do have access to certain
data. In particular, it is assumed that we have finite sequences of samples of
x(t), u(t) and d(t) on a given time interval [0, T ], given by

U− := U[0,T −1] (10.3a)
X := X[0,T ] (10.3b)

D− := D[0,T −1] (10.3c)
1In this scalar context this means that it should lie in the interval (−1, 1).
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where, in this particular example, by assumption d(t) = d(0) for t ∈ [0, T − 1].
Define

X+ := X[1,T ]

X− := X[0,T −1].

It is assumed that these data are generated by the true system, so we must have
X+ = atrueX− + btrueU− + D−. For this example, the problem of data-driven
control design is now to use the data (10.3) to determine whether a suitable
controller (10.2) exists, and to compute the associated gains k1, k2, k3 and k4
using only these data.

Note that in the above, both the reference signal and the disturbance signals
are solutions of the autonomous linear systemr1(t + 1)

r2(t + 1)
d(t + 1)

 =

 0 1 0
−1 0 0
0 0 1

r1(t)
r2(t)
d(t)

 (10.4)

with initial state r1(0) = 1 and r2(0) = 0, and d(0) arbitrary. Indeed, it can
be seen that the reference signal r(t) = cos π

2 t is equal to r1(t). In addition,
the solutions d(t) are all constant signals of finite amplitude. The autonomous
system (10.4) is called the exosystem.

The interconnection of the (unknown) to be controlled system (10.1) (called
the endosystem) with the exosystem (10.4), is represented by

r1(t + 1)
r2(t + 1)
d(t + 1)
x(t + 1)




0 1 0 0
−1 0 0 0
0 0 1 0
0 0 1 atrue




r1(t)
r2(t)
d(t)
x(t)

+


0
0
0

btrue

u(t). (10.5)

In this representation, the part corresponding to the exosystem is known, but the
part corresponding to the endosystem (specifically: atrue and btrue) is unknown.
We now also specify a (known) output equation

z(t) =
[
1 0 0 −1

] 
r1(t)
r2(t)
d(t)
x(t)

 .

Then the problem of our example can be rephrased as: using only the data
(10.3), design a full state feedback control law

u(t) = k1r1(t) + k2r2(t) + k3d(t) + k4x(t)
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for the system (10.5) such that in the controlled system we have z(t) → 0 as
t → ∞ for the initial states r1(0) = 1, r2(0) = 0, and d(0) arbitrary, while
internal stability is achieved in the sense that atrue + btruek4 is stable. In order
to allow tracking of signals from the richer class of all reference signals of the form
r(t) = A cos( 1

2 πt + ω) (A and ω are determined by the initial states r1(0) = 1
and r2(0)), we may slightly relax the problem formulation and require z(t)→ 0
as t→∞ for all initial states r1(0), r2(0) and d(0). ■

10.3 Informativity for regulator design

In this section we will formulate the problem illustrated in the example of the
previous section in a general framework. To this end, consider the model class
of endosystems of the form

x2(t + 1) = A2x(t) + B2u(t) + A3x1(t). (10.6)

Here, x2 is the n2-dimensional state, u the m-dimensional input, and x1 the
n1-dimensional state of the exosystem

x1(t + 1) = A1x1(t) (10.7)

that generates all possible reference signals and disturbance inputs. The matrices
A2 and B2 will be assumed to be unknown, but the matrix A1 is assumed to
be known. Also A3 is assumed to be a known matrix that represents how the
endosystem is interconnected with the exosystem. Later on in this chapter, in
Section 10.7, we will treat the case that, in addition to A2 and B2, also the
coupling matrix A3 is unknown. The output to be regulated is specified by

z(t) = D1x1(t) + D2x2(t) + Eu(t) (10.8)

where also D1, D2 and E are assumed to be known. Accordingly, our model
class M consists of all systems given by (10.6), (10.7) and (10.8), parametrized
by the matrices A2 and B2. The true (unknown) values of these matrices are
given by A2,true and B2,true.

By interconnecting the endosystem (10.6) with the state feedback controller

u(t) = K1x1(t) + K2x2(t) (10.9)

we obtain the controlled system[
x1(t + 1)
x2(t + 1)

]
=
[

A1 0
A3 + B2K1 A2 + B2K2

] [
x1(t)
x2(t)

]
(10.10a)

z(t) =
[
D1 + EK1 D2 + EK2

] [x1(t)
x2(t)

]
. (10.10b)
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If z(t) → 0 as t → ∞ for all initial states x1(0) and x2(0), we say that the
controlled system is output regulated. If A2 + B2K2 is a stable matrix we call
the controlled system endo-stable. If the control law (10.9) makes the controlled
system both output regulated and endo-stable, we call it a regulator.

Since we do not know the true values A2,true and B2,true representing the
endosystem (10.6), the design of a regulator can only be based on available data.
We will assume that the data are finite sequences of samples of x1(t), x2(t) and
u(t) on the time interval [0, T ] given by

U− := U[0,T −1]

X1− := X1[0,T −1]

X2 := X2[0,T ].

The true endosystem generates these data, and therefore we must have

X2+ = A2,trueX2− + B2,trueU− + A3X1− (10.12)

where, as before, we denote

X2− := X2[0,T −1]

X2+ := X2[1,T ].

An endosystem with system matrices (A2, B2) is called consistent with these
data if also A2 and B2 satisfy the equation

X2+ = A2X2− + B2U− + A3X1− . (10.13)

The set of all (A2, B2) that are consistent with the data is again denoted by ΣD,
i.e.,

ΣD := {(A2, B2) | (10.13) holds} . (10.14)
Since (10.12) is assumed to hold, the true endosystem (A2,true, B2,true) is in ΣD.
In general, the equation (10.13) does not specify the true system uniquely, and
many endosystems (A2, B2) may be consistent with the same data.

Now we turn to controller design based on the data (U−, X1−, X2). Note
that, since on the basis of the given data we cannot distinguish between the true
endosystem and any other endosystem consistent with these data, a suitable
data-based regulator for the true system should be a regulator for any system
(A2, B2) in ΣD. If such regulator exists, we call the data informative for regulator
design. More precisely:

Definition 10.2. We say that the data (U−, X1−, X2) are informative for regu-
lator design if there exists K1 and K2 such that the control law u(t) = K1x1(t)+
K2x2(t) is a regulator for any endosystem such that (A2, B2) in ΣD.
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The problem is to find conditions on the data (U−, X1−, X2) to be informative
for regulator design. In addition, in case that these conditions are satisfied we
would like to compute a regulator using only these data. Before addressing this
problem, in the next section we will review some basic material on the regulator
problem.

10.4 Some background on the regulator problem

In order to be able to proceed with our data-driven approach, in this section we
briefly review some basic material on the regulator problem. We will distinguish
between analysis and design.

We first consider the analysis question under what conditions a controlled
system is endo-stable and output regulated. Consider a given autonomous linear
system represented by

x1(t + 1) = A1x1(t)
x2(t + 1) = A2x2(t) + A3x1(t) (10.15)

z(t) = D1x1(t) + D2x2(t).

In accordance with the terminology introduced in Section 2.2, we call this
system endo-stable if A2 is a stable matrix. We call it output regulated if z(t)→
0 as t→∞ for all initial states x1(0) and x2(0). The following proposition gives
conditions under which (10.15) is endo-stable and output regulated.

Proposition 10.3. Assume that A1 is anti-stable2. Then the system (10.15)
is endo-stable and output regulated if and only if A2 is stable and there exists a
matrix S satisfying the equations

SA1 −A2S = A3 (10.16a)
D1 + D2S = 0. (10.16b)

In this case, S is unique.

Proof. Assume that A2 is stable and that S is a solution to the equations
(10.16). Then, by definition, (10.15) is endo-stable. We will prove it is output
regulated. Define v(t) := x2(t)− Sx1(t). Then

v(t + 1) = A2v(t) + (A2S − SA1 + A3)x1(t) (10.17a)
z(t) = D2v(t) + (D1 + D2S)x1(t). (10.17b)

2We say that a square matrix is anti-stable if all its eigenvalues λ satisfy |λ| ⩾ 1.
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As a consequence,

v(t + 1) = A2v(t) (10.18a)
z(t) = D2v(t). (10.18b)

Since A2 is stable, it follows that z(t) → 0 as t → ∞, so (10.15) is output
regulated.

For the converse, assume that (10.15) is endo-stable and output regulated.
Then A2 is stable. Since A1 is anti-stable, the Sylvester equation (10.16a) has a
(unique) solution S (see [160, Thm. 9.6]). We will show that it satisfies (10.16b).
Indeed, v(t) satisfies (10.18a) and z(t) satisfies (10.17b). Since the system is
output regulated and A2 is stable, we must have (D1 +D2S)x1(t)→ 0 as t→∞.
Since A1 is anti-stable, this immediately implies that D1 + D2S = 0. □

Next, we consider the design problem and review conditions under which, for
a given interconnection of an endosystem and exosystem, there exists a regula-
tor, i.e., a controller that makes the controlled system endo-stable and output
regulated. Indeed, given the to-be-controlled system

x1(t + 1) = A1x1(t)
x2(t + 1) = A2x2(t) + B2u(t) + A3x1(t)

z(t) = D1x1(t) + D2x2(t) + Eu(t)

the following proposition gives conditions for the existence of a regulator, and
formulas to compute one.

Proposition 10.4. Assume that A1 is anti-stable. There exists a regulator of
the form (10.9) if and only if (A2, B2) is stabilizable and there exist matrices S
and V satisfying the regulator equations

SA1 −A2S −B2V = A3, D1 + D2S + EV = 0. (10.19)

In this case, a regulator is obtained as follows: choose any K2 such that A2 +
B2K2 is stable, and define K1 := −K2S + V .

Proof. Assume that a regulator (10.9) exists. Then the controlled system
(10.10) is endo-stable and output regulated, so by Proposition 10.3 the following
equations have a (unique) solution S:

SA1 − (A2 + B2K2)S = A3 + B2K1 (10.20a)
D1 + EK1 + (D2 + EK2)S = 0. (10.20b)

Clearly, (A2, B2) is stabilizable. By defining V := K1 + K2S, we also see that
S and V satisfy the regulator equations (10.19). Conversely, assume that S and
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V satisfy (10.19) and that (A2, B2) is stabilizable. Choose any K2 such that
A2 + B2K2 is stable, and define K1 := −K2S + V . Then the equations (10.20)
hold, so again by Proposition 10.3, the controlled system (10.10) is endo-stable
and output regulated. □

10.5 Regulator design from data

In this section we will give necessary and sufficient conditions on the data to be
informative for regulator design, and data-based formulas to compute suitable
regulators. Before doing this, we first introduce the notion of informativity for
endo-stabilization.
Definition 10.5. The data (U−, X1−, X2) are informative for endo-stabilization
if there exists K2 such that A2 + B2K2 is a stable matrix for all (A2, B2) in ΣD.

Note that a necessary condition for the data (U−, X1−, X2) to be informa-
tive for regulator design is that they are informative for endo-stabilization. In
order to obtain necessary and sufficient conditions for informativity for endo-
stabilization we formulate:
Proposition 10.6. Let T be a positive integer. Let Z, X be real n×T matrices
and let U be a real m× T matrix. Consider the set

Σ(Z,X,U) := {(A, B) ∈ Rn×n × Rn×m | Z = AX + BU}.

Assume that Σ(Z,X,U) is non-empty. Then the following hold:

(a) There exists a matrix K such that A + BK is stable for all (A, B) ∈
Σ(Z,X,U) if and only if X has full row rank, and there exists a right-inverse
X♯ such that ZX♯ is stable. In that case, by taking K := UX♯ we have
A + BK is stable for all (A, B) ∈ Σ(Z,X,U).

(b) For any K such that A+BK is stable for all (A, B) ∈ Σ(Z,X,U) there exists
a right-inverse X♯ such that K = UX♯, and, moreover, A + BK = ZX♯

for all (A, B) ∈ Σ(Z,X,U).

Proof. A proof of this proposition can be given by slightly modifying the proof
of Theorem 6.4. □

This immediately gives the following conditions for informativity for endo-
stabilization.
Lemma 10.7. The data (U−, X1−, X2) are informative for endo-stabilization if
and only if X2− has full row rank and there exists a right inverse X♯

2− of X2−

such that (X2+ − A3X1−)X♯
2− is stable. In that case, by taking K2 := U−X♯

2−
we have A2 + B2K2 is stable for all (A2, B2) ∈ ΣD.
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The following theorem now gives necessary and sufficient conditions on the
data to be informative for regulator design, and explains how suitable regulators
are computed using only these data.

Theorem 10.8. Assume that A1 is anti-stable and suppose, for simplicity, that
it is diagonalizable. Then the data (U−, X1−, X2) are informative for regulator
design if and only if at least one of the following two conditions hold

(a) The inclusion im D1 ⊆ im E holds, and X2− has full row rank and has a
right-inverse X♯

2− such that the matrix (X2+ − A3X1−)X♯
2− is stable and

D2 + EU−X♯
2− = 0. In this case, a regulator is found as follows: choose

K1 such that D1 + EK1 = 0 and define K2 := U−X♯
2−.

(b) X2− is right-invertible and it has a right-inverse X♯
2− such that the matrix

(X2+ −A3X1−)X♯
2− is stable. Moreover, there exists a solution W to the

linear equations

X2−WA1 − (X2+ −A3X1−)W = A3 (10.21a)
D1 + (D2X2− + EU−)W = 0. (10.21b)

In this case, a regulator is found as follows: take K1 := U−(I−X♯
2−X2−)W

and K2 := U−X♯
2−.

Before turning to the proof, we will explain how to apply this theorem. What
we know about the system are the matrices A1, A3, D1, D2 and E, and the data
(U−, X1−, X2). The aim is to use this knowledge to compute a single regulator
(K1, K2) that works for all endosystems (A2, B2) in ΣD. Theorem 10.8 states
that such regulator exists if and only if at least one of the two conditions (a)
or (b) holds. If condition (a) holds then such regulator is computed as follows:
choose K1 such that D1 + EK1 = 0 and define K2 := U−X♯

2−. If (b) holds
then a regulator is computed as follows: choose K1 := U−(I −X♯

2−X2−)W and
K2 := U−X♯

2−.

Proof. We first prove sufficiency. Assume that the condition (a) holds. Since
(X2+−A3X1−)X♯

2− is stable, the data are informative for endo-stabilization and
by taking K2 := U−X♯

2− we have A2 + B2K2 is stable for all (A2, B2) ∈ ΣD.
Since A1 is assumed to be anti-stable, this implies that for all (A2, B2) ∈ ΣD
there exists a unique solution S to the Sylvester equation SA1−(A2 +B2K2)S =
A3 + B2K1. By the fact that D1 + EK1 = 0 and D2 + EK2 = 0, this solution
S also satisfies D1 + EK1 + (D2 + EK2)S = 0. Thus, for all (A2, B2) ∈ ΣD,
there exists a matrix S that satisfies the equations (10.16). It follows from
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Proposition 10.3 that for all (A2, B2) ∈ ΣD the controlled system is endo-stable
and output regulated.

Next, assume that condition (b) holds. By Lemma 10.7, the data are informa-
tive for endo-stabilization and by taking K2 := U1X♯

− we have A2 +B2K2 stable
for all (A2, B2) ∈ ΣD. Let W satisfy the equations (10.21). Define S := X2−W
and V := U−W . Then the pair (S, V ) satisfies the regulator equations (10.19) for
all (A2, B2) ∈ ΣD. Then, by Proposition 10.4, for each such (A2, B2) a regulator
is given by the pair (K1, K2), with K1 = −K2S + V = −K2X2−W + U−W =
U−(I −X♯

2−X2−)W . This completes the proof of the sufficiency part.
We will now turn to the necessity part. Assume that the data are informative

for regulator design. By Proposition 10.3, there exist K1 and K2 and for any
(A2, B2) ∈ ΣD a matrix S(A2,B2) such that A2 + B2K2 is stable and

S(A2,B2)A1 − (A2 + B2K2)S(A2,B2) = A3 + B2K1

D1 + EK1 + (D2 + EK2)S(A2,B2) = 0.

We emphasize that S(A2,B2) may depend on the choice of (A2, B2) ∈ ΣD. How-
ever, since A2 + B2K2 is stable for all (A2, B2) ∈ ΣD, by Proposition 10.6 there
exists a right-inverse X♯

2− of X2− such that A2 + B2K2 = (X2+ − A3X1−)X♯
2−

for all (A2, B2) ∈ ΣD. The latter matrix is independent of (A2, B2). Call it M .
Define

Σ0
D := {(A0

2, B0
2) |

[
A0

2 B0
2
] [X2−

U−

]
= 0}.

Note that Σ0
D is the solution space of the homogeneous version of the defining

equation (10.14) for ΣD. We now distinguish two cases, namely (i) B0
2K1 = 0

for all (A0
2, B0

2) ∈ Σ0
D, and (ii) B0

2K1 ̸= 0 for some (A0
2, B0

2) ∈ Σ0
D.

First consider case (i). Then for all (A2, B2), (Ā2, B̄2) ∈ ΣD we have B2K1 =
B̄2K1. Thus, there exists a common matrix S that solves the equations

SA1 −MS = A3 + B2K1

D1 + EK1 + (D2 + EK2)S = 0

for all (A2, B2) ∈ ΣD. From this, we obtain

SA1 −
[
A2 B2

] [ S
K2S + K1

]
= A3

for all (A2, B2) ∈ ΣD, and therefore

[
A0

2 B0
2
] [ S

K2S + K1

]
= 0
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for all (A0
2, B0

2) ∈ Σ0
D. This implies

im
[

S
K2S + K1

]
⊆ im

[
X2−
U−

]
.

As a consequence, there exists a matrix W such that[
S

K2S + K1

]
=
[
X2−
U−

]
W.

Clearly, W satisfies the equations (10.21), showing that condition (b) holds.
Next, consider case (ii). Let Q be a real (n2 + m)× r matrix such that

ker
[
X2−
U−

]⊤

= im Q.

Partition Q =
[
Q1
Q2

]
. Then (A0

2, B0
2) ∈ Σ0

D if and only if A0
2 = NQ⊤

1 and

B0
2 = NQ⊤

2 for some n2 × r matrix N . Note that, by hypothesis, Q⊤
2 K1 ̸= 0.

Let (A2, B2) ∈ ΣD. Recall that for any such (A2, B2) there exists a unique
S(A2,B2) such that

S(A2,B2)A1 −MS(A2,B2) = A3 + B2K1

D1 + EK1 + (D2 + EK2)S(A2,B2) = 0. (10.22)

Now let N be any real n2× r matrix. Then also (A2 + NQ⊤
1 , B2 + NQ⊤

2 ) ∈ ΣD.
Define

SN := S(A2,B2) − S(A2+NQ⊤
1 ,B2+NQ⊤

2 ).

Then clearly SN is the unique solution to

SN A1 −MSN = NQ⊤
2 K1 (10.23)

which in addition satisfies (D2 + EK2)SN = 0. Consider now a spectral decom-
position A1 = Y −1ΛY , where Λ is the diagonal matrix3 Λ = diag(λ1, . . . λn1),

Y =

 y1
...

yn1

 and Y −1 =
[
ŷ1 . . . ŷn1

]
.

Then, for fixed N , the unique solution SN to the Sylvester equation (10.23) can
be expressed as (see [7, Thm. 6.5])

SN =
n1∑

i=1
(λiI −M)−1NQ⊤

2 K1ŷiyi

3Here, diag(λ1, . . . , λn) denotes the diagonal n×n matrix with diagonal entries λ1, . . . , λn.
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which implies that SN Y −1 is equal to[
(λ1I −M)−1NQ⊤

2 K1ŷ1 · · · (λn1I −M)−1NQ⊤
2 K1ŷn1

]
.

Note that the matrices λiI −M are indeed invertible since M is stable and the
eigenvalues λi of A1 satisfy |λi| ⩾ 1. Since, in addition, (D2 + EK2)SN = 0, we
see that for all i ∈ [1, n1] we have

(D2 + EK2)(λ1I −M)−1NQ⊤
2 K1ŷi = 0.

Since Q⊤
2 K1 ̸= 0, there must exist an index i such that Q⊤

2 K1ŷi ̸= 0. For this i,
let z be a real vector such that z⊤Q⊤

2 K1ŷi ̸= 0. Now choose N := ejz⊤, where
ej denotes the jth standard basis vector in Rn2 . By the discussion above we
obtain (D2 + EK2)(λ1I −M)−1ej = 0. Since this holds for any j, we actually
find (D2 + EK2)(λ1I −M)−1 = 0, so D2 + EK2 = 0. Using (10.22), we must
also conclude that D1 + EK1 = 0, which implies im D1 ⊆ im E. Since K2
is stabilizing it must be of the form U−X♯

2− for some right-inverse X♯
2−. This

implies that (X2+ − A3X1−)X♯
2− is stable and D2 + EU−X♯

2− = 0, that is,
condition (a) holds. This completes the proof of Theorem 10.8. □

Remark 10.9. In order to avoid technicalities, in Theorem 10.8 we have as-
sumed that the matrix A1 is diagonalizable. The theorem however also holds if
we drop this assumption. We omit the proof here.

Remark 10.10. According to Theorem 8, the data are informative for regulator
design if and only if at least one of the conditions (a) or (b) holds. Condition
(b) is in terms of solvability of the ‘data-driven regulator equations’ (10.21).
These equations hold for all (A2, B2) consistent with the data. In the end a
matrix S is defined as S := X2−W and together with V := U−W the classical
regulator equations (10.19) are then satisfied for all (A2, B2) consistent with the
data. This is then ‘the classical design’, and it can be shown that the difference
x2(t)− Sx1(t) converges to 0 as t runs off to infinity.

If condition (a) holds, then we can achieve output regulation by making the
entire output z = (D1 + EK1)x1 + (D2 + EK2)x2 equal to 0 pointwise in time.
This is done by making D1 + EK1 = 0 (possible because im D1 ⊆ im E ) and
D2 + EK2 = 0, where K2 = U−X♯

2− also makes the system endo-stable.

10.6 Illustrative examples

In order to illustrate the theory developed in this chapter up to now, we will
give two worked-out examples.
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Example 10.11. We will first apply Theorem 10.8 to Example 10.1. Putting
the example in our general framework we have

x1 =

r1
r2
d

 , x2 = x, A1 =

 0 1 0
−1 0 0
0 0 1

 ,

A3 =
[
0 0 1

]
, D1 =

[
1 0 0

]
, D2 = −1, E = 0.

Assume T = 3, and the data on the disturbance input are

D− =
[
d(0) d(1) d(2)

]
=
[ 1

2
1
2

1
2
]

.

Since the signal to be tracked is cos 1
2 πt, we must have r1(0) = 1, r2(0) = 0 so

r1(t) = cos 1
2 πt and r2(t) = cos 1

2 π(t + 1). This leads to

X1− =

r1(0) r1(1) r1(2)
r2(0) r2(1) r2(2)
d(0) d(1) d(2)

 =

1 0 −1
0 −1 0
1
2

1
2

1
2

 .

Assume that U− =
[
u(0) u(1) u(2)

]
=
[
1 0 0

]
and

X2 =
[
x2(0) x2(1) x2(2) x2(3)

]
=
[
0 3

2 2 5
2
]

.

It can be checked that condition (b) of Theorem 10.8 holds. Indeed, a solution
W to the linear equations (10.21) is given by

W =

−1 1 −1
2
3 0 0
0 0 0

 .

Furthermore, X♯
2− =

[
− 1

2
2
3 0
]⊤ is a right-inverse of X2− and

(X2+ −A3X1−)X♯
2− = 1

2
is stable. A regulator is then given by

K1 = U−(I −X♯
2−X2−)W =

[
− 1

2 1 −1
]

and K2 := U−X♯
2− = − 1

2 .
It can be checked that the above data are consistent with the true endosystem

atrue = 1, btrue = 1. In fact, in this particular example, the true system is
uniquely determined by the data. Indeed, this follows from the fact that

X2+ =
[
atrue btrue

] [X2−
U−

]
+ D−
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in which
[
X2−
U−

]
has full row rank. Thus, a regulator could also have been

computed directly from the regulator equations (10.19) after first identfying
the true endosystem atrue = 1, btrue = 1. It can indeed be verified that S =[
1 0 0

]
and V =

[
−1 1 −1

]
satisfy the regulator equations (10.19) for the true

endosystem. By choosing K2 = − 1
2 , this would then lead to the same regulator

as above with K1 = −K2S + V =
[
− 1

2 1 −1
]
. ■

We note that, in general, the true endosystem may not be uniquely deter-
mined by the data. This is illustrated by the following example.

Example 10.12. Consider the two-dimensional endosystem

x2(t + 1) = A2,truex2(t) + B2,trueu(t) +
[
0
1

]
d(t)

where A2,true and B2,true are unknown 2×2 and 2×1 matrices, respectively. Let
x2 =

[
x21 x22

]⊤. The disturbance input d is assumed to be a constant signal
with finite amplitude, so is generated by d(t + 1) = d(t). We want to design a
regulator such that 2x21 + 1

2 x22 tracks a given reference signal. In this example,
the reference signals r are assumed to be generated by a given autonomous linear
system with state space dimension, say, n1. Its representation will be irrelevant
here. The total exosystem will then have state space dimension n1 + 1, and
our output equation is given by z(t) = D1x1(t) + D2x2(t) + Eu(t), with D1 a
1 × (n1 + 1) matrix such that D1x1 = −r and D2 =

[
2 1

2
]
. We take E = 2.

Also note that A3 =
[

01,n1 0
01,n1 1

]
. Suppose that T = 2 and assume we have the

following data:

U− =
[
−1 −1

]
, D− =

[
1 1
]

, X2 =
[
1 1

2 −
1
4

0 2 5
2

]
.

These data were generated by the true endosystem

A2,true =
[

2 1
8

4 5
4

]
, B2,true =

[ 3
2
3

]
.

We now check condition (a) of Theorem 10.8. First note that, indeed, im D1 ⊆

im E. Also, X2− is non-singular and (X2+−A3X1−)X−1
2− =

[
1
2 − 1

4
1 1

2

]
. This matrix

has eigenvalues 1
2 ±

1
2 i, so it is stable. Finally, D2 + EU−X−1

2− = 0. According
to Theorem 10.8, a regulator for all endosystems consistent with the given data
is given by

K2 = U1X−1
2− =

[
−1 − 1

4
]

, K1 = −1
2D1. (10.24)
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It can be verified that the set of endosystems consistent with our data is equal
to the affine set

ΣD =
{([

a 1
4 a− 3

8
b 1

4 b + 1
4

]
,

[
a− 1

2
b− 1

])
| a, b ∈ R

}
.

The controller given by (10.24) is a regulator for all these endosystems. ■

10.7 Extension: unknown interconnection matrix

In this section we will extend the theory developed in this chapter to the situation
that in the endosystem, in addition to A2 and B2, also the matrix A3 that
interconnects the endosystem to the exosystem is unknown.

Again, consider the model class of endosystems and exosystems of the form

x2(t + 1) = A2x(t) + B2u(t) + A3x1(t) (10.25)
x1(t + 1) = A1x1(t). (10.26)

We will now consider the situation that all three matrices A2, B2 and A3 are
unknown. Again, the matrix A1 is assumed to be known. The output to be
regulated is specified by

A3,truez(t) = D1x1(t) + D2x2(t) + Eu(t) (10.27)

where D1, D2 and E are assumed to be known as well. Corresponding to the new
situation, our new model class M now consists of all systems given by (10.25),
(10.26) and (10.27). The model class M is parametrized by the matrices A2,
B2 and A3. The true (unknown) values of these matrices are given by A2,true,
B2,true and A3,true. As before, we have data given by (10.11), and the true
endosystem generates these data, which now means that

X2+ = A2,trueX2− + B2,trueU− + A3,trueX1− . (10.28)

An endosystem with system matrices (A2, B2, A3) is called consistent with these
data if also A2, B2 and A3 satisfy the equation

X2+ = A2X2− + B2U− + A3X1− . (10.29)

The set of all (A2, B2, A3) that are consistent with the data is again denoted by
ΣD, and is now given by

ΣD := {(A2, B2, A3) | (10.29) holds} . (10.30)

As before, we aim at regulator design based on the data (U−, X1−, X2), and
in order to find a suitable regulator for the true system we should find one
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that works for all systems (A2, B2, A3) in ΣD. This again leads to a concept of
informativity, where we note that the model class is now different from the one
that we considered before.

Definition 10.13. We say that the data (U−, X1−, X2) are informative for
regulator design if there exists K1 and K2 such that the control law u(t) =
K1x1(t) + K2x2(t) is a regulator for any endosystem with (A2, B2, A3) in ΣD.

As in the scenario with a known interconnection matrix A3 that was treated
in Section 10.5, a necessary condition for the data (U−, X1−, X2) to be informa-
tive for regulator design is that they are informative for endo-stabilization. For
the new model class M this is now defined as follows.

Definition 10.14. We call the data (U−, X1−, X2) informative for endo-stabili-
zation if there exists K2 such that A2+B2K2 is a stable matrix for all (A2, B2, A3)
in ΣD.

The following analogue of Proposition 10.6 will be instrumental in obtaining
necessary and sufficient conditions for informativity for endo-stabilization.

Proposition 10.15. Let T be a positive integer. Let Z, X be real n×T matri-
ces, let U be a real m× T matrix and let D be a real n1 × T matrix. Consider
the set

Σ(Z,X,U,D) := {(A, B, E) ∈ Rn×n × Rn×m × Rn×n1 | Z = AX + BU + ED}.

Assume that Σ(Z,X,U,D) is non-empty. Then the following hold:

(a) There exists a matrix K such that A + BK is stable for all (A, B, E) ∈
Σ(Z,X,U,D) if and only if X has full row rank, and there exists a right-
inverse X♯ such that ZX♯ is stable and DX♯ = 0. In that case, by taking
K := UX♯ we have A + BK is stable for all (A, B, E) ∈ Σ(Z,X,U,D).

(b) For any K such that A + BK is stable for all (A, B, E) ∈ Σ(Z,X,U,D) there
exists a right-inverse X♯ such that K = UX♯, DX♯ = 0 and, moreover,
A + BK = ZX♯ for all (A, B) ∈ Σ(Z,X,U,D).

Proof. A proof of this proposition is similar to the proof of Lemma 8.4. □

This immediately gives the following conditions for informativity for endo-
stabilization.

Lemma 10.16. The data (U−, X1−, X2) are informative for endo-stabilization
if and only if X2− has full row rank and it has a right inverse X♯

2− such that
X2+X♯

2− is stable and X1−X♯
2− = 0. In that case, by taking K2 := U−X♯

2− we
have A2 + B2K2 is stable for all (A2, B2, A3) ∈ ΣD.



Extension: unknown interconnection matrix 235

The following analogue of Theorem 10.8 then gives necessary and sufficient
conditions for informativity for regulator design in the situation that all three
matrices representing the endosystem are unknown.

Theorem 10.17. Assume that A1 is anti-stable and suppose, for simplicity,
that it is diagonalizable. Then the data (U−, X1−, X2) are informative for reg-
ulator design if and only if at least one of the following two conditions hold:

(a) X2− has full row rank and it has a right-inverse X♯
2− such that X2+X♯

2− is
stable, X1−X♯

2− = 0 and D2 + EU−X♯
2− = 0. Moreover, im D1 ⊆ im E. In

this case, a regulator is found as follows: choose K1 such that D1+EK1 = 0
and define K2 := U−X♯

2−.

(b) X2− is right-invertible and it has a right-inverse X♯
2− such that X2+X♯

2−
is stable and X1−X♯

2− = 0. Moreover, there exists a solution W to the
linear equations

X2−WA1 −X2+W = 0 (10.31a)
X1−W = I (10.31b)

D1 + (D2X2− + EU−)W = 0. (10.31c)

In this case, a regulator is found as follows: take K1 := U−(I−X♯
2−X2−)W

and K2 := U−X♯
2−.

Proof. We first prove sufficiency. Assume that condition (a) holds. Take K2 :=
U−X♯

2−. Then by Lemma 10.16, A2 + B2K2 is stable for all (A2, B2, A3) ∈ ΣD.
Since A1 is assumed to be anti-stable, this implies that for all (A2, B2, A3) ∈ ΣD
there exists a unique solution S to the Sylvester equation SA1−(A2 +B2K2)S =
A3 + B2K1. Take K1 such that D1 + EK1 = 0. Since also D2 + EK2 = 0,
this solution S also satisfies D1 + EK1 + (D2 + EK2)S = 0. Thus, for all
(A2, B2, A3) ∈ ΣD, there exists a matrix S that satisfies the equations (10.20).
It follows from Proposition 10.3 that for all (A2, B2, A3) ∈ ΣD the controlled
system is endo-stable and output regulated.

Next, assume that condition (b) holds. By Lemma 10.7, the data are infor-
mative for endo-stabilization and by taking K2 := U1X♯

− we have A2 + B2K2
stable for all (A2, B2, A3) ∈ ΣD. Let W satisfy the equations (10.31). De-
fine S := X2−W and V := U−W . Then the pair (S, V ) satisfies the regulator
equations (10.19) for all (A2, B2, A3) ∈ ΣD. By Proposition 10.4, for each such
(A2, B2, A3) a regulator is given by the pair (K1, K2), with K1 = −K2S + V =
−K2X2−W + U−W = U−(I − X♯

2−X2−)W . This completes the proof of the
sufficiency part.
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We will now prove the necessity part. Assume that the data are informative
for regulator design. By Proposition 10.3, there exist K1 and K2 and for any
(A2, B2, A3) ∈ ΣD a matrix S(A2,B2,A3) such that A2 + B2K2 is stable and

S(A2,B2,A3)A1 − (A2 + B2K2)S(A2,B2,A3) = A3 + B2K1

D1 + EK1 + (D2 + EK2)S(A2,B2,A3) = 0.

Note that S(A2,B2,A3) may depend on the choice of (A2, B2, A3) ∈ ΣD. How-
ever, since A2 + B2K2 is stable for all (A2, B2, A3) ∈ ΣD, by Proposition
10.15 there exists a right-inverse X♯

2− of X2− such that X1−X♯
2− = 0 and

A2 + B2K2 = X2+X♯
2− for all (A2, B2, A3) ∈ ΣD. The latter matrix is inde-

pendent of (A2, B2, A3). Call it M .
Now define

Σ0
D := {(A0

2, B0
2 , A0

3) |
[
A0

2 B0
2 A0

3
] X2−

U−
X1−

 = 0}.

Again, we distinguish two cases, namely (i) A0
3 + B0

2K1 = 0 for all (A0
2, B0

2 , A0
3)

in Σ0
D, and (ii) A0

3 + B0
2K1 ̸= 0 for some (A0

2, B0
2 , A0

3) ∈ Σ0
D.

We first consider case (i). Then for all (A2, B2, A3), (Ā2, B̄2, Ā3) ∈ ΣD we
have A3 + B2K1 = Ā3 + B̄2K1. Hence there exists a common matrix S that
solves the equations

SA1 −MS = A3 + B2K1

D1 + EK1 + (D2 + EK2)S = 0

for all (A2, B2, A3) ∈ ΣD. The first of these equation can be written as

SA1 −
[
A2 B2 A3

]  S
K2S + K1

I

 = 0

Since this holds for all (A0
2, B0

2 , A0
3) ∈ ΣD, we must have

[
A0

2 B0
2 A0

3
]  S

K2S + K1
I

 = 0

for all (A0
2, B0

2 , A0
3) ∈ Σ0

D. This implies

im

 S
K2S + K1

I

 ⊆ im

X2−
U−
X1−

 .
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Thus, there exists a matrix W such that S
K2S + K1

I

 =

X2−
U−
X1−

W.

It is then easily seen that W satisfies the equations (10.31), showing that con-
dition (b) holds.

Next, consider case (ii). Let Q be a real (n2 + m + n1)× r matrix such that

ker

X2−
U−
X1−

⊤

= im Q.

Partition Q =

Q1
Q2
Q3

. Then (A0
2, B0

2 , A0
3) ∈ Σ0

D if and only if A0
2 = NQ⊤

1 ,

B0
2 = NQ⊤

2 and A0
3 = NQ⊤

3 for some n2×r matrix N . Note that, by hypothesis,
Q⊤

3 + Q⊤
2 K1 ̸= 0.

Let (A2, B2, A3) ∈ ΣD. Recall that for any such (A2, B2, A3) there exists a
unique S(A2,B2,A3) such that

S(A2,B2,A3)A1 −MS(A2,B2,A3) = A3 + B2K1

D1 + EK1 + (D2 + EK2)S(A2,B2,A3) = 0. (10.32)

Now let N be any real n2 × r matrix. Then also (A2 + NQ⊤
1 , B2 + NQ⊤

2 , A3 +
NQ⊤

3 ) ∈ ΣD. Define

SN := S(A2,B2,A3) − S(A2+NQ⊤
1 ,B2+NQ⊤

2 ,A3+NQ⊤
3 ).

Then clearly SN is the unique solution to

SN A1 −MSN = N(Q⊤
3 + Q⊤

2 K1) (10.33)

with, in addition, (D2 + EK2)SN = 0. Take a spectral decomposition A1 =
Y −1ΛY , where Λ is the diagonal matrix Λ = diag(λ1, . . . λn1),

Y =

 y1
...

yn1

 and Y −1 =
[
ŷ1 . . . ŷn1

]
.

Then, for fixed N , the unique solution SN to the Sylvester equation (10.33) can
be expressed as (see [7, Thm. 6.5])

SN =
n1∑

i=1
(λiI −M)−1N(Q⊤

3 + Q⊤
2 K1)ŷiyi
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which implies that SN Y −1 is equal to[
(λ1I −M)−1(Q⊤

3 + Q⊤
2 K1)ŷ1 · · · (λn1I −M)−1(Q⊤

3 + Q⊤
2 K1)ŷn1

]
.

Since, in addition, (D2 + EK2)SN = 0, we see that for all i = 1, . . . , n1 we have

(D2 + EK2)(λ1I −M)−1(Q⊤
3 + NQ⊤

2 K1)ŷi = 0.

Since Q⊤
3 +Q⊤

2 K1 ̸= 0, there must exist an index i such that (Q⊤
2 +Q⊤

2 K1)ŷi ̸= 0.
For this i, let z be a real vector such that z⊤(Q⊤

3 + Q⊤
2 K1)ŷi ̸= 0. Now choose

N := ejz⊤, where ej denotes the jth standard basis vector in Rn2 . By the
above we have (D2 + EK2)(λ1I − M)−1ej = 0. Since this holds for any j,
we actually find D2 + EK2 = 0. Using (10.22), we must also conclude that
D1 + EK1 = 0, which implies im D1 ⊆ im E. Since K2 is stabilizing it must be
of the form U−X♯

2− for some right-inverse X♯
2− with X1−X♯

2− = 0. This implies
that X2+X♯

2− is stable and D2 +EU−X♯
2− = 0, that is, condition (a) holds. This

completes the proof of Theorem 10.17. □

10.8 Notes and references

In this chapter we have extended the framework of informativity to the classical
algebraic regulator problem [42, 54, 55, 79]. The results are based on the paper
[161]. For an extensive treatment of the classical regulator problem we refer
to [160]. Within this problem, an important role is played by the so-called
exosystem that generates reference and disturbance signals. A broad class of
relevant reference signals and disturbances (such as step functions, ramps or
sinusoids) can be generated by such exosystems in the form of autonomous linear
systems.

We note that data-driven regulator design was also studied in [43] and [35],
albeit from a rather different perspective. We also mention alternative methods
that deal with tracking objectives, such as iterative feedback tuning (IFT) and
virtual reference feedback tuning (VRFT) as developed in [72] and [34], respec-
tively. These methods do however not address the classical regulator problem,
and are thus quite different from the work in this chapter.
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System identification

In this chapter, we will study the problem of system identification from the per-
spective of data informativity. Recall from Chapter 1 that there are different
methods of system identification for linear systems, one of which is subspace
identification, see Section 1.2.2. As we have seen in that section, subspace iden-
tification typically relies on certain persistency of excitation conditions on the
input of the system. These conditions are sufficient to be able to identify the
system from data, but in general they are not necessary. It turns out that using
the data informativity framework one can obtain necessary and sufficient condi-
tions on the data under which system identification is possible. These conditions
will be discussed in detail in this chapter.

We begin by introducing some terminology concerning input-state-output
systems. Consider the input-state-output system

x(t + 1) = Ax(t) + Bu(t) (11.1a)
y(t) = Cx(t) + Du(t) (11.1b)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m, with n ⩾ 0, m, p ⩾ 1.
If n = 0, we call the system memoryless1. By convention, memoryless systems
are both controllable and observable. For k ⩾ 0, we define the k-th observability
matrix recursively by

Ωk :=


00,n if k = 0[

Ωk−1

CAk−1

]
if k ⩾ 1.

(11.2)

We define the lag ℓ(C, A) of the system as the smallest integer k ⩾ 0 such that
rank Ωk = rank Ωk+1. Note that 0 ⩽ ℓ(C, A) ⩽ n. Moreover, if n = 0, then also
ℓ(C, A) = 0.

1Throughout this chapter, we permit matrices to be void. A void matrix is a matrix with
zero rows and/or zero columns. We denote by 0n,0 and 00,m respectively the n × 0 and 0 × m
void matrices. If M and N are, respectively p × q and q × r matrices, MN is a p × r void
matrix if p = 0 or r = 0 and MN = 0p,r if p, r ⩾ 1 and q = 0. The rank of a void matrix is
defined to be zero.
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In what follows, we will identify a system of the form (11.1) with the matrix[
A B
C D

]
.

Given m ⩾ 1 and p ⩾ 1, we define the set of all systems with n state variables
as S(n) := R(n+p)×(n+m). We also define the subset of systems with lag ℓ as

S(ℓ, n) :=
{[

A B
C D

]
∈ S(n) | A ∈ Rn×n and ℓ(C, A) = ℓ

}
. (11.3)

Finally, we define the sets

S :=
{[

A B
C D

]
∈ S(n) | n ⩾ 0

}
(11.4)

O :=
{[

A B
C D

]
∈ S | (C, A) is observable

}
(11.5)

M :=
{[

A B
C D

]
∈ O | (A, B) is controllable

}
. (11.6)

Two systems
[

Ai Bi

Ci Di

]
∈ S(n) with i ∈ [1, 2] are called isomorphic if D1 = D2

and there exists a nonsingular matrix S ∈ Rn×n such that

A1 = S−1A2S, B1 = S−1B2, and C1 = C2S.

We say that S ′ ⊆ S(n) has the isomorphism property if any two systems in S ′

are isomorphic. By convention, the empty set has the isomorphism property.

11.1 Problem formulation

Consider the input-state-output system

x(t + 1) = Atruex(t) + Btrueu(t) (11.7a)
y(t) = Ctruex(t) + Dtrueu(t) (11.7b)

where Atrue ∈ Rntrue×ntrue , Btrue ∈ Rntrue×m, Ctrue ∈ Rp×ntrue and Dtrue ∈ Rp×m

are unknown. Also the state-space dimension ntrue ⩾ 0 is unknown. We refer to
(11.7) as the true system. We denote its lag by

ℓtrue := ℓ(Ctrue, Atrue).

Throughout this chapter, we assume that the true system is minimal, i.e., both
controllable and observable.
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Let T ⩾ 1 and (u[0,T −1], y[0,T −1]) be input-output data generated by (11.7),
i.e., there exists a matrix X[0,T ] ∈ Rntrue×(T +1) such that[

X[1,T ]
Y[0,T −1]

]
=
[
Atrue Btrue
Ctrue Dtrue

] [
X[0,T −1]
U[0,T −1]

]
. (11.8)

In this chapter we examine under which conditions the true system (11.7) can
be uniquely determined from the data (u[0,T −1], y[0,T −1]), up to an isomorphism.
To formalize this problem below, we first introduce the set of systems consistent
with the data.

Consistent systems

A system [ A B
C D ] ∈ S is consistent with the data (u[0,T −1], y[0,T −1]) if there exist

n ⩾ 0 and X[0,T ] ∈ Rn×(T +1) such that[
X[1,T ]

Y[0,T −1]

]
=
[
A B
C D

] [
X[0,T −1]
U[0,T −1]

]
. (11.9)

The set of all systems that are consistent with the data (u[0,T −1], y[0,T −1]) is
denoted by E . We will refer to systems in E as data-consistent systems, or
simply consistent systems for short. The subsets of E consisting of systems with
a given state-space dimension (and lag) are denoted by

E(n) := E ∩ S(n) and E(ℓ, n) := E ∩ S(ℓ, n).

Given a system [ A B
C D ] ∈ E(n), we say that X[0,T ] ∈ Rn×(T +1) is a state for [ A B

C D ]
if (11.9) holds. Moreover, we say that X[0,T ] ∈ Rn×(T +1) is a state for the data
(u[0,T −1], y[0,T −1]) if it is a state for some [ A B

C D ] ∈ E(n).
It is straightforward to verify that E(n) and E(ℓ, n) are closed under isomor-

phisms. In addition, it follows from (11.8) that[
Atrue Btrue
Ctrue Dtrue

]
∈ E(ℓtrue, ntrue) ⊆ E(ntrue).

Informativity for system identification

In what follows, we will work with prior knowledge about the true system (11.7).
We capture this mathematically by assuming that[

Atrue Btrue
Ctrue Dtrue

]
∈ Spk,

where Spk ⊆ S is a given set. We are now in the position to define the notion of
informativity for system identification.
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Definition 11.1. The data (u[0,T −1], y[0,T −1]) are informative for system iden-
tification within Spk if

(a) E ∩ Spk = E(ntrue) ∩ Spk, and

(b) E ∩ Spk has the isomorphism property.

Condition (a) states that all systems consistent with the data and the prior
knowledge have ntrue states, while (b) asserts that any pair of such systems is
isomorphic. Therefore, if the data are informative for system identification we
can identify ntrue and the true system up to an isomorphism.

In the rest of the chapter, we assume that lower and upper bounds on the
true lag and true state-space dimension are given:

L− ⩽ ℓtrue ⩽ L+ ⩽ N+ and L− ⩽ N− ⩽ ntrue ⩽ N+. (11.10)

Therefore, of particular interest are those systems whose lag and state-space
dimension are between the given lower and upper bounds:

S[L−,L+],[N−,N+] :=
{[

A B
C D

]
∈ S(ℓ, n) | ℓ ∈ [L−, L+] and n ∈ [N−, N+]

}
,

and the set of consistent systems complying with these bounds:

E[L−,L+],[N−,N+] := E ∩ S[L−,L+],[N−,N+].

The main results of this chapter concern informativity of the data for system
identification within the prior knowledge class

Spk = S[L−,L+],[N−,N+] ∩M. (11.11)

Connection to the fundamental lemma

Before stating our main results, we first make a connection to Willems’ funda-
mental lemma as discussed in Chapter 1, see Theorem 1.2. The following is a
translation of the fundamental lemma to the language we have developed so far.
Recall from Definition 1.1 that the input u[0,T −1] is called persistently exciting
of order k if the Hankel matrix Hk(u[0,T −1]) has full row rank (equal to km).

Proposition 11.2. Let (u[0,T −1], y[0,T −1]) be generated by the controllable and
observable system (11.7), and suppose that X[0,T ] ∈ Rntrue×(T +1) satisfies (11.8).
Suppose that

T ⩾ L+ + (N+ + L+ + 1)m + N+.

If the input u[0,T −1] is persistently exciting of order N+ + L+ + 1 then the
following three statements hold:
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(a) The matrix

[
X[0,T −L+−1]

HL++1(u[0,T −1])

]
=


x(0) x(1) · · · x(T − L+ − 1)
u(0) u(1) · · · u(T − L+ − 1)

...
...

...
u(L+) u(L+ + 1) · · · u(T − 1)


has full row rank.

(b) It holds that

rank
[
HL++1(u[0,T −1])
HL++1(y[0,T −1])

]
= (L+ + 1)m + ntrue.

(c) The data (u[0,T −1], y[0,T −1]) are informative for system identification within
S[0,L+],[0,N+] ∩M.

Note that item (a) of Proposition 11.2 follows from Theorem 1.2 in Chapter 1
by taking L = L+ + 1. Item (b) simply follows from observability of the pair
(Ctrue Atrue) and the fact that L+ ⩾ ℓtrue. Finally, the consequence of item (c)
is that the data (u[0,T −1], y[0,T −1]) contain sufficient information to identify the
true system up to isomorphism, assuming that the input u[0,T −1] is persistently
exciting of order N+ + L+ + 1. We will provide a complete proof of Theorem 1.2
in Section 11.8. This will immediately yield the proofs of Proposition 11.2,
items (a) and (b). In addition, a proof of Proposition 11.2 (c) will be provided
in Section 11.8.

11.2 Data informativity for system identification

Our ultimate goal is to prove necessary and sufficient conditions for informativity
for system identification within S[L−,L+],[N−,N+] ∩M. Intuitively, the necessary
and sufficient conditions we are after should be a certain rank condition on a
Hankel matrix based on the input-output data of a certain depth. The question
of which depth is, however, wide open at this stage. It turns out that the right
depth is dictated not only by the given upper bounds L+ and N+, but also by
the data. To elaborate further, we first introduce some further notation and
terminology.
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Data Hankel matrices

For k ∈ [1, T ], we denote the Hankel matrix of depth k constructed from the
data (u[0,T −1], y[0,T −1]) by Hk and the matrix obtained from Hk by removal of
its last p rows by Gk. In other words,

Hk :=

Hk(u[0,T −1])
Hk(y[0,T −1])

 =



u(0) u(1) · · · u(T − k)
...

...
...

u(k − 1) u(k) · · · u(T − 1)
y(0) y(1) · · · y(T − k)

...
...

...
y(k − 1) y(k) · · · y(T − 1)



Gk :=

 Hk(u[0,T −1])
Hk−1(y[0,T −2])

 =



u(0) u(1) · · · u(T − k)
...

...
...

u(k − 1) u(k) · · · u(T − 1)
y(0) y(1) · · · y(T − k)

...
...

...
y(k − 2) y(k − 1) · · · y(T − 2)


.

(11.12)

Here, we note that by convention, H0(y[0,T −2]) = 00,T −k+1 so that G1 is simply
equal to H1(u[0,T −1]). Furthermore, note that

Hk ∈ Rk(m+p)×(T −k+1) and Gk ∈ R(k(m+p)−p)×(T −k+1).

Next, we define for k ∈ [0, T ] the integers

δk :=
{

p if k = 0
rank Hk − rank Gk if k ∈ [1, T ].

(11.13)

Note that
p ⩾ δk ⩾ 0 for all k ∈ [0, T ]. (11.14)

In the rest of this chapter, we will assume that the input data samples are not
all equal to zero, i.e.,

U[0,T −1] ̸= 0m,T .

From this assumption, it follows that rank HT = rank GT = 1 and hence

δT = 0. (11.15)
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The integers δk will play a significant role in the later development. In what
follows, we employ these integers to present several intermediate results, which
will eventually provide necessary and sufficient conditions for data informativity
for system identification.

Lags and state-space dimensions of data-consistent systems

Now, we present our first intermediate result establishing bounds on the lag and
state-space dimension of any data-consistent system in terms of the integers δk.
To proceed, we let q ∈ [0, T − 1] be the smallest integer such that δq+1 = 0, that
is

q := min {k ∈ [0, T − 1] | δk+1 = 0} . (11.16)
Note that q is well-defined due to (11.15). In the next theorem, we relate q to the
lag ℓ of any system consistent with the data. In this theorem and throughout the
rest of the chapter, we will use the following convention. For the sum

∑k
i=1 ai

of real numbers ai ∈ R, we say
∑k

i=1 ai = 0 whenever k = 0.
Theorem 11.3. Suppose that E(ℓ, n) ̸= ∅. Then, the following statements
hold:

(a) If T ⩾ ℓ + 1, then ℓ ⩾ q.

(b) If ℓ ⩾ q, then n−
∑q

i=1 δi ⩾ ℓ− q.
The proof of this theorem is given in Section 11.4.3.

Constructing a consistent system

Our second intermediate result concerns the question how to construct a system
consistent with the data from the given data (u[0,T −1], y[0,T −1]).

By (11.9), it follows that X[0,T ] is a state for the data (u[0,T −1], y[0,T −1]) if
and only if

rsp
[

X[1,T ]
Y[0,T −1]

]
⊆ rsp

[
X[0,T −1]
U[0,T −1]

]
, (11.17)

where we recall that the row space of a matrix M is denoted by rsp M . From
these definitions, it is clear that a data-consistent system can be obtained by
solving the linear equations (11.9) once a state for the data is constructed. In
the following, we show that for any data set (u[0,T −1], y[0,T −1]) one can always
construct a specific consistent system with

∑q
i=1 δi state variables. Moreover,

all consistent systems with
∑q

i=1 δi state variables have the same lag q.
Theorem 11.4. ∅ ̸= E(

∑q
i=1 δi) = E(q,

∑q
i=1 δi).

The constructive proof of this theorem (given in Section 11.5.2) provides a
novel iterative scheme to create a state from given input-output data.
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The shortest lag and the minimum number of states

We define the shortest lag ℓmin and the minimum number of states nmin of any
system consistent with the data (u[0,T −1], y[0,T −1]) as follows:

ℓmin := min{ℓ ⩾ 0 | ∃n ⩾ 0 such that E(ℓ, n) ̸= ∅} (11.18)
nmin := min{n ⩾ 0 | E(n) ̸= ∅}. (11.19)

These integers admit a remarkably simple characterization in terms of δk and q,
as defined earlier.

Theorem 11.5. It holds that ℓmin = q and nmin =
∑ℓmin

i=1 δi. Further, E(nmin) =
E(ℓmin, nmin) ⊂ O.

Proof. From Theorem 11.4, we see that q ⩾ ℓmin and
∑q

i=1 δi ⩾ nmin. To prove
the first part of the theorem, it is enough to show the reverse inequalities hold.
To do so, note that T ⩾ q + 1 due to the definition of q in (11.16). As such, we
see that T ⩾ ℓmin + 1. Since E(ℓmin, n) ̸= ∅ for some n due to the definition of
ℓmin in (11.18), Theorem 11.3.(a) yields ℓmin ⩾ q and hence ℓmin = q. Due to the
definition of nmin in (11.19), E(ℓ, nmin) ̸= ∅ for some ℓ. Then, Theorem 11.3.(b)
implies that nmin −

∑ℓmin
i=1 δi ⩾ ℓ − ℓmin ⩾ 0. This proves nmin ⩾

∑ℓmin
i=1 δi and

hence nmin =
∑ℓmin

i=1 δi.
To prove the second claim, first observe that E(nmin) = E(ℓmin, nmin) readily

follows from Theorem 11.4. Therefore, it remains to prove that E(nmin) ⊂ O. To
do so, suppose, on the contrary, that there is an unobservable system in E(nmin).
Then, a straightforward Kalman decomposition argument yields a consistent
system with state-space dimension strictly less than nmin. This would, however,
contradict the definition of nmin in (11.19). Consequently, all systems in E(nmin)
are observable, that is E(nmin) ⊂ O. □

Sharpening the upper bound on the true lag

Let ℓ and n be the lag and state-space dimension of some consistent system.
Then, combining Theorems 11.3.(b) and 11.5 leads to the following immediate
but rather crucial inequality:

ℓ ⩽ n− nmin + ℓmin. (11.20)

In particular, this inequality implies that

Ld
+ := N+ − nmin + ℓmin

is an upper bound for the lag of every consistent system with at most N+ states.
This upper bound, which is purely determined by the data and N+, may help
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us to sharpen the upper bound on the lag, L+. Indeed, we can replace L+ by
the actual upper bound on the lag

La
+ := min(L+, Ld

+)

since it follows from (11.20) that

E[L−,L+],[N−,N+] = E[L−,La
+],[N−,N+]. (11.21)

Necessary and sufficient conditions

The following theorem provides necessary and sufficient conditions for the data
to be informative for system identification.

Theorem 11.6. The data (u[0,T −1], y[0,T −1]) are informative for system identi-
fication within S[L−,L+],[N−,N+] ∩M if and only if the following conditions hold:

ℓmin ⩾ L− (11.22a)
nmin ⩾ N− (11.22b)

T ⩾ La
+ + (La

+ + 1)m + nmin (11.22c)
rank HLa

++1 = (La
+ + 1)m + nmin. (11.22d)

Moreover, if the conditions in (11.22) are satisfied, then

ℓtrue = ℓmin (11.23a)
ntrue = nmin (11.23b)

E[L−,L+],[N−,N+] ∩M = E(nmin). (11.23c)

This theorem presents a truly data-based necessary and sufficient condition
for informativity for system identification. Indeed, one only needs to compute
ℓmin and nmin directly from the data via Theorem 11.5 to verify the presented
conditions.

Several remarks discussing the consequences of Theorem 11.6 and its relation
to existing results are in order.

Remark 11.7. As one might expect, informativity for system identification re-
quires a certain rank condition on data Hankel matrices. What is truly remark-
able, however, is that the depth of the Hankel matrix, which plays a pivotal
role in determining whether the data are rich enough for system identification,
depends not only on the prior knowledge of the system but also on the given
data. Indeed, we recall that La

+ depends on nmin and ℓmin, which are, in turn,
computed using the data.
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Remark 11.8. Theorem 11.6 is applicable even if one of the upper bounds is
not explicitly known. Indeed, if only the upper bound L+ on the lag is known
but an upper bound on the state-space dimension is not, one can fix N+ = pL+
since n ⩽ pℓ for any observable system in S(ℓ, n). For the choice N+ = pL+,
note that

N+ − nmin + ℓmin ⩾ pL+ − pℓmin + ℓmin ⩾ L+

where the first inequality follows from the fact that nmin ⩽ pℓmin as E(ℓmin, nmin)
⊂ O due to Theorem 11.5, while the second inequality follows from L+ ⩾ ℓtrue ⩾
ℓmin. As such, if N+ = pL+ then La

+ = L+.
Conversely, if the upper bound N+ on the state-space dimension is known

but an upper bound on the lag is not, one can fix L+ = N+ since the lag of a
system cannot exceed its state-space dimension. For the choice N+ = L+, note
that

L+ ⩾ L+ − nmin + ℓmin = N+ − nmin + ℓmin

where the inequality follows from the fact that nmin ⩾ ℓmin. Therefore, if L+ =
N+ then La

+ = Ld
+.

Remark 11.9. Proposition 11.2 can be applied only if the data length is at
least L+ + (N+ + L+ + 1)m + N+ whereas Theorem 11.6 can be applied if the
data length is at least La

+ + (La
+ + 1)m + ntrue. The difference between these

data lengths can be significant, as illustrated further in Section 11.3.

Remark 11.10. Even though it is not explicit in the statement of Theorem 11.6,
one can utilize (11.23c) and the constructive proof of Theorem 11.4 to build,
from given informative data, a consistent system isomorphic to the true sys-
tem. This will be illustrated by an example after the proof of Theorem 11.4 in
Section 11.5.3.

Remark 11.11. The lower bounds of the true lag and state-space dimension
do not play any role in informativity of the data. To see this, note that if
the data are informative within S[L−,L+],[N−,N+] ∩M then we have necessarily
ℓtrue = ℓmin and ntrue = nmin due to (11.23a) and (11.23b). As such, the
same data are informative within S[0,L+],[0,N+] ∩M. Conversely, if the data are
informative within S[0,L+],[0,N+] ∩M so they are within S[L−,L+],[N−,N+] ∩M
since the latter set is a subset of the former.

Before proceeding to prove the main results, we illustrate them by an exam-
ple.
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11.3 Illustrative example

Consider the true system (11.7) where ntrue = 3, m = 2, p = 2, and

[
Atrue Btrue
Ctrue Dtrue

]
=


0 1 0 1 0
0 0 1 0 1
0 0 0 0 1
1 0 0 1 0
0 1 0 0 0

 .

Note that ℓtrue = 2. Consider the input-output data

[
U[0,13]

Y[0,13]

]
=


1 1 1 0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 1 1 1 1 1 1 1 1 0 0
2 3 2 1 0 1 2 3 3 2 2 2 3 4
1 0 0 0 1 2 2 2 2 2 2 2 2 1

 .

One can verify that (11.8) is satisfied with the state data

X[0,14] =

 1 2 1 1 0 1 2 2 3 2 2 2 2 3 2
1 0 0 0 1 2 2 2 2 2 2 2 2 1 0
0 0 0 0 1 1 1 1 1 1 1 1 1 0 0

 .

As such, the input-output data are generated by the true system. Table 11.1
presents the values of δk integers, ℓmin, and nmin for different choices of T . The
values of δk that are not indicated in the table are zero, i.e., δk = 0 for every
T ∈ [4, 14] and k ∈ [4, T ].

T 1 2 [3, 5] [6, 14]
δ0 2 2 2 2
δ1 0 1 2 2
δ2 0 0 1
δ3 0 0

ℓmin 0 1 1 2
nmin 0 1 2 3

Table 11.1: δk integers, ℓmin, and nmin for different choices of T

In case L+ = ℓtrue and N+ = ntrue, a necessary condition for informativity is
that T ⩾ ℓtrue+(ℓtrue+1)m+ntrue due to the condition (11.22c) of Theorem 11.6.
Therefore, we see that the data (u[0,T −1], y[0,T −1]) cannot be informative if T <
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11 for any choice of L+ and N+. Table 11.2 indicates the informativity of the
data (by the symbol ‘✓’) inferred by applying Theorem 11.6 for different choices
of L+, N+, and T . As mentioned in Remark 11.9, the fundamental lemma
requires significantly more data than Theorem 11.6. Indeed, the input u[0,T −1]
is not persistently exciting of sufficiently high order for any of the values of T
reported in Table 11.2. For example, in the case that L+ = 2 and N+ = 3, the
excitation condition of the fundamental lemma requires T ⩾ L+ + (N+ + L+ +
1)m + N+ = 17 samples. In the case that L+ = N+ = 4, inferring informativity
through the fundamental lemma requires at least 26 data points. Note that in
the former case, informativity can already be verified via Theorem 11.6 using
T = 11 samples, while in the latter case this is possible using T = 14 samples.

T

L+ N+ Ld
+ La

+ 11 12 13 14
2 3 2 2 ✓ ✓ ✓ ✓

2 4 3 2 ✓ ✓ ✓ ✓

2 5 4 2 ✓ ✓ ✓ ✓

2 6 5 2 ✓ ✓ ✓ ✓

3 3 2 2 ✓ ✓ ✓ ✓

3 4 3 3 ✓

3 5 4 3 ✓

3 6 5 3 ✓

4 4 3 3 ✓

Table 11.2: Informativity of the data for different bounds and T

11.4 Lag structures of consistent systems

In this section we provide a proof of Theorem 11.3. To do this, we need to
introduce the notion of lag structure and relate it to the integers δk.

11.4.1 The lag structure of a system

Let [ A B
C D ] ∈ S(ℓ, n). Recall that the depth-k observability matrix Ωk was defined

in (11.2). Now, for k ⩾ 0, define the integers ρk by

ρk :=
{

p if k = 0
rank Ωk − rank Ωk−1 if k ⩾ 1.
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We refer to the sequence (ρk)k∈N as the lag structure of the system [ A B
C D ]. Note

that the integers ρk for k ∈ N are related to a specific system. If necessary to
resolve ambiguities, we use the notation ρk(C, A).

The following properties of lag structures will be employed later.

Lemma 11.12. Let [ A B
C D ] ∈ S(ℓ, n) and let (ρk)k∈N be its lag structure. The

following statements hold:

(a) p ⩾ ρk ⩾ 0 for all k ⩾ 0.

(b) ρℓ ⩾ 1 and ρk+1 = 0 for all k ⩾ ℓ.

(c) n ⩾
∑ℓ

i=1 ρi and the inequality holds as equality if (C, A) is observable.

(d) ρk ⩾ ρk+1 for all k ⩾ 0.

Proof. The statements (a) and (b) readily follow from the definitions of ρk

and the lag. To prove (c), note that rank Ωℓ =
∑ℓ

i=1 ρi. This proves (c) since
n ⩾ rank Ωℓ and the inequality holds as equality if the pair (C, A) is observable.

To prove (d), we first note that the statement follows from (a) if k = 0.
Therefore, in what follows let k ⩾ 1. Note that rsp Ωk = rsp Ωk−1 + rsp CAk−1

since
Ωk =

[
Ωk−1

CAk−1

]
.

As such, we have rank Ωk = rank Ωk−1 + rank CAk−1 − dimVk where Vk =
rsp Ωk−1 ∩ rsp CAk−1. This leads to the following alternative characterization
of ρk:

ρk = rank CAk−1 − dimVk. (11.24)
Now, observe that CAk = CAk−1A. Application of the rank-nullity theorem to
the latter yields

rank CAk−1 = rank CAk + dimWk (11.25)
whereWk = rsp CAk−1∩ lker A, and where we recall that lker M = {x ∈ R1×m |
xM = 0} denotes the left kernel of a matrix M ∈ Rm×n. By combining (11.24)
and (11.25), we obtain

ρk − ρk+1 = dimWk + dimVk+1 − dimVk.

Let Zk be a subspace such that Vk = (Vk ∩Wk)⊕Zk. Then, we have

ρk − ρk+1 ⩾ dimVk+1 − dimZk. (11.26)

Let d = dimZk and ηi with i ∈ [1, d] be a basis for Zk. From the definition of
Zk, it readily follows that ηiA are linearly independent and

ηiA ∈ rsp Ωk−1A ∩ rsp CAk ⊆ rsp Ωk ∩ rsp CAk = Vk+1.
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Therefore, dimZk ⩽ dimVk+1. Hence, it follows from (11.26) that ρk ⩾ ρk+1.
This proves the lemma. □

11.4.2 Lag structures and δk integers

Let [ A B
C D ] ∈ S(n). For k ⩾ 0, define the k-th controllability matrix, and the k-th

system matrix, respectively, by

Γk :=
{

0n,0 if k = 0[
Ak−1B Γk−1

]
if k ⩾ 1

(11.27)

Θk :=


00,0 if k = 0[

Θk−1 0
CΓk−1 D

]
if k ⩾ 1.

(11.28)

Note that the system matrix Θk is a block Toeplitz matrix constructed from the
first k Markov parameters of the system (11.1).

Given a state sequence X[0,T ] for a consistent system [ A B
C D ] ∈ E(n), the data

Hankel matrices Hk and Gk are related to the observability and system matrices
as follows:

Hk =
[
Hk(u[0,T −1])
Hk(y[0,T −1])

]
= Φk

[
X[0,T −k]

Hk(u[0,T −1])

]
(11.29a)

Gk =
[

Hk(u[0,T −1])
Hk−1(Y[0,T −2])

]
= Ψk

[
X[0,T −k]

Hk(u[0,T −1])

]
(11.29b)

where

Φk :=
[

0 I
Ωk Θk

]
and Ψk :=

 0 I 0
0 0 Im

Ωk−1 Θk−1 0

 . (11.30)

The following result relates the integers δk (defined in terms of the data matrices
Hk and Gk only) and the integers ρk (defined by the matrices C and A of a
specific consistent system).

Lemma 11.13. Let (ρk)k∈N be the lag structure of a consistent system. For
every k ∈ [1, T ], ρk ⩾ δk.

Proof. Let k ∈ [1, T ]. By applying the rank-nullity theorem to (11.29), we see
that

rank Hk = rank Φk − dim(rsp Φk ∩ lker Jk) (11.31)
rank Gk = rank Ψk − dim(rsp Ψk ∩ lker Jk) (11.32)



State construction 255

where
Jk :=

[
X[0,T −k]

Hk(u[0,T −1])

]
.

Since rank Φk−rank Ψk = rank Ωk−rank Ωk−1, subtracting (11.32) from (11.31)
yields that rank Hk − rank Gk is equal to

rank Ωk − Ωk−1 − dim(rsp Φk ∩ lker Jk) + dim(rsp Ψk ∩ lker Jk). (11.33)

Due to the definitions in (11.30), rsp Ψk ⊆ rsp Φk and therefore we have that
dim(rsp Ψk ∩ lker Jk) ⩽ dim(rsp Φk ∩ lker Jk). We conclude from the expression
for rank Hk − rank Gk in (11.33) that ρk ⩾ δk. This proves the lemma. □

Now, we are ready to prove Theorem 11.3.

11.4.3 Proof of Theorem 11.3

Let [ A B
C D ] ∈ E(ℓ, n) and let (ρk)k∈N be the lag structure of the system [ A B

C D ].
To prove (a), note that ρℓ+1 = 0 due to Lemma 11.12.(b). Since T − 1 ⩾ ℓ by
hypothesis, Lemma 11.13 and (11.14) imply that δℓ+1 = 0. Then, we see that
ℓ ⩾ q from the definition of q in (11.16).

To prove (b), note that

n−
q∑

i=1
δi ⩾

ℓ∑
i=1

ρi −
q∑

i=1
δi (11.34)

due to Lemma 11.12.(c). Therefore, (b) readily follows from Lemma 11.13 in
case ℓ = q. Suppose that ℓ > q. Note that

ℓ∑
i=1

ρi −
q∑

i=1
δi ⩾

ℓ∑
i=q+1

ρi ⩾ ℓ− q

where the first inequality follows from Lemma 11.13, and the second from
the statements (b) and (d) of Lemma 11.12. Consequently, (b) follows from
(11.34). ■

11.5 State construction

In this section, we present an iterative method to construct a state sequence
from given input-output data. This approach distinguishes itself from state
reconstruction methods in subspace identification [115] by being applicable to
any data set (without requiring rank conditions). Apart from being interesting
by itself, the procedure will be instrumental in proving Theorem 11.4.
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11.5.1 On the left kernels of data Hankel matrices

The integers δk obtained from data via (11.13) are intimately related to certain
subspaces of the left kernels of data Hankel matrices. To elaborate further, we
first introduce a shift operator on subspaces. Let V ⊆ R1×κ(m+p) be a subspace
where κ ∈ Z+. Define σV as the subspace of all vectors of the form[

01×m v1 01×p v2
]

where v1 ∈ R1×κm and v2 ∈ R1×κp satisfy[
v1 v2

]
∈ V.

By convention, σ0V := V and σkV = σ(σk−1V) for k ⩾ 1. In what follows, we
will use the shorthand notation 0p := {01×p}. The definitions of Hk and Gk

readily yield
lker Gk × 0p ⊆ lker Hk (11.35)

for all k ∈ [1, T ]. Further, it follows from the definition of σ and the Hankel
structure that if T ⩾ 2, then for all k ∈ [1, T − 1]

σ lker Hk ⊆ lker Hk+1 (11.36)
σ(lker Gk × 0p) ⊆ lker Gk+1 × 0p (11.37)

σ lker Hk ∩ (lker Gk+1 × 0p) = σ(lker Gk × 0p). (11.38)

The following result shows that lker Hk can be written into a direct sum of
lker Gk × 0p and shifts of certain subspaces.

Lemma 11.14. For k ∈ [1, T ], there exist subspaces Sk ⊆ R1×k(m+p) satisfying

lker Hk =
(

k⊕
i=1

σk−iSi

)
⊕ (lker Gk × 0p) (11.39)

and dimSk = δk−1 − δk.

Proof. First, we want to prove the existence of subspaces satisfying (11.39).
This will be done by induction on k. For k = 1, we see from (11.35) that there
exists a subspace S1 ⊆ R1×(m+p) such that

lker H1 = S1 ⊕ (lker G1 × 0p) .

If T = 1, there is nothing more to prove. Suppose that T ⩾ 2. Let k ∈ [1, T − 1]
and assume that there exist subspaces Si ⊆ R1×i(m+p) with i ∈ [1, k] satisfying

lker Hk =
(

k⊕
i=1

σk−iSi

)
⊕ (lker Gk × 0p) . (11.40)
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It follows from (11.35) and (11.36) that

σ lker Hk + (lker Gk+1 × 0p) ⊆ lker Hk+1.

Therefore, there exists a subspace Sk+1 ⊆ R1×(k+1)(m+p) such that

lker Hk+1 =Sk+1 ⊕ (σ lker Hk + (lker Gk+1 × 0p)) . (11.41)

Given subspaces V1,V2,V3 with V1 ∩V2 = {0} and (V1 +V2)∩V3 = V2, it holds
that V1 + V2 + V3 = V1 ⊕ V3. Take

V1 = σ(
k⊕

i=1
σk−iSi), V2 = σ(lker Gk × 0p), and V3 = lker Gk+1 × 0p.

Note that V1 ∩ V2 = {0} due to (11.40) and (V1 + V2) ∩ V3 = V2 due to (11.38).
Therefore, we see from (11.40) and (11.41) that

lker Hk+1 =
(

k+1⊕
i=1

σk+1−iSi

)
⊕ (lker Gk+1 × 0p) .

This proves, by induction on k, that there exist subspaces Sk such that (11.39)
holds. To complete the proof, it remains to show that dimSk = δk−1 − δk for
k ∈ [1, T ]. Let k ∈ [1, T ] and observe that (11.39) yields

dim lker Hk =
k∑

i=1
dimSi + dim lker Gk.

From the rank-nullity theorem, we conclude that

k∑
i=1

dimSi = p− δk = δ0 − δk.

Therefore, dimS1 = δ0 − δ1 and

dimSk =
k∑

i=1
dimSi −

k−1∑
i=1

dimSi = δk−1 − δk

for all k ∈ [2, T ]. □

Now, we are ready to prove Theorem 11.4.
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11.5.2 Proof of Theorem 11.4

We first show that E(
∑q

i=1 δi) ̸= ∅ by finding a state X[0,T ] ∈ R
∑q

i=1
δi×(T +1)

for the data (u[0,T −1], y[0,T −1]). For this, we need a bit of preparation.
Let the subspaces Sk ⊆ R1×k(m+p) with k ∈ [1, T ] be as in Lemma 11.14.

Also, denote their dimension by sk := dimSk. For i ∈ [1, q +1], let Qi,j ∈ Rsi×m

and Pi,j ∈ Rsi×p with j ∈ [1, i] be such that the rows of the matrix

Ri :=
[
Qi,1 Qi,2 · · · Qi,i Pi,1 Pi,2 · · · Pi,i

]
form a basis for Si. Note that Ri ∈ Rsi×i(m+p).

Since Si ⊆ lker Hi due to (11.39), we have RiHi = 0 and hence

i∑
j=1

Qi,jU[j−1,T −1−i+j] + Pi,jY[j−1,T −1−i+j] = 0. (11.42)

Due to Lemma 11.14,
∑q+1

i=1 si = δ0 − δq+1 = p since δ0 = p and δq+1 = 0 by
definition. Therefore,

Π := col(P1,1, P2,2, . . . , Pq+1,q+1)

is a p× p matrix.
We claim that Π is nonsingular. To see this, let η ∈ R1×p be such that

ηΠ = 0. Define

R :=


0 0 · · · 0 Q1,1 0 0 · · · 0 P1,1
0 0 · · · Q2,1 Q2,2 0 0 · · · P2,1 P2,2
...

...
...

...
...

...
...

...
Qq+1,1 Qq+1,2 · · · Qq+1,q Qq+1,q+1 Pq+1,1 Pq+1,2 · · · Pq+1,q Pq+1,q+1


and observe that Π is the last block-column of R.

From the definition of Qi,j and Pi,j , it is straightforward to verify that the
rows of R form a basis for the subspace

⊕q+1
i=1 σ(q+1−i)Si. Therefore, ηR ∈⊕q+1

i=1 σ(q+1−i)Si. This means that RHq+1 = 0. Since ηΠ = 0, the last p entries
of ηR are zero. Therefore, ηR ∈ (lker Gq+1 × 0p) and hence

ηR ∈

(
q+1⊕
i=1

σ(q+1−i)Si

)
∩ (lker Gq+1 × 0p) .

Since the latter intersection of subspaces is equal to {0} due to (11.39), we
conclude that ηR = 0. Since the rows of R are linearly independent, we see that
η = 0 and thus Π ∈ Rp×p is nonsingular.
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We now distinguish two cases: q = 0 and q ⩾ 1.
For the case q = 0, we have s1 = δ0 − δ1 = p and Π = P1,1. It follows from

(11.42) with i = 1 and nonsingularity of P1,1 that

Y[0,T −1] = −P −1
1,1 Q1,1U[0,T −1].

Consequently, the memoryless model associated with −P −1
1,1 Q1,1 is consistent

with the data, that is −P −1
1,1 Q1,1 ∈ E(0). Together with

∑q
i=1 δi = 0, this proves

the claim for the case q = 0.
For the case q ⩾ 1, we first construct some auxiliary sequences from the data

and then we show that such sequences can be used to form a state for the data
(u[0,T −1], y[0,T −1]).

Let i ∈ [2, q + 1]. For k ∈ [2, i] define xi,k(0) ∈ Rsi by

xi,k(0) :=
i∑

j=k

(Qi,ju(j − k) + Pi,jy(j − k)). (11.43)

Define Xi,k
[1,T ] ∈ Rsi×T by

Xi,2
[1,T ] := −Qi,1U[0,T −1] − Pi,1Y[0,T −1] (11.44)

for k = 2 and by

Xi,k
[1,T ] := Xi,k−1

[0,T −1] −Qi,k−1U[0,T −1] − Pi,k−1Y[0,T −1] (11.45)

for k ∈ [3, i].
Finally, define

Xi
[0,T ] := col(Xi,2

[0,T ], Xi,3
[0,T ], . . . , Xi,i

[0,T ]) ∈ R(i−1)si×(T +1)

and
X[0,T ] := col(X2

[0,T ], X3
[0,T ], . . . , Xq+1

[0,T ]) ∈ R
(∑q+1

i=2
(i−1)si

)
×(T +1)

.

Now, we claim that

Xi,i
[0,T −1] = Qi,iU[0,T −1] + Pi,iY[0,T −1]. (11.46)

To see this, note first that

xi,i(0) = Qi,iu(0) + Pi,iy(0) (11.47)

due to (11.43). Now, we consider the case i = 2. From (11.44), we see that

X2,2
[1,T −1] = −Q2,1U[0,T −2] − P2,1Y[0,T −2].
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In view of (11.42),

X2,2
[1,T −1] = Q2,2U[1,T −1] + P2,2Y[1,T −1].

Together with (11.47), this shows that (11.46) holds for i = 2.
We now prove (11.46) for the case i > 2. Let α ∈ [1, T − 1]. Consider first

the case α ∈ [1, i− 2]. Note that

xi,i(α)− xi,i−α(0) =
i∑

j=i−α+1
(xi,j(α− i + j)− xi,j−1(α− i + j − 1))

= −
i∑

j=i−α+1
(Qi,j−1u(α− i + j − 1) + Pi,j−1y(α− i + j − 1))

(11.48)

where the second equality follows from (11.45). Moreover, (11.43) with k = i−α
implies that

xi,i−α(0) =
i∑

j=i−α

(Qi,ju(j − (i− α)) + Pi,jy(j − (i− α))) .

Now, we see from (11.48) that

xi,i(α) =
i∑

j=i−α

(Qi,ju(α− i + j) + Pi,jy(α− i + j))

−
i∑

j=i−α+1
(Qi,j−1u(α− i + j − 1) + Pi,j−1y(α− i + j − 1))

= Qi,iu(α) + Pi,iy(α).

Together with (11.47), this proves that

Xi,i
[0,i−2] = Qi,iU[0,i−2] + Pi,iY[0,i−2]. (11.49)

Now, consider the case α ∈ [i− 1, T − 1]. Note that

xi,i(α)− xi,2(α− i + 2) =
i∑

k=3
(xi,k(α− i + k)− xi,k−1(α− i + k − 1))

= −
i∑

k=3
(Qi,k−1u(α− i + k − 1) + Pi,k−1y(α− i + k − 1))
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where the second equality follows from (11.45). Now, we use (11.44) to obtain

xi,i(α)=−
i∑

k=2
(Qi,k−1u(α− i + k − 1) + Pi,k−1y(α− i + k − 1)),

and use (11.42) to conclude that

xi,i(α) = Qi,iu(α) + Pi,iy(α).

Hence, we see that

Xi,i
[i−1,T −1] = Qi,iU[i−1,T −1] + Pi,iU[i−1,T −1].

Together with (11.49), this proves that (11.46) holds.
Since Π is nonsingular, Pi,i has full row rank. Therefore, (11.46) implies that

rsp Y[0,T −1] ⊆ rsp
[
X[0,T −1]
U[0,T −1]

]
.

Then, it follows from (11.44) and (11.45) that

rsp X[1,T ] ⊆ rsp
[
X[0,T −1]
U[0,T −1]

]
.

Therefore, we see from (11.17) that X[0,T ] is a state for (u[0,T −1], y[0,T −1]). Note
that the number of rows of X[0,T ] equals

∑q+1
i=2 (i−1)si. Since sk = δk−1−δk due

to Lemma 11.14 and since δq+1 = 0, we conclude that
∑q+1

i=2 (i− 1)si =
∑q

i=1 δi.
Therefore, E(

∑q
i=1 δi) ̸= ∅.

To prove the rest, note that E(q,
∑q

i=1 δi) ⊆ E(
∑q

i=1 δi) by definition. There-
fore, it is enough to show that the reverse inclusion holds. To do so, let
[ A B

C D ] ∈ E(
∑q

i=1 δi) and ℓ = ℓ(C, A). Suppose that ℓ < q. Since T − 1 ⩾ q
by the definition of q in (11.16), we have T > ℓ + 1. Then, Theorem 11.3.(a)
implies that ℓ ⩾ q. This contradicts ℓ < q. As such, we conclude that ℓ ⩾ q.
However, Theorem 11.3.(b) implies that q ⩾ ℓ. Hence, we see that ℓ = q. This
means that E(

∑q
i=1 δi) ⊆ E(q,

∑q
i=1 δi) which completes the proof. ■

11.5.3 Illustrative example of state construction

To illustrate the constructive proof of Theorem 11.4, we will build a state for
the data given in Section 11.3 and for the choices T = 5 and T = 14.

For T = 5, δ0 = δ1 = 2, and δk = 0 for k ∈ [2, 5] (see Table 11.1 in
Section 11.3). Then, we see from Lemma 11.14 that dimS1 = 0 and dimS2 = 2.
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Therefore, P1,1 and Q1,1 are void matrices whereas one can choose the following
basis matrix for S2:[

Q2,1 Q2,2 P2,1 P2,2
]

=
[
−3 −1 −2 0 1 0 1 0

0 −1 0 0 0 0 0 1

]
.

In view of (11.43)-(11.44), these choices yield the state

X[0,5] =
[

0 1 0 1 0 1
1 0 0 0 1 1

]
.

By solving the linear equations (11.9), we obtain the following consistent system:

[
A1 B1
C1 D1

]
=


−1 0 1 1

0 0 0 1
1 0 2 0
0 1 0 0

 . (11.50)

Clearly, the data (u[0,4], y[0,4]) are not informative for system identification as
there exists a minimal consistent system with two states.

For T = 14, δ0 = δ1 = 2, δ2 = 1, and δk = 0 for k ∈ [3, 14] (see Table 11.1 in
Section 11.3). Also, note that the data (u[0,13], y[0,13]) are informative for system
identification for all the choices of L+ and N+ given in Table 11.2. As such, we
can employ Theorem 11.4 to identify an isomorphic system to the true one. To
do so, we first observe from Lemma 11.14 that dimS1 = 0, dimS2 = 1, and
dimS3 = 1. Therefore, P1,1 and Q1,1 are void matrices whereas one can choose
the following basis matrices for S2 and S3:[

Q2,1 Q2,2 P2,1 P2,2
]

=
[
−1 0 −1 0 0 −1 1 0

]
.[

Q3,1 Q3,2 Q3,3 P3,1 P3,2 P3,3
]

=
[

0 −1 0 −1 0 0 0 0 0 0 0 1
]

.

In view of (11.43)-(11.45), these choices yield the state

X[0,14] =

 1 2 1 1 0 1 2 2 3 2 2 2 2 3 2
0 0 0 0 1 1 1 1 1 1 1 1 1 0 0
1 0 0 0 1 2 2 2 2 2 2 2 2 1 0

 .

By solving the linear equations (11.9), we obtain the following consistent system:

[
A2 B2
C2 D2

]
=


0 0 1 1 0
0 0 0 0 1
0 1 0 0 1
1 0 0 1 0
0 0 1 0 0

 .

One can easily verify that this system is isomorphic to the true system.
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11.6 Proving the sufficiency part of the main result

In this section we prove the sufficiency part of Theorem 11.6. To do so, we need
auxiliary results on the ranks of state-input data Hankel matrices.

11.6.1 On the ranks of state-input data Hankel matrices

Let [ A B
C D ] ∈ E(n) and let X[0,T ] be a state for [ A B

C D ]. Define

Jk(X) :=
[

X[0,T −k]
Hk(u[0,T −1])

]
for k ∈ [1, T ]. An immediate consequence of the Hankel structure of these
matrices is that

lker Jk−1(X)× 0m ⊆ lker Jk(X) (11.51)

for every k ∈ [2, T ].
Next, we investigate the relationships between ranks of Hk and Jk(X) ma-

trices. Recall from (11.29) that

Hk = ΦkJk(X) and Gk = ΨkJk(X). (11.52)

Lemma 11.15. Suppose that T ⩾ ℓ + 1. Let [ A B
C D ] ∈ E(ℓ, n) and X[0,T ] be a

state for [ A B
C D ]. Then, the following statements hold

(a) If (C, A) is observable, then rank Jk(X) = rank Hk for all k ∈ [d, T ] where
d = max(1, ℓ).

(b) If Ji(X) has full row rank for some i ∈ [1, T ], then for each k ∈ [1, i] Jk(X)
has full row rank, rank Hk = km+rank Ωk, and rank Gk = km+rank Ωk−1.

Proof. Statement (a) readily follows from the fact that Φk has full column rank
for k ⩾ d whenever (C, A) is observable. To prove (b), note first that Jk(X)
has full row rank whenever k ∈ [1, i] due to (11.51). For the rest, observe that
(11.29) implies rank Hk = rank Φk and rank Gk = rank Ψk whenever Jk(X)
has full row rank. From the definitions, we have rank Φk = km + rank Ωk and
rank Ψk = km + rank Ωk−1 which completes the proof. □

An interesting and useful consequence of the above lemma is related to the
isomorphism property.

Lemma 11.16. Suppose that T ⩾ ℓ + 1. Let [ A B
C D ] ∈ E(ℓ, n) ∩ O and X[0,T ]

be a state for [ A B
C D ]. If Jℓ+1(X) has full row rank, then E(ℓ, n) ∩ O has the

isomorphism property.
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Proof. From Lemma 11.15.(b), we see that rank Hℓ+1 = (ℓ + 1)m + n. Let
i ∈ [1, 2],

[
Ai Bi

Ci Di

]
∈ E(ℓ, n)∩O and let Xi

[0,T ] ∈ Rn×(T +1) be a state for
[

Ai Bi

Ci Di

]
.

Also, let J i
k denote Jk(Xi). Let Ωi

k, Θi
k and Φi

k denote the observability, Toeplitz
and system matrix in (11.30) of system

[
Ai Bi

Ci Di

]
, respectively. Because of observ-

ability of the pair (Ci, Ai), the matrix Φi
ℓ+1 has full column rank. Therefore, it

follows from (11.52) that

ker Hℓ+1 = ker J1
ℓ+1 = ker J2

ℓ+1. (11.53)

Moreover, it follows from the same equation and the fact that rank Hℓ+1 = (ℓ +
1)m+n that both J1

ℓ+1 and J2
ℓ+1 have full row rank. Now, by (11.53), there exist

matrices S ∈ Rn×n, P ∈ Rn×(ℓ+1)m, Q ∈ R(ℓ+1)m×n and R ∈ R(ℓ+1)m×(ℓ+1)m

such that [
X2

[0,T −ℓ−1]
Hℓ+1(u[0,T −1])

]
=
[

S P
Q R

] [
X1

[0,T −ℓ−1]
Hℓ+1(u[0,T −1])

]
. (11.54)

Obviously, we also have that Hℓ+1(u[0,T −1]) = 0 ·X1
[0,T −ℓ−1] + I ·Hℓ+1(u[0,T −1]),

implying that [
Q R− I

] [ X1
[0,T −ℓ−1]

Hℓ+1(u[0,T −1])

]
= 0.

Since J1
ℓ+1 has full row rank, we conclude that Q = 0 and R = I. Next,

multiplying (11.54) from left by Φ2
ℓ+1 yields

Hℓ+1 = Φ2
ℓ+1

[
X2

[0,T −ℓ−1]
Hℓ+1(u[0,T −1])

]
=
[

0 I
Ω2

ℓ+1S Ω2
ℓ+1P + Θ2

ℓ+1

] [
X1

[0,T −ℓ−1]
Hℓ+1(u[0,T −1])

]
.

Using the facts that Hℓ+1 = Φ1
ℓ+1J1

ℓ+1 and J1
ℓ+1 has full row rank, we conclude

that [
0 I

Ω2
ℓ+1S Ω2

ℓ+1P + Θ2
ℓ+1

]
=
[

0 I
Ω1

ℓ+1 Θ1
ℓ+1

]
. (11.55)

In particular, this shows that

Ω1
ℓ+1 = Ω2

ℓ+1S. (11.56)
By observability of the pair (C1, A1), it follows from (11.56) that S is nonsingu-
lar. By inspection of the first p rows of (11.56), C1 = C2S. Moreover, note that
(11.56) implies that

Ω1
ℓA1 = Ω2

ℓA2S = Ω1
ℓS−1A2S.

Using the fact that Ω1
ℓ has full column rank, we obtain A1 = S−1A2S. Next, by

(11.55) it also follows that

Θ1
ℓ+1 −Θ2

ℓ+1 = Ω2
ℓ+1P. (11.57)
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Partition
P =

[
P1 · · · Pℓ Pℓ+1

]
,

where the matrix Pi has m columns for i = 1, 2, . . . , ℓ + 1. Recall that Θi
ℓ+1 is a

block Toeplitz matrix of the form

Θi
ℓ+1 =

[
Θi

ℓ 0
CiΓi

ℓ Di

]
,

where Γi
ℓ denotes the depth-ℓ controllability matrix of system

[
Ai Bi

Ci Di

]
. As a con-

sequence, the last m columns of Θ1
ℓ+1−Θ2

ℓ+1 contain zeros except for (possibly)
the last p rows. It thus follows from (11.57) and the fact that Ω2

ℓ has full column
rank that Pℓ+1 = 0. Therefore, D1 = D2. However, this implies that the last
2m columns of Θ1

ℓ+1 −Θ2
ℓ+1 only contain zeros, except for the last p rows. This

shows that also Pℓ = 0 and hence C1B1 = C2B2. Repeated application of this
argument results in Pi = 0 for i = 1, 2, . . . , ℓ + 1 and C1Ak

1B1 = C2Ak
2B2 for

k = 0, 1, . . . , ℓ− 1. Finally, the latter inequalities imply that

Ω1
ℓB1 = Ω2

ℓB2 = Ω1
ℓS−1B2,

which yields B1 = S−1B2. We conclude that the systems
[

Ai Bi

Ci Di

]
for i = 1, 2

are isomorphic, which completes the proof. □

In view of (11.51), the rank-nullity theorem implies that rank Jk−1(X)+m ⩾
rank Jk(X) for all k ∈ [2, T ]. This relation between the ranks of two consecu-
tive Jk(X) matrices can be related to the controllability of the corresponding
consistent system.

Lemma 11.17. Let [ A B
C D ] ∈ E(ℓ, n) and X[0,T ] be a state for [ A B

C D ]. If for some
k ∈ [2, T ] rank Jk−1(X) + m = rank Jk(X) and Jk(X) does not have full row
rank, then (A, B) is not controllable.

Proof. Let k ∈ [2, T ] be such that

rank Jk−1(X) + m = rank Jk(X) (11.58)

and Jk(X) does not have full row rank. Now, define Ak ∈ R(n+km)×(n+km) and
Bk ∈ R(n+km)×m by

Ak :=

 A B 0
0 0 I(k−1)m

0m,n 0 0

 , Bk :=

 0
0

Im

 .

It can be easily shown using the Kalman controllability matrix of (Ak,Bk) that
the pair (A, B) is controllable if and only if (Ak,Bk) is controllable. Next, the
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relation X[1,T ] = AX[0,T −1] + BU[0,T −1] implies that

AkJk =

 X[1,T −k+1]
Hk−1(U[1,T −1])

0m,T −k+1

 .

Note that the matrix [
X[1,T −k+1]

Hk−1(U[1,T −1])

]
can be obtained from Jk−1(X) by deleting its first column. Hence, we see that

imAkJk(X) ⊆ im Jk−1(X)× Rm. (11.59)

By taking orthogonal complements on both sides of (11.51), we obtain im Jk(X) ⊆
im Jk−1(X)× Rm, and due to (11.58) it holds that

im Jk(X) = im Jk−1(X)× Rm. (11.60)

Therefore, it follows from (11.59) that Ak im Jk(X) ⊆ im Jk(X), i.e., im Jk(X)
is Ak-invariant. Furthermore, it is evident from (11.60) that imBk ⊆ im Jk(X).
Since the reachable subspace of the pair (Ak,Bk) is the smallest Ak-invariant
subspace containing imBk we see that

im
[
Bk AkBk · · · An+km−1

k Bk

]
⊆ im Jk(X).

Since Jk(X) does not have full row rank, the latter inclusion implies that

im
[
Bk AkBk · · · An+km−1

k Bk

]
̸= Rn+km,

i.e., the pair (Ak,Bk) is not controllable. We conclude that (A, B) is not con-
trollable, which completes the proof. □

11.6.2 Proof of Theorem 11.6: sufficiency part

In view of (11.21), proving sufficiency of Theorem 11.6 requires showing that
the conditions (11.22) imply:

(a) E[L−,La
+],[N−,N+] ∩M = E(ntrue) ∩M, and

(b) E(ntrue) ∩M has the isomorphism property.

To this end, we need some preparations.
To begin with, it is clear from the definitions of ℓmin and nmin that

E ∩ S(ℓ, n) = ∅



Proving the sufficiency part of the main result 267

whenever ℓ < ℓmin or n < nmin. Therefore, we see from (11.22a) and (11.22b)
that

E[L−,La
+],[N−,N+] = E[ℓmin,La

+],[nmin,N+]. (11.61)

Next, we compute the ranks of the data Hankel matrices Hk. Let [ A B
C D ] ∈

E(nmin) and let X[0,T ] ∈ Rnmin×(T +1) be a state for [ A B
C D ]. Note that

ℓmin ⩽ ℓtrue ⩽ L+ and ℓmin ⩽ Ld
+ = N+ − nmin + ℓmin.

As such, we have
ℓmin ⩽ La

+ = min(L+, Ld
+).

Due to Theorem 11.5, (C, A) is observable. Since m ⩾ 1, (11.22c) implies that
T ⩾ La

+ + 1. Therefore, it follows from Lemma 11.15.(a) that

rank Jk(X) = rank Hk

for every k ∈ [d, La
+ + 1] where d = max(1, ℓmin). In particular, we see from

(11.22d) that
rank JLa

++1(X) = (La
+ + 1)m + nmin

and hence JLa
++1(X) has full row rank. It then follows from Lemma 11.15.(b)

that
rank Jk(X) = rank Hk = km + nmin (11.62)

for every k ∈ [d, La
+ + 1].

Now, we claim that

E[ℓmin,La
+],[nmin,N+] ∩M ⊆ E(nmin) ∩M. (11.63)

Suppose first that N+ = nmin. Then, (11.63) follows from

E[ℓmin,La
+],[nmin,nmin] ⊆ E(nmin).

Suppose now that N+ > nmin. Let ℓ ∈ [ℓmin, La
+], n ∈ [nmin + 1, N+], and[

Â B̂
Ĉ D̂

]
∈ E(ℓ, n) ∩ O. Also, let X̂[0,T ] ∈ Rn×(T +1) be a state for

[
Â B̂
Ĉ D̂

]
. As

(Ĉ, Â) is observable and n ⩾ 1, we have that ℓ ⩾ 1. Since ℓ ⩾ ℓmin, we further
see that ℓ ⩾ d. Then, Lemma 11.15.(a) and (11.62) imply that

rank Jℓ(X̂) + m = rank Jℓ+1(X̂) = (ℓ + 1)m + nmin.

Since n > nmin, Jℓ+1(X̂) does not have full row rank. Then, Lemma 11.17
implies that (Â, B̂) is not controllable. Therefore, we see that E(ℓ, n) ∩M = ∅
whenever ℓ ∈ [ℓmin, La

+] and n ∈ [nmin + 1, N+]. Hence, (11.63) holds.



268 System identification

Note that E(ℓtrue, ntrue) ⊆ E[ℓmin,La
+],[nmin,N+]. Then, it follows from (11.63)

that

E(ℓtrue, ntrue) ∩M ⊆ E[ℓmin,La
+],[nmin,N+] ∩M

⊆ E(ℓmin, nmin) ∩M. (11.64)

Therefore, we see that

ℓtrue = ℓmin and ntrue = nmin, (11.65)

proving (11.23a) and (11.23b). Then, we can conclude from (11.64) and Theo-
rem 11.5 that

E(ℓtrue, ntrue) ∩M = E[ℓmin,La
+],[nmin,N+] ∩M

= E(ℓmin, nmin) ∩M = E(nmin) ∩M. (11.66)

Thus, condition (a) follows from (11.61), (11.65), and (11.66).
To show (b), note first that (11.62) and Lemma 11.16 imply that E(ℓmin, nmin)

∩ O has the isomorphism property. Since the true system is minimal, we see
that

E(ℓmin, nmin) ∩ O = E(ℓmin, nmin) ∩M. (11.67)
Then, it follows from (11.66) that (b) holds.

What remains to be proven is (11.23c). To do so, note first that Theorem 11.5
implies that

E(nmin) = E(ℓmin, nmin) ∩ O.

Then, we see from (11.66) and (11.67) that

E(nmin) = E[ℓmin,La
+],[nmin,N+] ∩M.

Therefore, (11.23c) follows from (11.21) and (11.61). ■

11.7 Proving the necessity part of the main result

To prove the necessity part of Theorem 11.6, we first present four auxiliary
lemmas. The first one deals with the construction of a consistent system with n
states from another one with n states.
Lemma 11.18. Suppose that [ A B

C D ] ∈ E(ℓ, n) ∩ O for some n ⩾ ℓ ⩾ 1. Let
X[0,T ] ∈ Rn×(T +1) be a state for [ A B

C D ]. Also, let d = min(ℓ, T − 1), ξ ∈ R1×n

and ηi ∈ R1×m with i ∈ [0, d] be such that

ξX[0,T −d−1] +
d∑

i=0
ηiU[i,T −d−1+i] = 0. (11.68)
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Let 0 ̸= ζ ∈ Rn be such that

CAiζ = 0 for i ∈ [0, ℓ− 2]. (11.69)

Define

Â = A + ζξ B̂ = B + E−1 (11.70)
Ĉ = C D̂ = D + CE0 (11.71)

where E0 and E−1 are determined by the recursion

Ed = 0n,m and Ei−1 = ÂEi + ζηi for i ∈ [0, d]. (11.72)

Then, the following statements hold:

(a)
[
Â B̂

Ĉ D̂

]
∈ E(ℓ, n) ∩ O.

(b) If
[
A B
C D

]
and

[
Â B̂

Ĉ D̂

]
are isomorphic, then

(i) ηi = 0 for every i ∈ [0, d],
(ii) ξAiB = 0 for every i ∈ [0, n− 1].

Proof. To prove (a), we first show that there exists X̂[0,T ] ∈ Rn×(T +1) satisfying

X̂[1,T ] = ÂX̂[0,T −1] + B̂U[0,T −1] (11.73)
Y[0,T −1] = ĈX̂[0,T −1] + D̂U[0,T −1]. (11.74)

We claim that X̂[0,T ] ∈ Rn×(T +1) defined by

X̂[0,T −d] := X[0,T −d] −
d−1∑
i=0

EiU[i,T −d+i] (11.75)

x̂(i + 1) := Âx̂(i) + B̂u(i) for i ∈ [T − d, T − 1] (11.76)

satisfies (11.73) and (11.74).
To prove this claim, let k ∈ [0, T − d− 1]. Note that

x̂(k +1) (11.75)= x(k +1)−
d−1∑
i=0

Eiu(k +1+ i) = Ax(k)+Bu(k)−
d−1∑
i=0

Eiu(k +1+ i)

and

Âx̂(k) + B̂u(k) (11.75)= Âx(k) + B̂u(k)−
d−1∑
i=0

ÂEiu(k + i).
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Using (11.70) and (11.72), one can verify that the difference between these two
expressions is equal to

ζξx(k) +
d∑

i=0
ζηiu(k + i).

Therefore, (11.68) implies that

X̂[1,T −d] = ÂX̂[0,T −d−1] + B̂U[0,T −d−1].

Together with (11.76), this proves (11.73).
Therefore, it remains to prove (11.74). First, we make a few crucial observa-

tions. To begin with, we have

CAℓ−1ζ ̸= 0 (11.77)

since (C, A) is observable and ζ ̸= 0. Also, it follows from (11.69) and (11.70)
that

CÂi = CAi for i ∈ [0, ℓ− 1] (11.78)

and CÂℓ = CAℓ + CAℓ−1ζξ. Further, observe that

CÂiζ = 0 (11.79)

for i ∈ [0, ℓ− 2] due to (11.69) and (11.78). Finally, it follows from the recursion
(11.72) that

Ei =
d−i−1∑

k=0
Âkζηi+k+1 (11.80)

for i ∈ [−1, d] and from (11.79) that

CEi = 0 for i ∈ [1, d]. (11.81)

To show (11.74), we first deal with the case d = 0. Since d = min(ℓ, T − 1)
and ℓ ⩾ 1, we see that T = 1 in this case. Then, it follows from (11.75) that
X̂[0,1] = X[0,1] and from (11.71)-(11.72) that D̂ = D. Since Ĉ = C due to
(11.71), we see that (11.74) is readily satisfied if d = 0.

Suppose now that d ⩾ 1. Note that

ĈX̂[0,T −d] + D̂U[0,T −d]
(11.71)= CX̂[0,T −d] + D̂U[0,T −d]

(11.75)&(11.81)= CX[0,T −d] − CE0U[0,T −d] + D̂U[0,T −d]
(11.71)= CX[0,T −d] + DU[0,T −d] = Y[0,T −d] (11.82)
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where the last equality follows from the fact that X is a state for the consistent
system [ A B

C D ]. Hence, we see that (11.74) is satisfied if d = 1.
Suppose that d ⩾ 2. In view of (11.82), what remains to be proven is that

Y[T −d+1,T −1] = ĈX̂[T −d+1,T −1] + D̂U[T −d+1,T −1]. (11.83)

To do so, let i ∈ [1, d− 1]. Define ŷ(T − d + i) := Ĉx̂(T − d + i) + D̂u(T − d + i)
and ∆(T − d + i) := ŷ(T − d + i)− y(T − d + i). Note that

x̂(T − d + i) = Âix̂(T − d) +
i−1∑
j=0

Âi−j−1B̂u(T − d + j)

x(T − d + i) = Aix(T − d) +
i−1∑
j=0

Ai−j−1Bu(T − d + j)

x̂(T − d) = x(T − d)−
d−1∑
j=0

Eju(T − d + j)

where the first equality follows from (11.76), the second from the fact that X
is a state for the data, and the third from (11.75). By using (11.70), (11.72),
(11.78), (11.79), and the fact that d ⩽ ℓ, we see that

∆(T − d + i) =
i∑

j=0
CÂi−jE0u(T − d + j)−

d−1∑
j=0

CÂiEju(T − d + j).

By using (11.79) and (11.80), one can prove by induction that

CÂiEj = CÂi−jE0 (11.84)

for all j ∈ [0, d− 1] and i ∈ [j, d− 1] as well as that

CÂiEj = 0 (11.85)

for all j ∈ [1, d− 1] and i ∈ [0, j − 1]. It follows from (11.84) that

i∑
j=0

CÂiEju(T − d + j) =
i∑

j=0
CÂi−jE0u(T − d + j).

Hence, we have

∆(T − d + i) = −
d−1∑

j=i+1
CÂiEju(T − d + j) (11.85)= 0.
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This proves (11.83) and hence (11.76) in view of (11.82). Therefore, we proved
that

[
Â B̂
Ĉ D̂

]
∈ E(n). Further, it follows from (11.78) and observability of (C, A)

that (Ĉ, Â) is also observable and ℓ(Ĉ, Â) = ℓ. Then, we have
[

Â B̂
Ĉ D̂

]
∈ E(ℓ, n)∩

O which proves (a).
To prove (b), note that

CE0 = 0 and CAiB = ĈÂiB̂ for all i ⩾ 0 (11.86)

since the two systems are isomorphic. The latter, together with (11.78), implies
that

CAiE−1 = 0
for all i ∈ [0, ℓ−1]. As (C, A) is observable and ℓ = ℓ(C, A), we see that E−1 = 0.
Since E−1 = ÂE0 + ζη0, (11.77) and (11.78) imply that

0 = CAiE−1 = CAi(ÂE0 + ζη0) = CAi+1E0 (11.87)

for all i ∈ [0, ℓ− 2]. As (C, A) is observable and ℓ = ℓ(C, A), (11.86) and (11.87)
imply that E0 = 0. Therefore, we have ζη0 = E−1 − ÂE0 = 0. Since ζ ̸= 0, this
yields η0 = 0. Note that

E0 =
ℓ−1∑
k=0

Âkζηk+1 = 0

due to (11.80). From (11.77) and (11.78), we have CÂℓ−1ζ ̸= 0. As such, the
vectors Âiζ with i ∈ [0, ℓ − 1] are linearly independent. Then, it follows from∑ℓ−1

k=0 Âkζηk+1 = 0 that ηi = 0 for every i ∈ [1, ℓ− 1]. Thus, we have proven (i).
To prove (ii), note first that B̂ = B as E−1 = 0. Then, we have

0 = C(sI − Â)−1B − C(sI −A)−1B = C(sI − Â)−1ζξ(sI −A)−1B

where the first equality follows from isomorphism, the second is evident. Since
C(sI − Â)−1ζ is a nonzero column vector, we see that ξ(sI −A)−1B = 0. This
proves (ii). □

Example 11.19. To illustrate Lemma 11.18 by an example, consider the data
given in Section 11.3. Also, consider the consistent system (11.50) for the data
(u[0,4], y[0,4]). Note that (11.68) is satisfied with ξ =

[
−1 −1

]
, η0 =

[
0 1
]
, and

η1 =
[
1 0
]
. Since the lag of the system (11.50) is 1, the choice ζ = col(1, 1)

satisfies (11.69). By applying Lemma 11.18, we see that the system

[
Â1 B̂1
Ĉ1 D̂1

]
=


−2 −1 −2 2
−1 −1 −2 2

1 0 3 0
0 1 1 0


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is consistent with the data with the state sequence

X[0,5] =
[
−1 0 −1 1 0 1

0 −1 −1 0 1 1

]
.

■
Next, the second auxiliary lemma presents a necessary condition for the

isomorphism property to hold.

Lemma 11.20. Suppose that n ⩾ ℓ ⩾ 0 and [ A B
C D ] ∈ E(ℓ, n)∩M. Let X[0,T ] ∈

Rn×(T +1) be a state for [ A B
C D ]. If E(ℓ, n) ∩M has the isomorphism property,

then T ⩾ ℓ + (ℓ + 1)m + n and Jℓ+1(X) has full row rank.

Proof. Suppose, first, that ℓ = n = 0. Since E(0, 0) ∩M has the isomorphism
property, U[0,T −1] = J1(X) must have full row rank and hence T ⩾ m.

Now, suppose that n ⩾ ℓ ⩾ 1. Let d = min(ℓ, T−1), ξ ∈ R1×n and ηi ∈ R1×m

with i ∈ [0, d] be vectors such that[
ξ η0 · · · ηd

]
∈ lker Jd+1(X).

Also, let ζ0 be a nonzero vector be such that CAiζ0 = 0 for i ∈ [0, ℓ − 2]. For
ε > 0, let

[
Âε B̂ε

Ĉε D̂ε

]
denote the consistent system obtained from Lemma 11.18

by taking ζ = εζ0. Since (A, B) is controllable, so is (Âε, B̂ε) for all sufficiently
small ε. Hence, we see that [

Âε B̂ε

Ĉε D̂ε

]
∈ E(ℓ, n) ∩M

for some ε > 0. Since E(ℓ, n)∩M has the isomorphism property by assumption
and (A, B) is controllable, Lemma 11.18.(b) implies that ξ = 0 and ηi = 0 for all
i ∈ [0, d]. This means that Jd+1(X) has full row rank. Since T ⩾ 1, m ⩾ 1, and
n ⩾ 1, JT (X) has at least 2 rows and exactly 1 column. As such, it cannot have
full row rank. Then, we see that d = min(ℓ, T − 1) ̸= T − 1. Therefore, d = ℓ
and Jℓ+1(X) has full row rank. The latter implies that T ⩾ ℓ+(ℓ+1)m+n. □

The third auxiliary lemma introduces a way of extending an observable state-
space system while preserving observability.

Lemma 11.21. Suppose that n ⩾ 1, A ∈ Rn×n, and C ∈ Rp×n are such that
(C, A) is observable. Denote ℓ = ℓ(C, A). Let ζ ∈ Rn be such that

CAiζ = 0 ∀ i ∈ [0, ℓ− 2] and CAℓ−1ζ ̸= 0. (11.88)
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Also, let n′ ⩾ 1, A′ ∈ Rn′×n′ and C ′ ∈ R1×n′ be such that (C ′, A′) is observable.
Then, the pair

(C̄, Ā) :=
([

C 0p×n′
]

,

[
A ζC ′

0 A′

])
is observable and ℓ̄ := ℓ(C̄, Ā) = ℓ + n′. Moreover, if ζ ′ ∈ Rn′ satisfies

C ′(A′)iζ ′ = 0 ∀ i ∈ [0, n′ − 2] and C ′(A′)n′−1ζ ′ ̸= 0, (11.89)

then
C̄Āi

[
0
ζ ′

]
= 0 ∀ i ∈ [0, ℓ̄− 2] and C̄Āℓ̄−1

[
0
ζ ′

]
̸= 0. (11.90)

Proof. By direct inspection, we see that C̄Āk =
[
CAk Ξk

]
where Ξ0 = 0,

Ξk+1 = CAkζC ′ + ΞkA′ for all k ⩾ 0. By using (11.88), we further see that

(i) Ξk = 0 for all k ∈ [0, ℓ− 1], and

(ii) Ξℓ = CAℓ−1ζC ′.

Let Ω̄k, Ωk, and Ω′
k denote the k-th observability matrices of the pairs (C̄, Ā),

(C, A), and (C ′, A′), respectively. We claim that

rank Ω̄ℓ+i = n + rank Ω′
i (11.91)

for all i ⩾ 1. To show this, let i ⩾ 1. Note that Ω̄ℓ+i is of the form

Ω̄ℓ+i =


Ωℓ 0
∗ Ξℓ

∗ Ξℓ+1

...
...

∗ Ξℓ+i−1

. (11.92)

From (ii) and (11.88), it follows that

ker

 Ξℓ

Ξℓ+1

...
Ξℓ+i−1

 = ker Ω′
i and rank

 Ξℓ

Ξℓ+1

...
Ξℓ+i−1

 = rank Ω′
i. (11.93)

Since (C, A) is observable and ℓ(C, A) = ℓ, rank Ωℓ = n. Therefore, we see from
(11.92) that (11.91) holds. Since C ′ ∈ R1×n′ and (C ′, A′) is observable, we have
ℓ(C ′, A′) = n′. Then, (11.91) implies that rank Ω̄ℓ+n′ = n + n′ and hence that
(C̄, Ā) is observable. It also follows from (11.91) that rank Ω̄ℓ+n′−1 < n+n′. This
means that ℓ(C̄, Ā) = ℓ + n′. Further, if ζ ′ satisfies (11.89) then ζ ′ ∈ ker Ω′

n′−1

and ζ ′ ̸∈ ker Ω′
n′ . From (11.92) and (11.93), it follows that

[
0
ζ ′

]
∈ ker Ω̄ℓ+n′−1

and
[

0
ζ ′

]
̸∈ ker Ω̄ℓ+n′ . Hence, (11.90) holds. □



Proving the necessity part of the main result 275

The final auxiliary lemma presents a condition under which the matrix Jk(X)
has full row rank for a certain depth k.
Lemma 11.22. Suppose that n ⩾ ℓ ⩾ 0 and [ A B

C D ] ∈ E(ℓ, n)∩M. Let X[0,T ] ∈
Rn×(T +1) be a state for [ A B

C D ]. If µ ⩾ 1 and E(ℓ + µ, n + µ) ∩M = ∅, then
T ⩾ ℓ + µ + (ℓ + µ + 1)m + n and Jℓ+µ+1(X) has full row rank.

Proof. Let λ ∈ R, A′
λ ∈ Rµ×µ be the Jordan block with the eigenvalue λ, i.e.

A′
λ =


λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · λ 1
0 0 0 · · · 0 λ

 ,

C ′ := eT
1 , and ζ ′ := eµ where ei denotes the ith standard basis vector of Rµ.

Clearly, (C ′, A′
λ) is observable and ℓ(C ′, A′

λ) = µ. In addition, we have that

C ′(A′
λ)iζ ′ = 0 ∀ i ∈ [0, µ− 2] and C ′(A′

λ)µ−1ζ ′ = 1.

We claim that Jd+1(x) has full row rank where d = min(ℓ + µ, T − 1). To
prove this claim, we distinguish two cases: n = 0 and n ⩾ 1.

For the case n = 0, we have that ℓ = 0, X[0,T ] is a void matrix, and Y[0,T −1] =
DU[0,T −1] for some D ∈ Rp×m. Therefore, for every nonzero θ ∈ Rp, Z[0,T ] :=
0µ×(T +1) is a state for [

A′
λ 0µ,m

θC ′ D

]
∈ E(µ, µ) ∩ O.

Let ηi with i ∈ [0, d] be such that
[
η0 · · · ηd

]
∈ lker Jd+1(X). Clearly, we have[

01,µ η0 · · · ηd

]
∈ lker Jd+1(Z). Define

Âλ = A′
λ, B̂λ = E−1, Ĉ = θC ′, and D̂λ = D + θC ′E0

where Ed = 0 and Ei−1 = ÂλEi + ζ ′ηi for i ∈ [0, d]. Since d = min(µ, T − 1)
for this case, it follows from Lemma 11.18.(a) that[

Âλ B̂λ

Ĉ D̂λ

]
∈ E(µ, µ) ∩ O.

Since E(µ, µ) ∩M = ∅ due to the hypothesis, (Âλ, B̂λ) is uncontrollable. From
the fact that Âλ = A′

λ is a Jordan block, we see that (ζ ′)T A′
λ = λ(ζ ′)T and

(ζ ′)T E−1 = 0. Since

E−1 =
d∑

k=0
(A′

λ)kζ ′ηk
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due to (11.80), we see that
∑d

k=0 λkηk = 0. As λ is an arbitrary real number,
we conclude that ηi = 0 for every i ∈ [0, d] and hence Jd+1(X) has full row rank.

For the case n ⩾ 1, let ζ ∈ Rn be as in (11.88) and define

C̄ :=
[
C 0p×µ

]
, Āε,λ :=

[
A εζC ′

0 A′
λ

]
, and B̄ :=

[
B

0µ×m

]
for ε > 0. Then, it follows from Lemma 11.21 that (C̄, Āε,λ) is observable,
ℓ(C̄, Āε,λ) = ℓ + µ =: ℓ̄,

C̄Āi
ε,λ

[
0
ζ ′

]
= 0 ∀ i ∈ [0, ℓ̄− 2] and C̄Āℓ̄−1

ε,λ

[
0
ζ ′

]
̸= 0. (11.94)

Note that [
Āε,λ B̄
C̄ D

]
∈ E(ℓ + µ, n + µ) ∩ O

and
Z[0,T ] :=

[
X[0,T ]

0µ×(T +1)

]
is a state for

[
Āε,λ B̄

C̄ D

]
. Let d = min(ℓ + µ, T − 1). Also, let ξ ∈ R1×n, ηi

with i ∈ [0, d] be such that
[
ξ η0 · · · ηd

]
∈ lker Jd+1(X). Clearly, we have[

ξ 01×µ η0 · · · ηd

]
∈ lker Jd+1(Z). Define

Âε,λ = Āε,λ +
[

0
ζ ′

] [
ξ 0
]

B̂ε,λ = B̄ + E−1

Ĉ = C̄ D̂ε,λ = D + C̄E0

where
Ed = 0 and Ei−1 = Âε,λEi +

[
0
ζ ′

]
ηi for i ∈ [0, d].

Then, it follows from Lemma 11.18.(a) that[
Âε,λ B̂ε,λ

Ĉ D̂ε,λ

]
∈ E(ℓ + µ, n + µ) ∩ O.

From the hypothesis, we know that (Âε,λ, B̂ε,λ) is uncontrollable. By taking the
limit as ε tends to zero, we conclude that (Â0,λ, B̂0,λ) is uncontrollable as well.
Note that

Â0,λ =
[

A 0
ζ ′ξ A′

λ

]
and B̂0,λ =

[
B

0µ×m

]
+ F−1
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where
Fd = 0 and Fi−1 = Â0,λFi +

[
0
ζ ′

]
ηi for i ∈ [0, d].

Suppose that λ is not an eigenvalue of A. Then, every left eigenvector of Â0,λ

corresponding to an eigenvalue of A must be of the form
[
v 0
]

where v ∈ C1×n.
From

(ζ ′)T A′
λ = λ(ζ ′)T ,

we see that left eigenvectors of Â0,λ corresponding to the eigenvalue λ are nonzero
multiples of

[
ξ(λI −A)−1 (ζ ′)T

]
. Since (A, B) is controllable but (Â0,λ, B̂0,λ) is

uncontrollable, it follows from the Hautus test that[
ξ(λI −A)−1 (ζ ′)T

]
B̂0,λ = 0.

Since F−1 =
∑d

k=0 Âk
0,λ

[
0
ζ ′

]
ηk, we see that ξ(λI −A)−1B +

∑d
k=0 λkηk = 0. As

this equality should hold for all λ ∈ R that is not an eigenvalue of A, we can
conclude that ηi = 0 for i ∈ [0, d] and ξ(λI−A)−1B = 0. The latter implies that
ξ = 0 since (A, B) is controllable. Consequently, Jd+1(X) has full row rank.

To prove that Jℓ+µ+1(X) has full row rank, note that JT (X) has at least
2 rows and exactly 1 column since T ⩾ 1, m ⩾ 1, and n ⩾ 1. As such, it
cannot have full row rank. Then, we see that d = min(ℓ + µ, T − 1) ̸= T − 1.
Therefore, d = ℓ + µ and thus Jℓ+µ+1(X) has full row rank. The latter implies
that T ⩾ ℓ + µ + (ℓ + µ + 1)m + n. □

11.7.1 Proof of Theorem 11.6: necessity part

Suppose that the data are informative for system identification within

S[L−,L+],[N−,N+] ∩M.

Let [ A B
C D ] ∈ E(ℓtrue, ntrue) ∩M and let X[0,T ] ∈ Rn×(T +1) be a state for [ A B

C D ].
Since E(ntrue) ∩ M has the isomorphism property, we have E(ntrue) ∩ M =
E(ℓtrue, ntrue) ∩M. Then, Lemma 11.20 implies that

T ⩾ ℓtrue + (ℓtrue + 1)m + ntrue (11.95)

and Jℓtrue+1(X) has full row rank whereas Lemma 11.15.(b) implies that δk = ρk

for every k ∈ [0, ℓtrue + 1]. As ρℓtrue ⩾ 1 due to Lemma 11.12.(b), we see that
q ⩾ ℓtrue. Then, Theorem 11.5 implies that ℓmin ⩾ ℓtrue. Since the reverse
inequality readily follows from the definition of ℓmin in (11.18), we have ℓtrue =
ℓmin. Further, Theorem 11.5 and Lemma 11.12.(c) imply that ntrue = nmin.
Then, (11.22a) and (11.22b) follow from (11.10).
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If La
+ = ℓtrue, (11.22c) readily follows from (11.95). As such, (11.22d) follows

from rank Hℓtrue+1 = rank Jℓtrue+1(X) and Jℓtrue+1(X) having full row rank.
Suppose that La

+ > ℓtrue. Note that the informativity of the data for system
identification within S[L−,L+],[N−,N+] ∩M implies that E(ℓtrue + µ, ntrue + µ) ∩
M = ∅ where µ = La

+ − ℓtrue. Then, Lemma 11.22 implies that (11.22c) holds
and JLa

++1(X) has full row rank. Since rank HLa
++1 = rank JLa

++1(X), we see
that (11.22d) holds. ■

11.8 A simple proof of the fundamental lemma

In this section we use the machinery developed in this chapter to prove the
fundamental lemma, i.e., Theorem 1.2. We will also prove Proposition 11.2 (c).

11.8.1 Proof of Theorem 1.2

We assume that (Atrue, Btrue) is controllable and u[0,T −1] is persistently exciting
of order N + L. We start by proving item (a). In other words, we want to show
that the matrix JL(X) has full row rank.

Suppose on the contrary that rank JL(X) < ntrue + mL. Obviously, by
the persistency of excitation condition, rank JN+L(X) ⩾ (N + L)m. The rank
difference between JL(X) and JN+L(X) is thus at least (m − 1)N + 1. Hence,
there exists a k ∈ {L + 1, L + 2, . . . , N + L} such that rank Jk(X) = m +
rank Jk−1(X).

By Lemma 11.15 (b) and the fact that JL(X) does not have full row rank,
Jk(X) does not have full row rank. Therefore, it follows from Lemma 11.17 that
(Atrue, Btrue) is uncontrollable. This is a contradiction. Hence, we conclude that
rank JL(X) = ntrue + mL which proves item (a).

Next, we prove (b). The ‘if’ part readily follows from the discussion following
Equation (1.2). To prove the ‘only if’ part, let (ū[0,L−1], ȳ[0,L−1]) be a restricted
input-output trajectory on the time interval [0, L − 1]. Let x̄(0) be an initial
state of (1.1) compatible with this input-output trajectory. By item (a), the
matrix JL(X) has full row rank. Therefore, there exists a vector g ∈ RT −L+1

such that [
x̄(0)

ū[0,L−1]

]
= JL(X)g. (11.96)

Let ΩL and ΘL be the observability and system matrices of the true system,
and define ΦL as in (11.30). By multiplying both sides of (11.96) by the matrix
ΦL we obtain [

ū[0,L−1]
ȳ[0,L−1]

]
=
[
HL(u[0,T −1])
HL(y[0,T −1])

]
g,
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which proves (b).
Finally, we prove (c). Let i ∈ Z+. In view of item (b), it suffices to show that

the controllability of (Atrue, Btrue) implies that the spaces of restricted input-
output trajectories of (1.1) on the intervals [0, L− 1] and [i, i + L− 1] coincide.
In other words, it is sufficient to prove the following claim.

Claim: Let

v =


v0
v1
...

vL−1

 and z =


z0
z1
...

zL−1

 ,

where vi ∈ Rm and zi ∈ Rp for i = 0, 1, . . . , L − 1. Then (v, z) is a restricted
input-output trajectory of (1.1) on the interval [0, L − 1] if and only if it is a
restricted input-output trajectory of (1.1) on the interval [i, i + L− 1].

To prove this claim, note that the ‘if’ statement follows directly from time-
invariance of (1.1). Therefore, we focus on proving the ‘only if’ statement. We
will first show that the matrix[

Ai
true Ai−1

trueBtrue · · · AtrueBtrue Btrue
]

(11.97)

has full row rank. Let ξ ∈ R1×n be such that

ξ
[
Ai

true Ai−1
trueBtrue · · · AtrueBtrue Btrue

]
= 0.

Then ξAk
trueBtrue = 0 for all k ∈ Z+. By controllability of the pair (Atrue, Btrue),

it follows that ξ = 0. Therefore, (11.97) has full row rank. Now, let

(u(t), x(t), y(t))L−1
t=0

be a restricted input-state-output trajectory of (1.1) such that u(t) = vt and
y(t) = zt for all t ∈ [0, L − 1]. Since (11.97) has full row rank, there exist
x̄(0) ∈ Rn and ū(0), ū(1), . . . , ū(i− 1) ∈ Rm such that

x(0) =
[
Ai

true Ai−1
trueBtrue · · · AtrueBtrue Btrue

]


x̄(0)
ū(0)

...
ū(i− 2)
ū(i− 1)

 . (11.98)

Define ū(t+ i) := vt for t ∈ [0, L−1]. Consider the restricted input-state-output
trajectory (ū(t), x̄(t), ȳ(t))i+L−1

t=0 of (1.1) resulting from x̄(0) and ū[0,i+L−1]. In
view of (11.98), we obtain x̄(i) = x(0). Therefore, ȳ[i,i+L−1] = z. We conclude
that (v, z) is a restricted input-output trajectory of (1.1) on the interval [i, i +
L− 1]. This proves the claim, and therefore statement (c) of Theorem 1.2.
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11.8.2 Proof of Proposition 11.2 (c)

By hypothesis of the proposition, we have that

T ⩾ L+ + (L+ + N+ + 1)m + N+. (11.99)

Moreover, we recall that Proposition 11.2 (b) asserts that

rank
[
HL++1(u[0,T −1])
HL++1(y[0,T −1])

]
= (L+ + 1)m + ntrue. (11.100)

We now want to show that the conditions (11.22) of Theorem 11.6 hold with
L− = N− = 0. By definition of ℓmin and nmin, (11.22a) and (11.22b) hold. Since
L+ ⩾ La

+ and N+ ⩾ nmin, (11.22c) follows from (11.99).
Let [ A B

C D ] ∈ E(nmin) and let X[0,T ] ∈ Rnmin×(T +1) be a state for [ A B
C D ].

Because L+ + 1 ⩾ ℓmin, we see from (11.100) that rank JL++1(X) = (L+ +
1)m + ntrue. This implies that ntrue ⩽ nmin. Since the reverse inequality holds
due to the definition of nmin in (11.19), we see that nmin = ntrue. Therefore,
JL++1(X) has full row rank. Since L+ ⩾ La

+, we conclude from Lemma 11.15 (b)
that rank JLa

++1(X) = (La
+ +1)m+nmin. Since La

+ +1 ⩾ ℓtrue, we conclude that
(11.22d) holds. In other words, by Theorem 11.6 the data (u[0,T −1], y[0,T −1]) are
informative for system identification within S[0,L+],[0,N+] ∩M.

11.9 Notes and references

J.C. Willems’ trilogy [186–188] is a deep and influential study on mathematical
modelling of dynamical systems from time series. The second part [187] con-
cerns the problem of obtaining a mathematical model for a linear system from
a given (infinite) trajectory. It significantly influenced subspace identification
methods [115], that compute a state sequence from finite-length data by adapt-
ing Willems’ state construction from infinite to finite data. Two assumptions
are crucial in [115]: the state-space dimension of the system is known; and a
rank condition holds for a Hankel matrix constructed from the data. Although
not formally proven at the time, it was believed that such rank condition is sat-
isfied if the input data are sufficiently persistently exciting. This conjecture was
formally proven in Willems et. al.’s fundamental lemma (see [190, Thm. 1] and
Theorem 1.2) which allows the application of subspace identification even when
only an upper bound on the state dimension is known.

As shown in this chapter (Proposition 11.2), the fundamental lemma gives a
sufficient condition under which a linear time-invariant system can be uniquely
identified from data. As shown by means of examples, however, this condition is
not necessary. Motivated by this, we have investigated necessary and sufficient
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conditions on the input-output data for identifiability. Throughout, we have
worked under the assumptions that the true system is minimal, and the lag and
state-space dimension of the system are between given lower and upper bounds.
The development of this chapter follows the paper [32].

Our approach is conceptually and methodologically close to the behavioral
one (see [186–188, 190]). Instrumental to our results is the definition of a num-
ber of integer invariants computed directly from the data and associated with
systems consistent with the data. Such integers are the finite data counterparts
of those introduced in [186, Sect. 7] for infinite time series. Moreover, the
fundamental lemma can be interpreted as a special case of our results.

An interesting consequence of Theorem 11.6 is in the context of online ex-
periment design for system identification. Assuming that only an upper bound
L+ on the lag is known, [166, Thm. 3] gives a procedure to construct an in-
put sequence u[0,T −1] with T = (L+ + 1)m + L+ + ntrue in such a way that
the resulting data (u[0,T −1], y[0,T −1]) are informative for system identification
within S[0,L+],[0,pL+] ∩ M. What is striking is that such procedure does not
require exact knowledge of ntrue, even though the time horizon of the exper-
iment depends on ntrue. As discussed in Remark 11.8, in this case we have
that La

+ = L+. If the data (u[0,T −1], y[0,T −1]) are informative for system iden-
tification within S[0,L+],[0,pL+] ∩ M, we see from (11.22c) and (11.23b) that
T ⩾ (L+ + 1)m + L+ + ntrue. This proves that the experiment design procedure
provided by [166, Thm. 3] generates the minimal number of samples required for
system identification. We will study the problem of experiment design in more
detail in the next chapter. In particular, a highlight of Chapter 12 is that even
shorter experiments can be obtained if a bound N+ on the state-space dimension
is given, in addition to L+.
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Experiment design

In the previous chapter, we have provided necessary and sufficient conditions un-
der which given input-output data (u[0,T −1], y[0,T −1]) are informative for system
identification. The main result of Chapter 11 is Theorem 11.6, which, roughly
speaking, asserts that the data are informative if and only if a rank condition on
a certain input-output Hankel matrix holds. In the current chapter, we follow up
by answering the following question: how to design a sequence of inputs u[0,T −1]
such that the input-output data are informative for system identification? Of
course, a partial answer to this question has already been given by the fun-
damental lemma [190], see Proposition 11.2 in Chapter 11. The persistency of
excitation condition of the fundamental lemma, however, imposes a conservative
lower bound on the required number of data samples. Motivated by this, we are
interested in designing the shortest possible experiments for system identifica-
tion. To do so, we will see that it is important to design the inputs in an online
manner, based on input-output data gathered in the past.

12.1 Informativity for system identification

We start by recapping the definition and characterization of informativity for
system identification. As in Chapter 11, we consider the input-state-output
system

x(t + 1) = Atruex(t) + Btrueu(t) (12.1a)
y(t) = Ctruex(t) + Dtrueu(t) (12.1b)

where Atrue ∈ Rntrue×ntrue , Btrue ∈ Rntrue×m, Ctrue ∈ Rp×ntrue and Dtrue ∈ Rp×m

are unknown. Also the state-space dimension ntrue ⩾ 0 is unknown. However,
m, p ⩾ 1 are known. We refer to (12.1) as the true system. We denote its lag by

ℓtrue := ℓ(Ctrue, Atrue).

Throughout this chapter, we assume that the true system is minimal, i.e., both
controllable and observable. In addition, we assume that upper bounds

L ⩾ ℓtrue and N ⩾ ntrue (12.2)
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are given on the true lag and state-space dimension, respectively.
Without making assumptions on the input, let (u[0,t−1], y[0,t−1]) be data ob-

tained from (12.1). Note that in this chapter, the data length is denoted by t,
which will later on be variable in the online experiment design. By definition,
there exists X[0,t] ∈ Rntrue×(t+1) such that[

X[1,t]
Y[0,t−1]

]
=
[
Atrue Btrue
Ctrue Dtrue

] [
X[0,t−1]
U[0,t−1]

]
. (12.3)

Let n ⩾ 0. Recall from Chapter 11 that a system[
A B
C D

]
∈ S(n) = R(n+p)×(n+m)

is consistent with the data (u[0,t−1], Y[0,t−1]) if there exists X[0,t] ∈ Rn×(t+1) such
that [

X[1,t]
Y[0,t−1]

]
=
[
A B
C D

] [
X[0,t−1]
U[0,t−1]

]
.

The set of all systems that are consistent with the data (u[0,t−1], Y[0,t−1]) is
denoted by Et and is referred to as the set of consistent systems. The subsets of Et

consisting of systems with a given lag and state space dimension are respectively
defined as

Et(ℓ, n) := Et ∩ S(ℓ, n) and Et(n) := Et ∩ S(n).

Here, we recall that the notation S(ℓ, n) has been defined in (11.3) in Chapter 11.

12.1.1 Definition of informativity for system identification

The set SL,N consists of all systems with lag at most L and state-space dimension
at most N , i.e.,

SL,N :=
⋃

ℓ ∈ [0, L]
n ∈ [0, N ]

S(ℓ, n).

In view of the bounds (12.2) and the minimality of the true system, we have the
following prior knowledge:[

Atrue Btrue
Ctrue Dtrue

]
∈M∩ SL,N ,

whereM is the set of minimal systems defined in (11.6). With this in mind, we
recall the notion of informativity for system identification.
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Definition 12.1. We say that the data (u[0,t−1], Y[0,t−1]) are informative for
system identification1 if

(i) Et ∩M∩ SL,N = Et(ntrue) ∩M∩ SL,N , and

(ii) Et ∩M∩ SL,N has the isomorphism property.

The first condition means that all data-consistent systems satisfying the prior
knowledge have ntrue states, while the second one asserts that any pair of such
systems is isomorphic. Definition 12.1 thus captures the important property that
there is precisely one equivalence class of state-space systems consistent with the
input-output data. In what follows, we will recall conditions under which the
data are informative for system identification. Before we can do so, we need to
introduce two important integers, namely the shortest lag and minimum number
of states.

12.1.2 The shortest lag and minimum number of states

Given the data (u[0,t−1], y[0,t−1]), we define the following two integers that play
a pivotal role in the characterization of informativity for system identification:

ℓmin,t := min{ℓ ⩾ 0 | Et(ℓ, n) ̸= ∅ for some n ⩾ 0}
nmin,t := min{n ⩾ 0 | Et(n) ̸= ∅}.

As shown in [32] and Chapter 11, these integers admit a simple characteri-
zation in terms of the data. To explain this, let k ∈ [1, t] and denote the Hankel
matrix of k block rows constructed from the data (u[0,t−1], Y[0,t−1]) by

Hk,t :=

Hk(u[0,t−1])
Hk(y[0,t−1])

 =



u(0) u(1) · · · u(t− k)
...

...
...

u(k − 1) u(k) · · · u(t− 1)
y(0) y(1) · · · y(t− k)

...
...

...
y(k − 1) y(k) · · · y(t− 1)


.

We also define
Gk,t :=

[
Hk(u[0,t−1])

Hk−1(Y[0,t−2])

]
.

1Since we only deal with the prior knowledge M ∩ SL,N , we will simply write ‘informative
for system identification’ rather than ‘informative for system identification within M ∩ SL,N ’.
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Note that Gk,t may be obtained by removing the last row of outputs from Hk,t.
Now, define

δk,t :=
{

p if k = 0
rank Hk,t − rank Gk,t if k ∈ [1, t].

Note that
p ⩾ δk,t ⩾ 0 for all k ∈ [0, t].

Throughout the chapter, we assume that u[0,t−1] ̸= 0, i.e., the inputs are not
all equal to zero. From this blanket assumption, it follows that rank Ht,t =
rank Gt,t = 1 and hence

δt,t = 0. (12.4)

Let qt ∈ [0, t− 1] be the smallest integer such that δqt+1,t = 0. Note that qt

is well-defined due to (12.4). The shortest lag and minimum number of states
can be computed in terms of δk,t and qt, as recalled next (see [32, Thm. 8] and
Theorem 11.5).

Proposition 12.2. ℓmin,t = qt and nmin,t =
∑ℓmin,t

i=1 δi,t.

An important consequence of Proposition 12.2 is that the integers ℓmin,t and
nmin,t can be readily computed using the data.

12.1.3 Necessary and sufficient conditions for informativity

We are now in a position to recall the conditions for informativity for system
identification. Before we do so, we remind the reader that Theorems 11.3.(b)
and 11.5 show that if Et(ℓ, n) ̸= ∅ then

ℓ ⩽ n− nmin,t + ℓmin,t. (12.5)

This implies that N−nmin,t+ℓmin,t is an upper bound for the lag of any consistent
system with at most N states. This upper bound, which is determined by the
data and N , is in some cases smaller than the given upper bound L. This means
that we can replace L by the actual upper bound on the lag:

La
t := min(L, N − nmin,t + ℓmin,t).

The following theorem is a reformulation of Theorem 11.6 and provides nec-
essary and sufficient conditions for the data to be informative for system iden-
tification.



Formal problem statement 287

Theorem 12.3. The data (u[0,t−1], y[0,t−1]) are informative for system identifi-
cation if and only if the following two conditions hold:

t ⩾ La
t + (La

t + 1)m + nmin,t (12.6a)
rank HLa

t +1,t = (La
t + 1)m + nmin,t. (12.6b)

Moreover, if the conditions in (12.6) are satisfied, then

ℓtrue = ℓmin,t (12.7a)
ntrue = nmin,t (12.7b)

Et ∩M∩ SL,N = Et(nmin,t). (12.7c)

12.2 Formal problem statement

If the data (u[0,t−1], y[0,t−1]) are informative for system identification, then
ℓmin,t = ℓtrue and nmin,t = ntrue by Theorem 12.3. In this case, La

t is equal to

La := min(L, N − ntrue + ℓtrue).

It follows from the lower bound (12.6a) that

t ⩾ T := La + (La + 1)m + ntrue, (12.8)

that is, any set of informative input-output data contains at least T samples.
The main question is now as follows: can we design a sequence of inputs

u[0,T −1] of length precisely T such that the resulting input-output data

(u[0,T −1], y[0,T −1])

are informative for system identification? We will focus on an online design of the
inputs, in the sense that the choice of u(t) is guided by the data (u[0,t−1], y[0,t−1])
collected at previous time steps. We formalize the problem as follows.

Problem 12.4. Let T be as in (12.8). Consider the system (12.1) with initial
state x(0) = x0 ∈ Rn. Let y(t) ∈ Rp denote the output of (12.1) at time t
resulting from x0 and the control inputs u(0), u(1), . . . , u(t) ∈ Rm.

For each t ∈ [0, T − 1], given (u[0,t−1], y[0,t−1]), design u(t) such that, in the
end, the resulting data (u[0,T −1], y[0,T −1]) are informative for system identifica-
tion.

We note that the initial state x0 of the system (12.1) is arbitrary and not
assumed to be given. Our goal is thus to design inputs that lead to an informative
experiment irrespective of x0.
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In addition, we emphasize that it is not straightforward to see that Prob-
lem 12.4 has a solution. In fact, even though T is a lower bound on the number of
data samples required for system identification, it is at this point unclear whether
there exists an experiment of length exactly T . Also, even if such an experiment
exists, it is far from obvious that there is a systematic way of constructing such
an experiment without knowledge of the true system. An additional challenge
is that the time T itself depends on the true lag and true state-space dimension,
which are not a priori known.

Remarkably, as we show in this chapter, it turns out to be always possible to
design an informative experiment of length precisely T , despite these challenges.

12.3 Online experiment design

In this section we present our main results, building up to the online experiment
design method. We start with the following auxiliary lemma that asserts that
the rank of the Hankel matrix Hk,t can be increased at time t+1, assuming that
certain conditions are met. To introduce the lemma, we will use the following
terminology: a subset A ⊆ Rn is called affine if it can be expressed as A =
{x}+S where x ∈ Rn and S ⊆ Rn is a subspace. The dimension of A is defined
as the dimension of S.

Lemma 12.5. Let t ⩾ 2 and k ⩾ 2. If

rank Gk,t < m + rank Hk−1,t (12.9)

then there exists an (m− 1)-dimensional affine set At ⊆ Rm such that

rank Hk,t+1 = rank Hk,t + 1 (12.10)

whenever u(t) ̸∈ At.

In what follows, we will use the shorthand notation 0m := {01,m}.

Proof. Note that lker Hk−1,t × 0m ⊆ lker Gk,t. Therefore, it holds that

dim lker Gk,t ⩾ dim lker Hk−1,t.

It follows from the rank-nullity theorem that

kp + (k + 1)m− rank Gk,t ⩾ k(p + m)− rank Hk−1,t.

As such, rank Gk,t ⩽ m + rank Hk−1,t. Moreover, note that rank Gk,t = m +
rank Hk−1,t if and only if lker Hk−1,t×0m = lker Gk,t. Therefore, (12.9) implies
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that there exist ηi ∈ Rm and ξj ∈ Rp and with i ∈ [1, k] and j ∈ [1, k − 1] such
that ηk ̸= 0 and [

η⊤
1 · · · η⊤

k ξ⊤
1 · · · ξ⊤

k−1
]

Gk,t = 0.

Now, define the set

At := {v ∈ Rm | η⊤
k v +

∑
i∈[1,k−1]

η⊤
i u(t− k + i) + ξ⊤

i y(t− k + i) = 0}.

If u(t) ̸∈ At then [
η⊤

1 · · · η⊤
k ξ⊤

1 · · · ξ⊤
k−1
]

Gk,t+1 ̸= 0.

Since lker Gk,t+1 ⊆ lker Gk,t, we conclude from the latter inequality that

dim lker Gk,t+1 < dim lker Gk,t.

Therefore, the last column of Gk,t+1 is not a linear combination of the columns
of Gk,t. Thus, the last column of Hk,t+1 is also not a linear combination of the
columns of Hk,t. We conclude that (12.10) holds, which proves the lemma. □

As long as the inequality (12.9) holds, Lemma 12.5 may be successively
applied several times to increase the rank of the Hankel matrix. In the next
lemma, we show how to deduce from the data whether k = La, as soon as the
condition (12.9) fails to hold. This lemma will be used as a stopping criterion
for our online experiment design algorithm.

Lemma 12.6. Let t ⩾ 2 and k ⩾ 2 and suppose that the data (u[0,t−1], y[0,t−1])
are such that Hk,t has full column rank. Let τ ⩾ 0 and assume that u[t,t+τ−1]
satisfy

(a) for every s ∈ [t, t + τ − 1], rank Gk,s < m + rank Hk−1,s and u(s) ̸∈ As,
where As is as in Lemma 12.5.

(b) rank Gk,t+τ = m + rank Hk−1,t+τ .

Then the following statements hold:

(i) If k ⩾ ℓtrue + 1 then

• rank Hk,t+τ = ntrue + km,
• t + τ = ntrue + km + k − 1,
• ℓmin,t+τ = ℓtrue, and nmin,t+τ = ntrue.

(ii) If k = La
t+τ + 1 then
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• k = La + 1,
• t + τ = T , and
• (u[0,T −1], y[0,T −1]) are informative for system identification.

Proof. We first prove (i). Assume that k ⩾ ℓtrue + 1. Hypothesis (a) and
Lemma 12.5 imply that

rank Hk,t+τ = rank Hk,t + τ = t− k + τ + 1. (12.11)

Let X[0,t+τ−1] ∈ Rntrue×(t+τ) be a state compatible with the input-output data
(u[0,t+τ−1], y[0,t+τ−1]) and the true system. Since (Ctrue, Atrue) is observable
and k ⩾ ℓtrue + 1, the observability matrix Ωk−1 of the true system (see Equa-
tion (11.2)) has rank ntrue. This implies that the matrices

Φk−1 :=
[

0 I
Ωk−1 Θk−1

]
and Ψk :=

 0 I 0
0 0 Im

Ωk−1 Θk−1 0

 (12.12)

have full column rank, where we recall that Θk−1 is the Toeplitz matrix of
Markov parameters of the true system, defined in (11.27). Therefore,

rank Hk−1,t+τ = rank
(

Φk−1

[
X[0,t+τ−k−1]

Hk−1(u[0,t+τ−1])

])
= rank

[
X[0,t+τ−k−1]

Hk−1(u[0,t+τ−1])

]
.

Moreover,

rank Gk,t+τ = rank
(

Ψk

[
X[0,t+τ−k]

Hk(u[0,t+τ−1])

])
= rank

[
X[0,t+τ−k]

Hk(u[0,t+τ−1])

]
(12.13)

= rank Hk,t+τ . (12.14)

By hypothesis (b), we thus have

rank
[

X[0,t+τ−k]
Hk(u[0,t+τ−1])

]
= m + rank

[
X[0,t+τ−k−1]

Hk−1(u[0,t+τ−1])

]
.

By Lemma 11.17 and the fact that (Atrue, Btrue) is controllable,

rank
[

X[0,t+τ−k]
Hk(u[0,t+τ−1])

]
= ntrue + km.

Therefore, by (12.14), we conclude that

rank Hk,t+τ = ntrue + km, (12.15)
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proving the first item of (i). The second item of (i) now follows immediately
from (12.11). Finally, to prove the third item, let[

A B
C D

]
∈ E(ℓmin,t+τ , nmin,t+τ ).

Let X[0,t+τ−1] ∈ Rnmin,t+τ ×(t+τ) be a state compatible with the input-output
data and the above data-consistent system. Obviously, rank Hk,t+τ ⩽ nmin,t+τ +
km and therefore nmin,t+τ ⩾ ntrue by (12.15). However, since also nmin,t+τ ⩽
ntrue, we obtain ntrue = nmin,t+τ . Finally, it follows from (12.5) that ℓmin,t+τ ⩾
ℓtrue. Since obviously ℓmin,t+τ ⩽ ℓtrue, we conclude that ℓmin,t+τ = ℓtrue, proving
the third item of (i).

Next, we will prove (ii). Assume that k = La
t+τ + 1. We have that

N − nmin,t+τ + ℓmin,t+τ ⩾ ntrue − nmin,t+τ + ℓmin,t+τ ⩾ ℓtrue,

where the last inequality follows from (12.5). Combining this with L ⩾ ℓtrue, we
obtain k = La

t+τ +1 ⩾ ℓtrue +1, by definition of La
t+τ . Therefore, the three items

listed under (i) hold. From the fact that ℓmin,t+τ = ℓtrue and nmin,t+τ = ntrue, it
follows that La

t+τ = La, and therefore k = La + 1. This proves the first item of
(ii). Moreover, the second item of (i) implies that t+τ = La +(La +1)m+ntrue,
which shows that t + τ = T , proving the second item of (ii). Finally, from the
first and third items of (i), we see that rank HLa

T
+1,T = (La

T + 1)m + nmin,T .
Therefore, it follows from Theorem 12.3 that the data (u[0,T −1], y[0,T −1]) are
informative for system identification. Hence, also the third item of (ii) holds.
This proves the lemma. □

The core idea of our approach is to adapt the depth k of the Hankel matrix
during the operation of the experiment design procedure. For a fixed depth
k, Lemma 12.5 will be used for s ∈ [t, t + τ − 1] until the rank condition
rank Gk,t+τ = m + rank Hk−1,t+τ holds. Then, following Lemma 12.6, we check
whether k = La

t+τ + 1. If k = La
t+τ + 1 then we are done because the data

(u[0,t+τ−1], y[0,t+τ−1]) are informative for system identification. Otherwise, if
k ̸= La

t+τ + 1 we increase the depth of the Hankel matrix to k + 1 and repeat
the process. This leads to the following algorithm.

1: procedure OnlineExperiment(L, N)
2: choose inputs u[0,m−1] such that U[0,m−1] is nonsingular
3: measure outputs y[0,m−1]
4: t← m, k ← 1
5: while k ̸= La

t + 1 do ▷ stopping criterion
6: k ← k + 1
7: if k = t + 1 then
8: choose u(t) arbitrarily
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9: measure output y(t)
10: t← t + 1
11: end if
12: while rank Gk,t < m + rank Hk−1,t do
13: choose u(t) ̸∈ At

14: measure output y(t) ▷ rank Hk,t+1 = rank Hk,t + 1
15: t← t + 1
16: end while
17: end while
18: return (U[0,t−1], Y[0,t−1]) ▷ the data are informative
19: end procedure
The following theorem asserts that OnlineExperiment(L, N) leads to infor-
mative data sets with the least possible number of samples. This is the main
result of the chapter.

Theorem 12.7. The procedure OnlineExperiment(L, N) returns input-out-
put data (U[0,t−1], Y[0,t−1]) that are informative for system identification. More-
over, t = T , where T is defined in (12.8).

Before we prove Theorem 12.7, we state the following auxiliary lemma.

Lemma 12.8. Let k ⩾ 1 and t ⩾ k + 1. If the data (u[0,t−1], y[0,t−1]) are such
that Hk,t has full column rank then also Hk+1,t has full column rank.

Proof. Since Hk,t has full column rank, the submatrix

u(1) · · · u(t− k)
...

...
u(k) · · · u(t− 1)
y(1) · · · y(t− k)

...
...

y(k) · · · y(t− 1)


, (12.16)

obtained from removing the first column of Hk,t, has full column rank as well.
Since (12.16) is also the submatrix of Hk+1,t obtained by removing the row
blocks U[0,t−k−1] and Y[0,t−k−1], we conclude that Hk+1,t has full column rank.
This proves the lemma. □

Proof of Theorem 12.7. The proof consists of the following three steps. First,
we prove that the Hankel matrix Hk,t always has full column rank at the start
of the while loop in Line 12. Secondly, we prove that the procedure terminates
within a finite number of steps. Finally, we show that the latter number is
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precisely equal to T , and the data (u[0,T −1], y[0,T −1]) are informative for system
identification.

We begin with the first step. Consider the while loop in Lines 5–17. Let k be
the depth of the Hankel matrix afer line 6. Moreover, let tk be the time instant
at the start of the while loop in Line 12. We claim that Hk,tk

has full column
rank.

We first prove this claim for the first iteration of the while loop, i.e., consider
k = 2. If m ⩾ 2 then the if statement in Lines 7–11 is ignored, and t2 = m.
Note that the Hankel matrix H1,m has full column rank by the choice of the
inputs u[0,m−1] in Line 2. It is then clear that H2,t2 has full column rank by
Lemma 12.8. On the other hand, if m = 1, then t2 = m + 1. In this case, the
Hankel matrix H2,m+1 has one column, which is nonzero due to line 2. Therefore,
also in this case H2,t2 has full column rank.

Now consider any k ⩾ 2. Assume that Hk,tk
has full column rank. Our goal

is to show that Hk+1,tk+1 has full column rank as well.
Since Hk,tk

has full column rank by hypothesis, we can apply Lemma 12.5 to
the while loop in Lines 12–16. In particular, this while loop is applied for a finite
number of iterations, say τ ∈ Z+, which yields the Hankel matrix Hk,tk+τ . By
repeated application of Lemma 12.5, Hk,tk+τ has full column rank. This means,
in particular, that tk + τ ⩾ k.

Now, we turn our attention to the depth k + 1. If tk + τ = k then the if
statement in Lines 7–11 generates an arbitrary input u(tk +τ) and corresponding
output y(tk + τ). In this case, tk+1 = tk + τ + 1 and the resulting Hankel
matrix Hk+1,tk+1 is a column vector of rank one by Line 2. In the other case, if
tk + τ ⩾ k + 1 then tk+1 = tk + τ and it follows that Hk+1,tk+1 has full column
rank by Lemma 12.8.

Secondly, we prove that the procedure terminates in a finite number of steps.
Now, let tk ∈ N be the time instant, corresponding to the depth k, at which
the stopping criterion in Line 5 is checked. We want to prove the existence of
a depth k ⩾ 1 such that k = La

tk
+ 1. Clearly, since La

tk
⩾ ℓtrue, this cannot

happen if k ⩽ ℓtrue. For any k ⩾ ℓtrue + 1 we have that ℓmin,tk
= ℓtrue and

nmin,tk
= ntrue by Lemma 12.6(i), meaning that La

tk
= La. Since the depth k is

increased by one in every iteration of the while loop in Lines 5–17, this implies
that there exists k ⩾ ℓtrue + 1 such that k = La

tk
+ 1.

Finally, we prove the last step. Let k be such that k = La
tk

+1. It follows from
Lemma 12.6(ii) that tk is precisely equal to T , and the data (u[0,T −1], y[0,T −1])
are informative for system identification. This proves the theorem. □

Remark 12.9. Without going into details, we mention that Theorem 12.7
shows that ‘randomly’ chosen inputs u[0,T −1] lead to informative experiments of
length precisely T with high probability. In fact, the only imposed constraints
on the inputs are that U[0,m−1] is nonsingular (Line 2 of the algorithm), and



294 Experiment design

that u(t) ∈ Rm is not a member of an (m− 1)-dimensional affine set (Line 13).
Regardless of how the inputs are chosen to satisfy these constraints, however, a
crucial aspect of OnlineExperiment(L, N) is its stopping criterion. Indeed,
we emphasize that T is not a priori known but has to be deduced from data.

12.4 Illustrative example

In this section we illustrate OnlineExperiment(L, N) by means of an example.
Consider the true system

[
Atrue Btrue
Ctrue Dtrue

]
=


0 1 0 1 0
0 0 1 0 1
0 0 0 0 1
1 0 0 1 0
0 1 0 0 0

 ,

so that ntrue = 3, m = 2, p = 2, and ℓtrue = 2. Let x0 =
[
1 1 0

]⊤. Moreover,
let L = 4 and N = 4 be the available upper bounds.

12.4.1 Online experiment

We now apply OnlineExperiment(L, N). We start with k = 1. We choose
the first two inputs such that U[0,1] = I, which is obviously nonsingular, and
measure

Y[0,1] =
[
2 2
1 0

]
.

Using these data and Proposition 12.2, we compute

ℓmin,2 = 0, nmin,2 = 0, and La
2 = 4.

Since k ̸= La
2 + 1, we increase the depth to k = 2. The inputs are now designed

according to the while loop in Line 12 as:

U[2,7] =
[
1 1 1 1 1 1
0 0 0 0 0 1

]
,

resulting in the measured outputs

Y[2,7] =
[
1 3 3 2 2 2
1 1 0 0 0 0

]
.

It can be checked that we have increased the rank of the depth-2 Hankel ma-
trix from rank H2,3 = 2 to rank H2,8 = 7. Based on the data thusfar, we use
Proposition 12.2 to compute:

ℓmin,8 = 2, nmin,8 = 3, and La
8 = 3.
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Since k ̸= La
8 +1, we set k = 3. Following the while loop in Line 12, we construct

U[8,10] =
[
1 1 1
0 0 0

]
,

which yields
Y[8,10] =

[
2 3 3
1 1 0

]
.

By doing so, we have increased the rank of the depth-3 Hankel matrix from
rank H3,9 = 7 to rank H3,11 = 9. Again, we compute:

ℓmin,11 = 2, nmin,11 = 3, and La
11 = 3.

Since k ̸= La
11 + 1 we set k = 4. This time, we apply the while loop in Line 12

to obtain the data

U[11,13] =
[
1 0 0
0 1 1

]
, and Y[11,13] =

[
2 1 0
0 0 1

]
.

The rank of the depth-4 Hankel matrix has increased from rank H4,12 = 9 to
rank H4,14 = 11. Finally, we compute

ℓmin,14 = 2, nmin,14 = 3, and La
14 = 3.

Since k = La
14 + 1, the procedure terminates. We conclude that T = 14 and the

data (u[0,13], y[0,13]) are informative for system identification. For this example,
we note that the required number of samples T is less than the experiment de-
sign approach in [166] that works with the fixed depth L = 4 Hankel matrix.
However, this is not always the case. For example, if we study the same example
but with the given upper bounds L = 3 and N = 6, we can use OnlineExper-
iment(L, N) to generate the same informative data, with the only difference
that we now have La

2 = 3. In this case, the number of T = 14 data samples is
the same as in [166].

12.4.2 PE of order La + 1 is not sufficient for informativity

According to Theorem 12.3, an obvious necessary condition for informativity is
that the inputs are persistently exciting of order La +1. This condition, however,
is not sufficient as demonstrated next. We use the same example as above, but
just change u(12) from

[
0
1

]
to
[
1
0

]
, i.e., we choose the inputs as

U[0,13] =
[
1 0 1 1 1 1 1 1 1 1 1 1 1 0
0 1 0 0 0 0 0 1 0 0 0 0 0 1

]
.
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The corresponding outputs are then given by

Y[0,13] =
[
2 2 1 3 3 2 2 2 2 3 3 2 2 1
1 0 1 1 0 0 0 0 1 1 0 0 0 0

]
.

In this case, rank H4(u[0,13]) = 8 so u[0,13] is persistently exciting of order La +
1. However rank H4,14 = 10 ̸= 11 so the conditions of Theorem 12.3 are not
satisfied.

12.5 Notes and references

Experiment design is a classical problem that has been mostly studied in the
parametric identification literature. An established idea is to optimize a measure
of the expected accuracy of the parameter estimates subject to input power
constraints [62,64,77]. This problem is usually tackled in the frequency domain
and convex formulations have been provided in [82]. The dual problem of finding
the ‘least costly’ input achieving a fixed level of parameter accuracy has also been
studied [25], in a closed-loop setting.

The results in this chapter are based on the paper [33]. They align well with
the subspace identification literature [165,178], where rank conditions on Hankel
matrices of input-output data play a vital role. In this context, a state-of-the-
art experiment design result is Willems et al.’s fundamental lemma [190], see
Theorem 1.2 and Proposition 11.2.

The online experiment design method proposed in this chapter largely im-
proves the (offline) persistency of excitation condition of the fundamental lemma.
Indeed, recall that, by definition, the input u[0,t−1] can only be persistently ex-
citing of order N + L + 1 if t ⩾ N + L + m(N + L + 1). In general, this lower
bound on the number of data samples is much larger than the time horizon T
in (12.8). For example, if m = 80, p = 10, ℓtrue = 20, ntrue = 100, L = 100
and N = 150, the online experiment design method requires T = 5850 samples
whereas persistency of excitation requires t ⩾ 20330 samples.

The proposed approach also improves the online experiment design of [166].
In fact, in the latter paper a method was given to guarantee that the Hankel
matrix HL+1 of fixed depth L + 1 has rank (L + 1)m + ntrue. This was done in
the least possible number of time steps, t = L + (L + 1)m + ntrue. However, by
Theorem 12.3, the condition rank HL+1 = (L + 1)m + ntrue is sufficient for in-
formativity for system identification, but in general not necessary. In particular,
if La < L then the experiment design method of this chapter leads to a shorter
experiment for system identification than the one provided in [166]. If La = L,
then the number of samples coincides with [166].
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13

Data-driven model reduction
by balanced truncation

For a given mathematical model of a dynamical system, the model reduction
problem is to approximate this model by a lower-order, less complex one while
preserving its essential properties. Conventional model reduction techniques
derive these reduced-order models from the original model through operations
such as, for example, projections. In contrast to this, in this chapter we develop
methods that construct reduced-order models directly from data obtained from
the system, without using a mathematical model of the system. Specifically, in
this chapter we focus on generalized Lyapunov balancing, and investigate condi-
tions under which input-state data are informative for this type of balancing.

13.1 Model reduction

In this section, we will briefly review some basic notions from the theory of model
reduction. We refer the reader to [7] for a comprehensive overview of various
existing model reduction methods.

Consider the linear input-state-output system

x(t + 1) = Ax(t) + Bu(t) (13.1a)
y(t) = Cx(t) + Du(t) (13.1b)

with state-space dimension n, input dimension m and output dimension p. Let
G(s) = C(sI − A)−1B + D denote the transfer matrix of this system. When n
is very large, it is often preferable to replace the system (13.1) by a lower order
one, say with state space dimension r, with r preferably much smaller than n,
of the form

x̂(t + 1) = Aredx̂(t) + Bredu(t) (13.2a)
y(t) = Credx̂(t) + Du(t). (13.2b)

Let Gred(s) = Cred(sI − Ared)−1Bred + D denote the transfer matrix of this
system. The reduced-order system (13.2) should preserve certain properties and
approximately retain the input-output behavior of the original system (13.1).
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Among a multitude of existing model reduction schemes, in this chapter we
will deal with so-called Petrov-Galerkin projection and generalized Lyapunov
balancing.

13.1.1 Petrov-Galerkin projection

Given matrices W, V ∈ Rn×r satisfying W ⊤V = Ir, Petrov-Galerkin projection
leads to a reduced-order model (13.2) with

Ared = W ⊤AV, Bred = W ⊤B, and Cred = CV. (13.3)

Many reduction techniques, including Gramian- and Krylov-based methods can
be regarded as Petrov-Galerkin projections with appropriate choices of W and
V , see e.g. [7] for more details. A particularly important special case of Petrov-
Galerkin projection is the so-called method of Lyapunov balancing that we will
quickly recap next.

13.1.2 Lyapunov balancing

Suppose that A is stable1 and the system (13.1) is minimal, i.e., controllable
and observable. Then, the Lyapunov equations

P −APA⊤ = BB⊤ (13.4)
Q−A⊤QA = C⊤C (13.5)

admit unique positive definite solutions P and Q, known as the controllability
Gramian and the observability Gramian, respectively. It is known (see e.g. [7,
Lemma 4.29]) that the minimal input energy required to reach a state x̄ in the
state space Rn from the origin is given by the quantity

x̄⊤P −1x̄.

In addition, the maximal observation energy produced by an initial state x̄ is
given by

x̄⊤Qx̄.

As such, these Gramians provide measures for reachability and observability of
a given state in terms of energy. Indeed, the states that lie in the eigenspace
corresponding to the smallest (largest) eigenvalue of P (Q) can be interpreted
as those that are hardest to reach (observe). The main idea behind Lyapunov
balancing is to perform a state transformation on the original system in such a

1Recall that a square matrix is called stable if all its eigenvalues λ satisfiy |λ| < 1.



Model reduction 301

way that states of the transformed system are equally difficult to reach and to
observe. This can be achieved in the following way. First, note that

PQ = P
1
2 (P 1

2 QP
1
2 )P − 1

2 .

Therefore, PQ is similar to the positive definite matrix P
1
2 QP

1
2 and hence only

has positive eigenvalues. The square roots of these eigenvalues are called the
Hankel singular values of the system (13.1). We order these square roots as
σ1 > σ2 > · · · > σκ > 0. For i ∈ [1, κ], the algebraic multiplicity of σ2

i as an
eigenvalue of PQ is denoted by mi. Clearly, n =

∑κ
i=1 mi. Let2

Hsv := Bdiag(σ1Im1 , σ2Im2 , . . . , σκImκ
). (13.6)

Let U be an orthogonal matrix such that

P
1
2 QP

1
2 = UH2

svU⊤

and let
S = H

1
2svU⊤P − 1

2 .

By using S as a state-space transformation, we obtain the balanced system
(Abal, Bbal, Cbal, D) where

Abal = SAS−1, Bbal = SB, Cbal = CS−1. (13.7)

This system is balanced in the sense that its reachability and observability
Gramians are diagonal and equal:

Pbal = SPS⊤ = Hsv = S−⊤QS−1 = Qbal.

A reduced-order model can be obtained from the original system (13.1) by ap-
plying the Petrov-Galerkin projection with

W = S⊤
[
Ir

0

]
and V = S−1

[
Ir

0

]
(13.8)

which simply truncates the last n − r states of the balanced system. Since the
Gramians Pbal and Qbal are equal and diagonal, this truncation corresponds to
eliminating states that are harder to reach and observe at the same time. The
method of obtaining a reduced-order model based on the balanced system is
known as Lyapunov balanced truncation. Reduced-order systems obtained by
balanced truncation inherit certain properties of the original system. In addition,
one can quantify to what extent they retain the input-output behavior of the
original system in terms of the neglected Hankel singular values as stated next.

2Given matrices M1, M2, . . . , Mk, the matrix Bdiag(M1, M2, . . . , Mk) denotes the block
diagonal matrix with M1, M2, . . . , Mk as diagonal blocks.
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Proposition 13.1 ( [7, Thm. 7.10]). Consider the system (13.1). Assume
that A is stable, (A, B) is controllable, and (C, A) is observable. Suppose that
the reduced-order system (13.2) is obtained via Lyapunov balanced truncation.
Then, the following statements hold:

(a) Ared is Schur.

(b) (Ared, Bred) is controllable, (Cred, Ared) is observable, and

∥G−Gred∥h∞ ⩽ 2
κ∑

i=k+1
σi

provided that r =
∑k

i=1 mi with k < κ.

Generalized Lyapunov balancing

In this chapter, we will be mainly interested in a variation of the Lyapunov bal-
ancing method described above, namely generalized Lyapunov balancing (GLB).
Consider, instead of the Lyapunov equations (13.4), the following Lyapunov
inequalities:

P̂ −AP̂A⊤ > BB⊤ (13.9)
Q̂−A⊤Q̂A > C⊤C. (13.10)

These inequalities admit positive definite solutions P̂ and Q̂ provided that A
is stable. Any such P̂ (Q̂) is called a generalized controllability (observability)
Gramian. Any generalized Gramian is an upper bound on the ordinary Gramian,
i.e., P̂ ⩾ P and Q̂ ⩾ Q. For any choice P̂ and Q̂ of generalized Gramians, similar
arguments as in the case of ordinary Lyapunov balancing yield a diagonal matrix
Ĥsv

Ĥsv := Bdiag(σ̂1Im̂1 , σ̂2Im̂2 , . . . , σ̂κ̂Im̂κ̂
) (13.11)

where σ̂1 > σ̂2 > · · · > σ̂κ̂ > 0 are the so-called generalized Hankel singular
values corresponding to the choice of Gramians P̂ and Q̂. Here, m̂i is the
algebraic multiplicity of σ̂2

i as an eigenvalue of P̂ Q̂ for i ∈ [1, κ̂]. Again, n =∑κ̂
i=1 m̂i. Similar to ordinary Lyapunov balancing, there exists a nonsingular

matrix Ŝ such that
ŜP̂ Ŝ⊤ = Ĥsv = Ŝ−⊤Q̂Ŝ−1.

Then, a reduced-order model can be obtained from the original system by using
the Petrov-Galerkin projection with

W = Ŝ⊤
[
Ir

0

]
and V = Ŝ−1

[
Ir

0

]
. (13.12)
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This method is known as the generalized Lyapunov balanced truncation, for which
the counterpart of Proposition 13.1 can be stated as follows.

Proposition 13.2. Consider the system (13.1). Assume that A is stable, (A, B)
is controllable, and (C, A) is observable. Suppose that the reduced-order system
(13.2) is obtained via generalized Lyapunov balanced truncation. Then, the
following statements hold:

(a) Ared is stable.

(b) (Ared, Bred) is controllable, (Cred, Ared) is observable, and

∥G−Gred∥h∞ ⩽ 2
κ̂∑

i=k+1
σ̂i

provided that r =
∑k

i=1 m̂i with k < κ̂.

A proof of this proposition follows mutatis mutandis from [7, Thm. 7.10] or [48,
Prop. 4.19].

13.2 Data-driven model reduction

Consider the linear input-state-output system

x(t + 1) = Atruex(t) + Btrueu(t) + zx(t) (13.13a)
y(t) = Ctruex(t) + Dtrueu(t) + zy(t) (13.13b)

with state-space dimension n, input dimension m, and output dimension p. In
(13.13), zx and zy are noise terms. In the rest of this chapter, we assume that the
system matrices (Atrue, Btrue, Ctrue, Dtrue) and the noise (zx, zy) are unknown.
What is known instead are a finite number of input-state-output measurements
harvested from the true system (13.13):

u(0), u(1), . . . , u(T − 1)
x(0), x(1), . . . , x(T )

y(0), y(1), . . . , y(T − 1).

As usual, we collect these data in the matrices

X := X[0,T ], X− := X[0,T −1], X+ := X[1,T ],

U− := U[0,T −1], and Y− := Y[0,T −1].
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The noise sequences zx and zy are unknown, so

zx(0), zx(1), . . . , zx(T − 1)
zy(0), zy(1), . . . , zy(T − 1)

are not measured. However, the noise matrix

Z− :=
[
zx(0) zx(1) · · · zx(T − 1)
zy(0) zy(1) · · · zy(T − 1)

]
is assumed to satisfy

Z⊤
− ∈ ZT (Φ) (13.14)

where ZT (Φ) is defined as in (A.3) and where Φ ∈ Sn+p+T is a known, given
partitioned matrix

Φ =
[
Φ11 Φ12
Φ21 Φ22

]
(13.15)

with Φ11 ∈ Sn+p, Φ12 ∈ R(n+p)×T , and Φ22 ∈ ST . We assume that Φ ∈ Πn+p,T

as defined in (A.11), i.e. Φ22 ⩽ 0, Φ |Φ22 ⩾ 0 and ker Φ22 ⊆ ker Φ12.
Now, the set of all systems that are consistent with the data D = (U−, X, Y−)

is equal to

ΣD :=
{

(A, B, C, D) |
([

X+
Y−

]
−
[
A B
C D

] [
X−
U−

])⊤

∈ ZT (Φ)
}

.

As the data collected from the true system, we have

(Atrue, Btrue, Ctrue, Dtrue) ∈ ΣD. (13.16)

It is clear from the definition of ΣD that (A, B, C, D) ∈ ΣD if and only if the
following quadratic matrix inequality is satisfied

I 0
0 I

A⊤ C⊤

B⊤ D⊤


⊤

N


I 0
0 I

A⊤ C⊤

B⊤ D⊤

 ⩾ 0 (13.17)

where

N :=


I 0 X+
0 I Y−
0 0 −X−
0 0 −U−

[Φ11 Φ12
Φ21 Φ22

]
I 0 X+
0 I Y−
0 0 −X−
0 0 −U−


⊤

. (13.18)
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The QMI (13.17) can be written more compactly as[
A B
C D

]⊤

=
[
A⊤ C⊤

B⊤ D⊤

]
∈ Zn+m(N). (13.19)

Later on, we will often use the following partitioning of N

N =
[
N11 N12
N21 N22

]
where N11 ∈ Sn+p, N12 ∈ R(n+p)×(n+m), N21 = N⊤

12 and N22 ∈ Sn+m. Note
that

N22 =
[
X−
U−

]
Φ22

[
X−
U−

]⊤

and N12 = −Φ12

[
X−
U−

]⊤

−
[
X+
Y−

]
Φ22

[
X−
U−

]⊤

.

Since Φ ∈ Πn+p,T , we have Φ22 ⩽ 0, ker Φ22 ⊆ ker Φ12, and Φ | Φ22 ⩾ 0.
Therefore, we see that N22 ⩽ 0 and ker N22 ⊆ ker N12. Due to (13.16), Zn+m(N)
is nonempty. It therefore follows from (A.10) that N |N22 ⩾ 0. Consequently,
we see that

N ∈ Πn+p,n+m. (13.20)
In the remainder of this chapter, the following assumption will be in force.

Assumption 13.3. The matrix N is nonsingular.

This assumption, together with (13.20), implies that both N22 and N |N22
are nonsingular. As a consequence we have N22 < 0 and N |N22 > 0. As such,
the set of data-consistent systems ΣD is bounded and has nonempty interior due
to Theorem A.5.

13.3 Data reduction via Petrov-Galerkin projection

In this section, we deal with Petrov-Galerkin projections of data-consistent sys-
tems. Consider the set of all reduced-order systems obtained from the set
of data-consistent systems via Petrov-Galerkin projection with the matrices
V, W ∈ Rn×r:

Σred
D (W, V ) :=

{
(W ⊤AV, W ⊤B, CV, D) | (A, B, C, D) ∈ ΣD

}
. (13.21)

This set itself is a QMI induced set.

Theorem 13.4. It holds that

Σred
D (W, V ) =

{
(Ared, Bred, Cred, Dred) |

[
Ared Bred
Cred Dred

]⊤

∈ Zr+m(Nred(W, V ))
}
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where

Nred(W, V ) :=

 Ŵ ⊤∆Ŵ Ŵ ⊤N12N−1
22 V̂ Γ

ΓV̂ ⊤N−1
22 N⊤

12Ŵ Γ

 , (13.22)

∆ = N |N22 + N12N−1
22 V̂ ΓV̂ ⊤N−1

22 N⊤
12, Γ = (V̂ ⊤N−1

22 V̂ )−1,

Ŵ = Bdiag(W, Ip), and V̂ = Bdiag(V, Im).

Proof. From (13.19) and (13.21), it is clear that

(Ared, Bred, Cred, Dred) ∈ Σred
D (W, V )

if and only if [
Ared Bred
Cred Dred

]⊤

∈ V̂ ⊤Zn+m(N)Ŵ . (13.23)

Therefore, what needs to be proven is Zr+m(Nred(W, V )) = V̂ ⊤Zn+m(N)Ŵ .
To do so, first observe that both N22 and N | N22 are nonsingular since N ∈
Πn+p,n+m is nonsingular.

Now, let Z ∈ Zn+m(N). From (A.9), we see that

N |N22 + (Z + N−1
22 N21)⊤N22(Z + N−1

22 N21) ⩾ 0

or equivalently, by a Schur complement argument,[
N |N22 (Z + N−1

22 N21)⊤

Z + N−1
22 N21 −N−1

22

]
⩾ 0.

By post- and pre-multiplying the matrix above by Bdiag(Ŵ , V̂ ) and its trans-
pose, respectively, we obtain[

Ŵ ⊤(N |N22)Ŵ Ŵ ⊤(Z + N−1
22 N21)⊤V̂

V̂ ⊤(Z + N−1
22 N21)Ŵ −V̂ ⊤N−1

22 V̂

]
⩾ 0.

By taking the Schur complement again, we see that V̂ ⊤ZŴ ∈ Zr+m(Nred(W, V )).
This proves that V̂ ⊤Zn+m(N)Ŵ ⊆ Zr+m(Nred(W, V )).

To show the reverse inclusion, let Ẑ ∈ Zr+m(Nred(W, V )). It follows from
Theorem A.6.a that

Ẑ = −V̂ ⊤N−1
22 N21Ŵ + (−V̂ ⊤N−1

22 V̂ ) 1
2 ŜŴ ⊤(N |N22)Ŵ (13.24)

for some Ŝ ∈ R(r+m)×(r+p) with Ŝ⊤Ŝ ⩽ Ir+p. Now, note that

(−V̂ ⊤N−1
22 V̂ ) 1

2 (−V̂ ⊤N−1
22 V̂ ) 1

2 = −V̂ ⊤N−1
22 V̂ = V̂ ⊤((−N22)−1) 1

2 ((−N22)−1) 1
2 V̂
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and
Ŵ ⊤(N |N22)Ŵ = Ŵ ⊤(N |N22) 1

2 (N |N22) 1
2 Ŵ .

Then, Lemma A.1.(a) implies that there exist S1 ∈ R(n+m)×(r+m) and S2 ∈
R(r+p)×(n+p) with S⊤

1 S1 ⩽ Ir+m and S⊤
2 S2 ⩽ In+p such that

(−V̂ ⊤N−1
22 V̂ ) 1

2 = V̂ ⊤((−N22)−1) 1
2 S1 and Ŵ ⊤(N |N22)Ŵ = S2(N |N22) 1

2 Ŵ .

By substituting into (13.24), we get

Ẑ = V̂ ⊤
(
−N−1

22 N21 + ((−N22)−1) 1
2 S1ŜS2(N |N22) 1

2

)
Ŵ .

Let S = S1ŜS2. Note that S⊤S ⩽ In+m since S⊤
1 S1 ⩽ Ir+m, Ŝ⊤Ŝ ⩽ Ir+p, and

S⊤
2 S2 ⩽ In+p. Therefore, we see from Theorem A.6.a that

−N−1
22 N21 + ((−N22)−1) 1

2 S1ŜS2(N |N22) 1
2 ∈ Zn+m(N).

Consequently, Ẑ ∈ V̂ ⊤Zn+m(N)Ŵ proving that

Zr+m(Nred(W, V )) ⊆ V̂ ⊤Zn+m(N)Ŵ .

□

Theorem 13.4 has a nice interpretation in terms of data reduction. Namely,
the matrix Nred(W, V ) characterizing all reduced-order models depends only on
the matrices V̂ , Ŵ and the original data matrix N . As such, Nred(W, V ) is
constructed from the data and noise model only. Importantly, Nred(W, V ) has
a lower dimension than N and can thus be regarded as a reduced data matrix.
Hence, we can characterize all reduced-order models by directly reducing the
data matrix N rather than reducing individual systems (A, B, C, D) ∈ ΣD. It is
also worth mentioning that

(W ⊤AtrueV, W ⊤Btrue, CtrueV, Dtrue) ∈ Σred
D (W, V ).

In this section, reduced-order approximations of data-consistent systems were
obtained from the collected data by employing given Petrov-Galerkin projection
matrices V and W . In the next section, we will construct the Petrov-Galerkin
projection matrices on the basis of the available data via generalized balancing.

13.4 Informativity for generalized Lyapunov balancing

First, we introduce the notion of informativity for generalized Lyapunov balan-
cing (GLB).
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Definition 13.5. We say that the data (U−, X, Y−) are informative for GLB if
there exist P̂ > 0 and Q̂ > 0 such that

P̂ −AP̂A⊤ > BB⊤ (13.25a)

and
Q̂−A⊤Q̂A > C⊤C (13.25b)

for all (A, B, C, D) ∈ ΣD.
Stated differently, informativity for GLB requires the existence of common

generalized controllability and observability Gramians for all data-consistent sys-
tems. To present necessary and sufficient conditions for informativity for GLB,
we first define

NC :=

In 0
0 0
0 In+m

⊤

N

In 0
0 0
0 In+m


and

NO :=

In 0
0 0
0 In+p

⊤

N⋆

In 0
0 0
0 In+p


where

N⋆ :=
[

0 −In+m

In+p 0

]
N−1

[
0 −In+p

In+m 0

]
.

Theorem 13.6. The data (U−, X, Y−) are informative for GLB if and only if
there exist P̂ > 0, Q̂ > 0, and scalars α, β > 0 such that P̂ 0 0

0 −P̂ 0
0 0 −Im

− αNC > 0 (13.26a)

and 
Q̂ 0 0
0 −Q̂ 0
0 0 −Ip

− βNO > 0. (13.26b)

Proof. We first claim that the existence of P̂ > 0 satisfying (13.25a) for all
(A, B, C, D) ∈ ΣD is equivalent to the existence of P̂ > 0 and α > 0 satisfying
(13.26a). To see this, note first that (13.25a) is equivalent to the quadratic
matrix inequality  I

A⊤

B⊤

⊤ P̂ 0 0
0 −P̂ 0
0 0 −Im

 I
A⊤

B⊤

 > 0. (13.27)
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Next, recall from (13.19) that (A, B, C, D) ∈ ΣD if and only if[
A⊤ C⊤

B⊤ D⊤

]
∈ Zn+m(N). (13.28)

Therefore, there exists (C, D) such that (A, B, C, D) ∈ ΣD if and only if[
A⊤

B⊤

]
∈ Zn+m(N)

[
In

0p,n

]
= Zn+m(NC)

where the last equality follows from Theorem A.7. By applying Theorem A.17,
we see that there exists P̂ > 0 such that (13.25a) is satisfied for all (A, B, C, D) ∈
ΣD if and only if there exist P̂ > 0 and α ⩾ 0 such that (13.26a) is satisfied.
Because of the −Im term in (13.26a), it is clear that α has to be nonzero.

Now, we claim that the existence of a matrix Q̂ > 0 satisfying (13.25b) for
all data-consistent systems (A, B, C, D) ∈ ΣD is equivalent to the existence of
Q̂ > 0 and β > 0 satisfying (13.26b). To see this, first note that (13.25b) is
equivalent to the quadratic matrix inequality I

A
C

⊤ Q̂ 0 0
0 −Q̂ 0
0 0 −Ip

 I
A
C

 > 0. (13.29)

In addition, note that (13.28) and Theorem A.3 imply that (A, B, C, D) ∈ ΣD
if and only if [

A B
C D

]
∈ Zn+p(N⋆).

Therefore, there exists (B, D) such that (A, B, C, D) ∈ ΣD if and only if[
A
C

]
∈ Zn+p(N⋆)

[
In

0m,n

]
= Zn+p(NO)

where the last equality follows from Theorem A.7. By applying Theorem A.17,
we see that there exists Q̂ > 0 such that (13.25b) is satisfied for all (A, B, C, D) ∈
ΣD if and only if there exist Q̂ > 0 and β ⩾ 0 such that (13.26b) is satisfied.
Finally, β has to be nonzero because of the −Ip term in (13.26b). □

13.5 Reduced-order models and error analysis

A direct consequence of data informativity for GLB is that all data-consistent
systems are stable and share the common generalized Gramians P̂ and Q̂. As a
result, all such systems can be balanced by a common balancing transformation
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matrix Ŝ satisfying ŜP̂ Ŝ⊤ = Ŝ−⊤Q̂Ŝ−1 = Ĥsv where Ĥsv is a matrix of the form
(13.6), containing the common generalized Hankel singular values. Further, the
Petrov-Galerkin projection

W = Ŝ⊤
[
Ir

0

]
and V = Ŝ−1

[
Ir

0

]
. (13.30)

can be applied to each data-compatible system to obtain a corresponding reduced-
order model as in (13.3). This leads to the set of reduced-order models

Σred
D :=

{
(W ⊤AV, W ⊤B, CV, D) | (A, B, C, D) ∈ ΣD

}
. (13.31)

As we have seen earlier in Theorem 13.4, the set of reduced-order models is a
set induced by a quadratic matrix inequality.

Suppose that (A, B, C, D) ∈ ΣD. Let (Ared, Bred, Cred, Dred) denote the cor-
responding reduced-order system in Σred

D . We know from Proposition 13.2 that
the h∞-norm error between the original and reduced-order systems is upper
bounded by the neglected common generalized Hankel singular values, that is

∥G−Gred∥h∞ ⩽ 2
κ̂∑

i=k+1
σ̂i (13.32)

provided that r =
∑k

i=1 m̂i with k < κ̂. This error bound allows us to evaluate
the quality of the reduced-order model obtained from a specific data-consistent
system. Since the true system is unknown and could be any data-consistent sys-
tem within ΣD, obtaining its corresponding reduced-order model is not possible
and any reduced-order model within Σred

D can serve as an approximation of the
true system. As such, the error bound (13.32) provides very limited insight in the
error analysis. Instead, the quality of the reduced-order model (Â, B̂, Ĉ, D̂) ∈
Σred

D as an approximation of the true system (Atrue, Btrue, Ctrue, Dtrue) is deter-
mined by the error:

∥G(Atrue,Btrue,Ctrue,Dtrue) −G(Â,B̂,Ĉ,D̂)∥h∞ (13.33)

where
G(A,B,C,D) = D + C(sI −A)−1B.

In what follows, we will investigate two error bounds:

• an a priori bound that accounts for any data-consistent system and any
reduced-order model,

• an a posteriori bound that considers any data-consistent system but fo-
cuses on a specific choice of the reduced-order model.
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A priori error bound

An a priori upper bound on the error can be obtained by computing the max-
imum possible error between a data-consistent system and a reduced-order
model. The following theorem provides LMIs to check whether such an upper
bound is less than a given number.

Theorem 13.7. The error bound

∥G(A,B,C,D) −G(Â,B̂,Ĉ,D̂)∥h∞ < γ (13.34)

holds for every (A, B, C, D) ∈ ΣD and every (Â, B̂, Ĉ, D̂) ∈ Σred
D if there exist a

positive definite matrix K ∈ Sn+r, and scalars δ > 0, η > 0, and µ such that

Θ(K, µ)−
[
δN 0
0 ηNred

]
> 0 (13.35)

where
K =

[
K11 K12
K21 K22

]
with K11 ∈ Sn,

Θ(K, µ) =



K11 0 0 0 K12 0 0 0
0 ( 1

2 − µ)Ip 0 0 0 −µIp 0 0
0 0 −K11 0 0 0 −K12 0
0 0 0 −γ−2Im 0 0 0 −γ−2Im

K21 0 0 0 K22 0 0 0
0 −µIp 0 0 0 ( 1

2 − µ)Ip 0 0
0 0 −K21 0 0 0 −K22 0
0 0 0 −γ−2Im 0 0 0 −γ−2Im


,

and N and Nred are given by (13.18) and (13.22), respectively.

Proof. Let (A, B, C, D) ∈ ΣD and (Â, B̂, Ĉ, D̂) ∈ Σred
D . Then, we have

I 0
0 I

A⊤ C⊤

B⊤ D⊤


⊤

N


I 0
0 I

A⊤ C⊤

B⊤ D⊤

 ⩾ 0 (13.36a)


I 0
0 I

Â⊤ Ĉ⊤

B̂⊤ D̂⊤


⊤

Nred


I 0
0 I

Â⊤ Ĉ⊤

B̂⊤ D̂⊤

 ⩾ 0. (13.36b)
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It follows from (13.35) and (13.36) that

Λ⊤Θ(K, µ)Λ > 0 (13.37)

where

Λ = Bdiag




I 0
0 I

A⊤ C⊤

B⊤ D⊤

 ,


I 0
0 I

Â⊤ Ĉ⊤

B̂⊤ D̂⊤


 .

Observe that

Λ


In 0 0
0 0 Ip

0 Ir 0
0 0 −Ip

 =



In 0 0
0 0 Ip

A⊤ 0 C⊤

B⊤ 0 D⊤

0 Ir 0
0 0 −Ip

0 Â⊤ −Ĉ⊤

0 B̂⊤ −D̂⊤


. (13.38)

Then, it follows from (13.37) and (13.38) that

In 0 0
0 0 Ip

A⊤ 0 C⊤

B⊤ 0 D⊤

0 Ir 0
0 0 −Ip

0 Â⊤ −Ĉ⊤

0 B̂⊤ −D̂⊤



⊤

Θ(K, µ)



In 0 0
0 0 Ip

A⊤ 0 C⊤

B⊤ 0 D⊤

0 Ir 0
0 0 −Ip

0 Â⊤ −Ĉ⊤

0 B̂⊤ −D̂⊤


> 0. (13.39)

Straightforward calculations yield that

In 0 0
0 0 Ip

A⊤ 0 C⊤

B⊤ 0 D⊤

0 Ir 0
0 0 −Ip

0 Â⊤ −Ĉ⊤

0 B̂⊤ −D̂⊤



⊤

Θ(K, µ)



In 0 0
0 0 Ip

A⊤ 0 C⊤

B⊤ 0 D⊤

0 Ir 0
0 0 −Ip

0 Â⊤ −Ĉ⊤

0 B̂⊤ −D̂⊤


=[

K 0
0 Ip

]
−
[
Ae Be
Ce De

] [
K 0
0 γ−2Im

] [
Ae Be
Ce De

]⊤
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where

Ae :=
[
A 0
0 Â

]
, Be :=

[
B

B̂

]
, Ce :=

[
C −Ĉ

]
, and De := D − D̂.

Hence, we see from (13.39) that[
K 0
0 Ip

]
−
[
Ae Be
Ce De

] [
K 0
0 γ−2Im

] [
Ae Be
Ce De

]⊤

> 0

which is, by a Schur complement argument, equivalent to
K 0 Ae Be
0 Ip Ce De

A⊤
e C⊤

e K−1 0
B⊤

e D⊤
e 0 γ2Im

 > 0.

By taking the Schur complement with respect to
[
K 0
0 I

]
, we see that the last

inequality is equivalent to[
K−1 0

0 γ2Im

]
−
[
Ae Be
Ce De

]⊤ [
K−1 0

0 Ip

] [
Ae Be
Ce De

]
> 0.

Therefore, it follows from Proposition 8.11 that Ae is stable and

∥G(Ae,Be,Ce,De)∥h∞ < γ.

Finally, the observation

G(Ae,Be,Ce,De) = G(A,B,C,D) −G(Â,B̂,Ĉ,D̂)

concludes the proof. □

A posteriori error bound

The a priori error bound that is provided by Theorem 13.7 is valid for any
reduced-order model. The following result deals with an a posteriori error bound
for a given reduced-order model.

Theorem 13.8. Let (Â, B̂, Ĉ, D̂) ∈ Σred
D and γ > 0 be a scalar. Then, the error

bound
∥G(A,B,C,D) −G(Â,B̂,Ĉ,D̂)∥h∞ < γ0 (13.40)
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holds for every (A, B, C, D) ∈ ΣD if there exist a positive definite matrix K ∈
Sn+r and a scalar δ > 0 such that

K11 0 0 0 K12

0 Ip−ĈK22Ĉ⊤−γ−2
0 D̂D̂⊤ ĈK21 γ−2

0 D̂ ĈK22Â⊤ + γ−2
0 D̂B̂⊤

0 K12Ĉ⊤ −K11 0 −K12Â⊤

0 γ−2
0 D̂⊤ 0 −γ−2

0 Im −γ−2
0 B̂⊤

K21 ÂK22Ĉ⊤ + γ−2
0 B̂D̂⊤ −ÂK21 −γ−2

0 B̂ K22−ÂK22Â⊤−γ−2
0 B̂B̂⊤


−
[

δN 0
0 0

]
> 0 (13.41)

where
K =

[
K11 K12
K21 K22

]
with K11 ∈ Sn

and N is given by (13.18).
Proof. Let (A, B, C, D) ∈ ΣD. Then, we have

I 0
0 I

A⊤ C⊤

B⊤ D⊤


⊤

N


I 0
0 I

A⊤ C⊤

B⊤ D⊤

 ⩾ 0. (13.42)

Let Θ denote the matrix on the left hand side of the inequality in (13.41). It
follows from (13.42), (13.41), and straightforward calculations that

0 <

I 0 A B 0
0 0 0 0 Ir

0 I C D 0

Θ


I 0 0
0 0 I

A⊤ 0 C⊤

B⊤ 0 D⊤

0 Ir 0

 =
[
K 0
0 Ip

]
− Ω

[
K 0
0 γ−2

0 Im

]
Ω⊤

where
Ω =

[
Ae Be
Ce De

]
with

Ae :=
[
A 0
0 Â

]
, Be :=

[
B

B̂

]
, Ce :=

[
C −Ĉ

]
, and De := D − D̂.

The arguments employed in the proof of Theorem 13.7 together with Propo-
sition 13.7 imply that Ae is stable and ∥G(Ae,Be,Ce,De)∥h∞ < γ0. Finally, the
observation

G(Ae,Be,Ce,De) = G(A,B,C,D) −G(Â,B̂,Ĉ,D̂).

concludes the proof. □
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13.6 Illustrative example

To illustrate the results presented so far in this chapter, we consider the discrete-
time system of the form (13.13) where

Atrue =


0.9299 0.4160 0.7447 0.2291 0.2452 0.0592
−0.1869 0.7430 0.3318 0.7617 1.0859 0.3560

0.0380 0.0477 −0.3644 0.0647 0.1370 0.0766
0.0169 0.0549 −0.0972 −0.3693 −0.8685 0.0484
0.0250 0.0285 0.2741 0.1393 −0.0474 0.1615
0.1108 0.1358 −1.7370 0.1855 −1.8002 −0.2311

 ,

Btrue =


0.0701
0.1869
−0.0380
−0.0169
−0.0250
−0.1108

 , Ctrue =
[
1 0 0 0 0 0

]
, and Dtrue = 0.

This system is obtained as the zero-order hold discretization (with sampling
time 0.5 seconds) of the continuous-time state-space model of a cart with double
pendulum presented in [78].

To illustrate the data-driven model reduction from noisy data, we apply the
input signal

u(t) = 2 sin(t) + cos(0.5t) (13.43)

to the system (13.13) and collect T = 200 data samples for initial states and
that were drawn randomly from a Gaussian distribution with zero mean and unit
variance. Also the noise samples were drawn randomly from a Gaussian distri-
bution, with zero mean and variance σ2. In this example, we assume knowledge
of a bound on the energy of the noise which corresponds to the noise model
(13.15) with Φ11 = 1.35σ2I, Φ12 = 0 and Φ22 = −I.

We simulated the noise with different levels: σ ∈ {0.002, 0.005, 0.01, 0.03, 0.05}
and verified that the noise model is satisfied by the generated noise sequences.
In addition, Assumption 13.3 is satisfied by the collected data together with the
noise model.

For each noise level, we applied Theorem 13.3 to the collected data set and
observed that each data set is informative for generalized Lyapunov balancing.
In Figure 13.1, the generalized Hankel singular values obtained from each data
set are depicted. As expected, the generalized Hankel singular values provide
less strict bounds on the unknown ordinary Hankel singular values when the
noise level is increased.
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Figure 13.1: The Hankel singular values of the true system denoted by Hsv,true
and generalized Hankel singular values of all data-consistent systems for different
noise levels denoted by Ĥsv,σ.

We picked a reduced-order model of order r = 3 from the set Σred
D for each

data set. The Bode diagrams of the reduced-order systems are depicted in Fig-
ure 13.2. This figure shows that reduced-order models accurately approximate
the true system at least up to the noise level σ = 0.03 while the resulting reduced-
order model for σ = 0.05 approximates the true system poorly. Figures 13.3-13.4
depict the output trajectories of the true system and the reduced-order model
obtained from the data corresponding to the noise level σ = 0.03 and the error.

By applying Theorems 13.7-13.8 and the bisection method, we obtained best
a priori and a posteriori error bounds for each data set. Figure 13.5 shows how
these error bounds vary depending on the noise level. As expected, these bounds
are getting more conservative when the noise level increases. It is also clear that
the a posteriori upper bound is less conservative than the corresponding a priori
upper bound for each noise level. In spite of the conservative error bounds, the
actual h∞-norms of the errors between the true system and the reduced-order
models for some small enough noise levels show that the proposed data-driven
method performs well. In particular, the h∞-norm of the errors for noise levels
σ = 0.002, 0.005, 0.01 and 0.03 which are given by 0.0405, 0.0470, 0.0507 and
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Figure 13.2: Bode plots of the true system Σtrue and reduced-order models Σ̂σ

for five different noise levels σ = 0.002, 0.005, 0.01, 0.03, and 0.05.

0.0513, respectively, are relatively small compared to the error of reduction by
the ordinary balanced truncation, which is equal to 0.0314.
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y : noisy output of Σtrue

ŷ : output of Σ̂0.03 ∈ Σ̂0.03

Figure 13.3: Comparison of output trajectories.
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Figure 13.4: Error ytrue − ŷ.
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Figure 13.5: Comparison of a priori error bounds γ, a posteriori error bounds
γ0, the actual h∞-norm of the error Gtrue −Gσ where Gσ is the transfer matrix
of a reduced-order model obtained using Theorem 13.7, and h∞-norm of the
error Gtrue −Gred where Gred is the transfer matrix of the reduced-order model
obtained via ordinary balanced truncation.
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13.7 Notes and references

The Lyapunov balancing method was first introduced in [118] and later in the
systems and control literature in [116]. We refer the reader to the excellent sur-
vey paper [67] for a historical and detailed treatment. Various approaches to
data-driven Lyapunov balancing have been proposed in the literature. Exam-
ples include [105, 135] that propose a data-driven balanced truncation method
from persistently exciting data and [66] that estimates Gramians from frequency
and time-domain data based on their quadrature form. Existing methods for
data-driven model reduction do not provide conditions on the data that would
guarantee preservation of system properties such as asymptotic stability. In ad-
dition, they do not provide error bounds, especially when the available data is
subject to noise.

The results of this chapter are based on the paper [29] where the informativity
for generalized Lyapunov balancing was studied the first time.





14

Data-driven model reduction
via moment matching

In this chapter, we focus on interpolatory model reduction techniques. Together
with the balancing methods as discussed in the previous chapter, the interpo-
latory methods form a popular class of model reduction approaches since they
are numerically stable and, therefore, applicable to models of very large order.
These methods aim at constructing a reduced-order model whose transfer func-
tion interpolates that of the original high-order model at selected interpolation
points, e.g., [10]. The central problem in this chapter is to derive informativity
conditions on the input-output data for moment matching as well as to develop
methods to determine reduced-order models once the data are informative.

14.1 Single-input single-output AR models and data

Consider the discrete-time input-output system given by the autoregressive model
of the form

y(t + n) + p̄n−1y(t + n− 1) + · · ·+ p̄1y(t + 1) + p̄0y(t)
= q̄nu(t + n) + q̄n−1u(t + n− 1) + · · ·+ q̄1u(t + 1) + q̄0u(t)

(14.1)

where n ∈ Z+, u denotes the scalar input, y the scalar output. We refer this
system as the true system and collect its scalar parameters p̄i and q̄i in the
vectors

p̄ =
[
p̄0 p̄1 · · · p̄n−1

]
∈ R1×n

and
q̄ =

[
q̄0 q̄1 · · · q̄n

]
∈ R1×(n+1).

We assume that n ⩾ 0 is known, the parameters
[
q̄ −p̄

]
are unknown, and input-

output data (u[0,T −1], y[0,T −1]), generated by the true system (14.1), are given
for some T ⩾ n + 1. We define

U = U[0,T −1] and Y = Y[0,T −1].
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Note that the data (U, Y ) can be generated by a system of the form

y(t + n) + pn−1y(t + n− 1) + · · ·+ p1y(t + 1) + p0y(t)
= qnu(t + n) + qn−1u(t + n− 1) + · · ·+ q1u(t + 1) + q0u(t)

(14.2)

if and only if [
q −p

] [Hn+1(u[0,T −1])
Hn(y[0,T −2])

]
= Y[n,T −1] (14.3)

where
p =

[
p0 p1 · · · pn−1

]
∈ R1×n

q =
[
q0 q1 · · · qn

]
∈ R1×(n+1).

Therefore, the set of all systems that are consistent with the data (U, Y ) is
given by

Σ(U,Y ) =
{[

q −p
]
∈ R1×(2n+1) | (14.3) holds

}
. (14.4)

Since the data (U, Y ) are generated by the true system (14.1), we clearly
have that [

q̄ −p̄
]
∈ Σ(U,Y ).

An obvious question to ask is when the data uniquely determine the true system.

Definition 14.1. The data (U, Y ) are informative for system identification if
Σ(U,Y ) is a singleton.

Data informativity for system identification can easily be characterized as
follows.

Proposition 14.2. The data (U, Y ) are informative for system identification if
and only if

rank
[
Hn+1(u[0,T −1])
Hn(y[0,T −2])

]
= rank

[
Hn+1(u[0,T −1])
Hn+1(y[0,T −1])

]
= 2n + 1. (14.5)

Proof. It is obvious that the first and the second equality in (14.5) are equivalent
to the existence and uniqueness of the solution of the linear equation (14.3),
respectively. □

14.2 The 0-th moment

Next, we will introduce the notion of the 0-th moment for systems of the form
(14.2). To do so, we first recall the definition of the shift operator (see (9.2)),
that is, (σf)(t) = f(t + 1) for all t ∈ Z+. Then, (14.2) can be rewritten as

P (σ)y = Q(σ)u (14.6)
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where

P (ξ) = ξn + pn−1ξn−1 + · · ·+ p1ξ + p0 (14.7a)
Q(ξ) = qnξn + qn−1ξn−1 + · · ·+ q1ξ + q0. (14.7b)

Now, we are in a position to define the 0-th moment.

Definition 14.3 (0-th moment). Given an interpolation point µ ∈ C, a scalar
M0 ∈ C is said to be a 0-th moment at µ of the discrete-time system (14.2) if

P (µ)M0 = Q(µ). (14.8)

Remark 14.4. For a discrete-time system (14.2) with transfer function

G(z) = Q(z)
P (z) ,

the 0-th moment at µ is typically defined as the complex number Q(µ)/P (µ).
This, however, requires that P (µ) ̸= 0. In other words, the 0-th moment is
not defined when µ is a pole of G(z). The notion in Definition 14.3 is a slight
generalization as it allows to define a moment in case P (µ) = 0 and/or Q(µ) = 0.
We stress that minimality is not assumed for (14.2). In case P (µ) = Q(µ) = 0,
i.e. there is a pole-zero cancellation at µ, any complex number is regarded as a
0-th moment at µ by Definition 14.3.

14.3 Informativity for interpolation

Given an interpolation point µ ∈ C, we are interested in finding conditions on the
data (U, Y ) under which the 0-th moment at µ of the true unknown system can
be computed. To derive such conditions, observe first that (14.8) is equivalent
to [

q −p
] [ γn(µ)

M0γn−1(µ)

]
= M0µn (14.9)

where

γℓ(ξ) =


1
ξ
...

ξℓ

 . (14.10)

Therefore, one can compute the 0-th moment at µ of the true system if and only
if there exists a unique M0 such that (14.9) is satisfied for any data-consistent
system. This observation leads to the following informativity notion.
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Definition 14.5. The data (U, Y ) are informative for interpolation at µ if there
exists a unique M0 such that (14.9) holds for all

[
q −p

]
∈ Σ(U,Y ).

It is clear that such a unique M0 exists if the data (U, Y ) are informative for
system identification as in Definition 14.1 and P (µ) ̸= 0. The following theorem
shows, however, that the data can be informative for interpolation even if they
are not so for system identification.

Theorem 14.6. The data (U, Y ) are informative for interpolation at µ if and
only if

rank
[
Hn+1(u[0,T −1]) 0 γn(µ)
Hn+1(y[0,T −1]) γn(µ) 0

]
= rank

[
Hn+1(u[0,T −1]) 0
Hn+1(y[0,T −1]) γn(µ)

]
(14.11)

and

rank
[
Hn+1(u[0,T −1]) 0
Hn+1(y[0,T −1]) γn(µ)

]
= rank

[
Hn+1(u[0,T −1])
Hn+1(y[0,T −1])

]
+ 1. (14.12)

To prove this theorem, we need the following two rather elementary linear
algebra results.

Lemma 14.7. Let Ai ∈ Rn×mi and bi ∈ R1×mi for i = 1, 2. Consider the sets
Xi =

{
ξ ∈ R1×n | ξAi = bi

}
and assume that X1 is nonempty. Then, X1 ⊆ X2

if and only if

im
[
A2
b2

]
⊆ im

[
A1
b1

]
. (14.13)

Proof. if: Suppose that (14.13) holds. Then, there exists F such that[
A2
b2

]
=
[
A1
b1

]
F.

This readily implies that X1 ⊆ X2.
only if: Suppose that X1 ⊆ X2. Let

[
ξ η
]
∈ lker

[
A1
b1

]
(14.14)

where ξ ∈ R1×n and η ∈ R. We distinguish two cases:
Case 1 : η ̸= 0. By (14.14), we have (−ξ/η) A1 = b1, i.e., −ξ/η ∈ X1. Since

X1 ⊆ X2, we also have that (−ξ/η) A2 = b2, which is equivalent to

[
ξ η
]
∈ lker

[
A2
b2

]
.
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Case 2: η = 0. By (14.14), we have ξA1 = 0, i.e., ξ ∈ lker A1. Let ξ̄ be such
that ξ̄A1 = b1. Then, (ξ̄ + αξ)A1 = b1 for any α ∈ R. Since X1 ⊆ X2, then we
also have (ξ̄ + αξ)A2 = b2. This leads to

ξ̄

α
A2 + ξA2 = b2

α
.

For α→∞, this implies that ξA2 = 0. As such we have

[
ξ 0
]
∈ lker

[
A2
b2

]
.

In both cases, we have that

[
ξ η
]
∈ lker

[
A2
b2

]
.

Therefore, we can conclude that

lker
[
A1
b1

]
⊆ lker

[
A2
b2

]
which is equivalent to (14.13). □

Lemma 14.8. Let A ∈ Ck×k and a ∈ Ck. Then, the following statements are
equivalent:

(a) If
[
A a

] [ξ1
η1

]
=
[
A a

] [ξ2
η2

]
, then η1 = η2.

(b) rank
[
A a

]
= rank A + 1.

Proof. Note that (a) holds if and only if ker
[
A a

]
= ker A×{0}. It then follows

from the rank-nullity theorem that the two statements are equivalent. □

Proof of Theorem 14.6. Let ΣM0 denote the set of all
[
q −p

]
satisfying (14.9).

Then, by Definition 14.5, the data (U, Y ) are informative for interpolation at µ
if and only if there exists a unique M0 such that

Σ(U,Y ) ⊆ ΣM0 . (14.15)

We will show that the condition (14.11) is equivalent to the existence of M0
satisfying (14.15) whereas the condition (14.12) is equivalent to the uniqueness
of M0.
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First, note that Σ(U,Y ) contains the true system and hence is nonempty.
Therefore, it follows from Lemma 14.7 that there exists an M0 satisfying (14.11)
if and only if [

γn(µ)
M0γn(µ)

]
∈ im

[
Hn+1(u[0,T −1])
Hn+1(y[0,T −1])

]
or equivalently the existence of ξ ∈ CT −n such that[

Hn+1(u[0,T −1]) 0
Hn+1(y[0,T −1]) −γn(µ)

] [
ξ

M0

]
=
[
γn(µ)

0

]
. (14.16)

Consequently, we see that the existence of an M0 satisfying (14.15) is equivalent
to the condition (14.11).

Now, note that the uniqueness of M0 is equivalent to the implication[
Hn+1(u[0,T −1]) 0
Hn+1(y[0,T −1]) −γn(µ)

] [
ξ1
η1

]
=
[
Hn+1(u[0,T −1]) 0
Hn+1(y[0,T −1]) −γn(µ)

] [
ξ2
η2

]
=⇒ η1 = η2.

As such, Lemma 14.8 implies that the uniqueness of M0 is equivalent to (14.12).
■

It readily follows from Theorem 14.6 that data informativity for interpolation
at µ ∈ C \ R is equivalent to informativity at its complex conjugate.

An important consequence of Theorem 14.6 is that the data do not need to
be informative for system identification in order to be for interpolation. Thus,
it is possible that infinitely many systems are consistent with the data and they
all have the same moment at a given interpolation point.

14.3.1 Illustrative example

We illustrate Theorem 14.6 by the following example.

Example 14.9. Consider the RL circuit depicted in Figure 14.1, which is a
slight extension of [84, Example 22]. We take the currents through the inductors

L1 L2 L3 L4

R1 R2 R3 R4 R5

+

−

Vd

Figure 14.1: RL circuit with four inductors and five resistors.

L1, L2, L3 and L4 as the states of the system, so n = 4. The input is the voltage
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Vd. Finally, as the output, we take the current through the first inductor L1.
This leads to the continuous-time dynamical system

ẋ =


−R2

L1
R2
L1

0 0
R2
L2

−(R2+R3)
L2

R3
L2

0
0 R3

L3

−(R3+R4)
L3

R4
L3

0 0 R4
L4

−(R4+R5)
L4

x +


1

L1
0
0
0

u,

y =
[
1 0 0 0

]
x. (14.17)

Let L1 = L2 = L3 = L4 = 1 H, R1 = 0.5 Ω, R2 = 8 Ω, R3 = 5 Ω, R4 = 1 Ω, and
R5 = 4 Ω. Consider the zero-order hold discretization (with the sampling period
0.2 s) of the system (14.17) which is assumed to be unknown. We apply the true
system the input U[0,20] generated by an autonomous discrete-time system of the
form

u(t) =
[ 1

2
1
2

1
2

1
2
]

w(t) and w(t + 1) =


√

2 −1 0 0
1 0 0 0
0 0 1 1
0 0 0 1

w(t)

with w(0) =
[
1 0 0 −0.1

]⊤ and harvest the output Y[0,20]. This leads to the
samples depicted in Figure 14.2.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

Time

Input
Output

Figure 14.2: Input-output data with sampling period ∆ = 0.2 s.
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It can be verified that the condition (14.5) does not hold for these data. As
such, the data are not informative for system identification. Instead, there are
(infinitely) many systems of the form (14.2) with order n = 4 that are consistent
with the data.

Suppose that we aim at interpolation at µ1 = 1, µ2,3 = 1√
2 ±

i√
2 , and

µ4,5 = ±i. One can verify by Theorem 14.6 that the data (U, Y ) are informative
for interpolation at µ1, µ2 and µ3. Similarly, it can be verified that the data are
not informative for interpolation at µ4,5. Finally, the moments of order 0 at µ1,
µ2 and µ3 are given by 1.575, 0.0031−0.1417i and 0.0031+0.1417i, respectively,
which are obtained by solving (14.16). ■

14.4 Higher order moments

In this section, we deal with higher order moments. For systems of the form
(14.2), higher order moments can be defined in a recursive manner as follows.

Definition 14.10 (k-th moment). Let k ⩾ 1. Given an interpolation point
µ ∈ C and j-th moments at µ, Mj for j ∈ [0, k − 1], a scalar Mk ∈ C is said to
be a k-th moment at µ of the system (14.2) if

Q(k)(µ) =
k∑

j=0

(
k

j

)
MjP (k−j)(µ) (14.18)

where (
k

j

)
= k!

j!(k − j)!

is the binomial coefficient and f (j) denotes the j-th derivative of f .

By using the γ notation defined in (14.10), we can rewrite (14.18) as a linear
equation in

[
q −p

]
:

[
q −p

] [ γ
(k)
n (µ)∑k

j=0
(

k
j

)
Mjγ

(k−j)
n−1 (µ)

]
=

k∑
j=0

(
k

j

)
n!

(n− k + j)!Mjµn−k+j (14.19)

where γ
(j)
ℓ denotes the j-th derivative of γℓ.

Informativity of the data for higher order moment matching can also be
defined in a recursive manner where moment matching of order 0 is understood
as interpolation.

Definition 14.11. The data (U, Y ) are informative for moment matching of
order k at µ if
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(a) the data are informative for moment matching of order j at µ for j ∈
[0, k − 1], and

(b) there exists a unique Mk such that (14.19) holds for all
[
q −p

]
∈ Σ(U,Y ).

By employing Lemmas 14.7 and 14.8 and following the footsteps of the proof
of Theorem 14.6, one can prove the following necessary and sufficient conditions
for informativity for higher order moment matching.

Theorem 14.12. Let k ⩾ 1. Suppose that the data (U, Y ) are informative
for moment matching of order j at µ for all j ∈ [0, k − 1]. Let Mj denote
the corresponding moments. Then, the data (U, Y ) are informative for moment
matching of order k at µ if and only if

rank
[

Hn+1(u[0,T −1]) 0 γ
(k)
n (µ)

Hn+1(y[0,T −1]) γn(µ)
∑k−1

j=0
(

k
j

)
Mjγ

(k−j)
n (µ)

]
=

rank
[
Hn+1(u[0,T −1]) 0
Hn+1(y[0,T −1]) γn(µ)

]
. (14.20)

Next, we illustrate this result by means of an example.

Example 14.13. Consider the system and input-output data studied in Ex-
ample 14.9. It can be checked that for σ = 1, condition (14.12) holds for k = 1.
Hence, the data are informative for moment matching of order 1 at σ = 1. By
solving the linear equation (14.19) (for k = 1) and using M0 = 1.575, we obtain
M1 = −31.8437. ■

14.5 Multiple interpolation points

So far, our discussion considered a single interpolation point µ and its desired
order of moment k. Let s pairs of interpolation points and their desired order
of moments

P = { (µi, ki) | i ∈ [1, s]} (14.21)

be given. We assume that (µ̄i, ki) ∈ P whenever (µi, ki) ∈ P. By applying Theo-
rems 14.6 and 14.12, one can verify whether the data are informative for moment
matching for each pair. If so, (14.16) and (14.19) result in the corresponding
moments

Mi =
{

(µi, M i
j)
∣∣ j ∈ [0, ki]

}
(14.22)

where M i
j denotes the j-th moment at µi.
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14.6 Reduced-order models by moment matching

In this section, we will investigate how reduced-order models can be computed
from data that are informative for moment matching. As the results of Theo-
rems 14.6 and 14.12 lead to the computation of moments at given interpolation
points, obtaining such a reduced-order model is essentially a rational interpola-
tion problem.

Let a reduced-order model of order r be given by

P̂ (σ)y = Q̂(σ)u (14.23)

where

P̂ (ξ) = ξr + p̂r−1ξr−1 + · · ·+ p̂1ξ + p̂0, (14.24a)
Q̂(ξ) = q̂rξr + q̂r−1ξr−1 + · · ·+ q̂1ξ + q̂0. (14.24b)

As before, we collect the parameters of (14.24) in vectors

p̂ =
[
p̂0 p̂1 · · · p̂r−1

]
q̂ =

[
q̂0 q̂1 · · · q̂r

]
.

Then, the model (14.23) interpolates or matches the 0-th moment at µ if M0 in
(14.16) satisfies Q̂(µ) = M0P̂ (µ) which is equivalent to

[
q̂ −p̂

] [ γr(µ)
M0γr−1(µ)

]
= M0µr.

More generally, for P and Mi as in (14.21) and (14.22), a reduced-order model
parameterized by

[
q̂ −p̂

]
must satisfy the linear equations

[
q̂ −p̂

] [ Γr(µi)
Γr

M (µi)

]
1:(2r+1)

=
[

Γr(µi)
Γr

M (µi)

]
(2r+2)

(14.25)

for i ∈ [1, s] where Γr(µi)
Γr

M (µi)

=

 γr(µi) γ
(1)
r (µi) · · · γ

(ki)
r (µi)

M i
0γr(µi) M i

0γ
(1)
r (µi) + M i

1γr(µi) · · ·
∑ki

j=0
(

ki

j

)
M i

jγ
(ki−j)
r (µi)

.

Here, the notation X1:(2r+1) and X(2r+2) denote the first 2r+1 rows and (2r+2)-
th row of a matrix X, respectively.

Note that since
[
q̂ −p̂

]
is restricted to be real, then if µi ∈ C \ R, we split

(14.25) into its real and imaginary parts.
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Now, we define

Σ̂r,P =
{[

q̂ −p̂
]
∈ R1×(2r+1) | (14.25) holds

}
.

Clearly, Σ̂r,P consists of all models of order r matching the moments M i
j at the

interpolation point σi for all i ∈ [1, s] and j ∈ [0, ki]. The following theorem
readily follows from the solvability conditions of the linear equation given in
(14.25).

Theorem 14.14. Given the data of interpolation points P and moments Mi for
i ∈ [1, s] as in (14.21) and (14.22). Then, Σ̂r,P ̸= ∅ if and only if

rank
[

Γr(µ1) Γr(µ2) · · · Γr(µs)
Γr

M (µ1) Γr
M (µ2) · · · Γr

M (µs)

]
1:(2r+1)

=

rank
[

Γr(µ1) Γr(µ2) · · · Γr(µs)
Γr

M (µ1) Γr
M (µ2) · · · Γr

M (µs)

]
.

Note that we do not restrict
[
q̂ −p̂

]
∈ Σ̂r,P to be minimal, i.e., the polyno-

mials P̂ (ξ) and Q̂(ξ) might not be coprime. In addition, it is also obvious that
if r ⩾ k∗ − 1 where k∗ =

∑s
i=1(ki + 1), then (14.14) always holds.

The following example illustrates the computation of the reduced-order mod-
els.
Example 14.15. From Examples 14.9 and 14.13, we have

P = {(µ1, 1), (µ2, 0), (µ3, 0)}

and Mi as follows:

M1 =
{

(µ1, M1
0 ), (σ1, M1

1 )
}

= {(1, 1.575), (1,−31.8437)} ,

M2 =
{

(µ2, M2
0 )
}

=
{(

1/
√

2 + i/
√

2, 0.0031− 0.1417i
)}

,

M3 =
{

(µ3, M3
0 )
}

=
{(

1/
√

2− i/
√

2, 0.0031 + 0.1417i
)}

.

It can be checked that condition (14.14) does not hold for r = 1. Therefore,
Σ̂1,P = ∅. Meanwhile, it is satisfied with r = 2. Hence, Σ̂2,P ̸= ∅. We recall that
(14.25) characterizes all reduced-order systems that achieve moment matching
(i.e., the set Σ̂2,P), of which two examples, in the form 14.23, are given by

(σ2 − 1.191σ + 0.2268)y = (0.0001953σ2 + 0.1236σ − 0.06692)u (14.26)

and

(σ2 − 1.911σ + 0.9116)y = (0.04622σ2 + 0.02116σ − 0.06605)u. (14.27)
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The Bode plot of the reduced-order models (14.26) and (14.27) compared to the
higher-order model of Example 14.9 are given in Figure 14.3 from which one can
observe that the reduced-order model (14.26) captures the magnitude and phase
of the higher-order model well, but (14.27) does not. Nevertheless, all of the
curves are intersected at frequency 0 rad/s and 5π

4 rad/s. This indicates that
indeed these two systems in Σ̂2,P achieve the desired moment matching, but the
optimality on approximating the higher-order model is another issue. We stress
that this is a well-known feature of moment matching methods and not specific
to our data-driven approach. ■
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Figure 14.3: Comparison of the Bode plot of a second-order to that of the higher-
order model.

Often reduced-order models are expected to preserve certain properties of
the original models. Stability is one of the most common as well important
property to be preserved. Next, we investigate conditions under which one can
choose a stable reduced-order model. Note that stability of a reduced-order
model

[
q̂ −p̂

]
∈ Σ̂r,P is purely determined by p̂, i.e., one can choose p̂ such that

the roots of its corresponding polynomial are in the unit disc. Motivated by
this observation, we provide a sufficient condition such that p̂ can be chosen
arbitrarily while

[
q̂ −p̂

]
∈ Σ̂r,P.

Theorem 14.16. For P and Mi as in (14.21) and (14.22), let k∗ =
∑s

i=1(ki+1).



Notes and references 333

If r ⩾ k∗ − 1 then for every p̂ ∈ R1×r there exists q̂ ∈ R1×(r+1) such that[
q̂ −p̂

]
∈ Σ̂r,P.

Proof. We know that
[
q̂ −p̂

]
∈ Σ̂r,P if and only if

[
q̂ −p̂ −1

] [Γ1
Γ2

]
= 0, (14.28)

where
Γ1 =

[
Γr(µ1) Γr(µ2) · · · Γr(µs)

]
and

Γ2 =
[
Γr

M (µ1) Γr
M (µ2) · · · Γr

M (µs)
]

.

It is clear that r ⩾ k∗− 1 guarantees Σ̂r,P ̸= ∅. Particularly, since the structure
of Γ1 is a Vandermonde matrix, then rank(Γ1) = k∗ which implies (14.14). From
(14.28), we see that for every p̂ there exists q̂ such that

[
q̂ −p̂

]
∈ Σ̂r,P if and

only if
rsp Γ2 ⊆ rsp Γ1. (14.29)

Since rank(Γ1) = k∗, we have that rsp Γ1 = R1×k∗ . Then, (14.29) readily
holds. □

We close this chapter with an example that illustrates Theorem 14.16.

Example 14.17. Consider P as in Example 14.15. Let r = 3. Then, (14.14)
readily holds. We desire to place the poles at {0.25, 0.4, 0.95} to guarantee
stability of the resulting reduced-order model. This corresponds to the choice
p̂ =

[
−0.095 0.7175 −1.6

]
. By solving (14.25) with given p̂, we obtain q̂ that

leads to the following reduced-order model:

(σ3−1.6σ2 +0.7175σ−0.095)y = (−0.05625σ3 +0.2624σ2−0.2574σ+0.08674)u.

■

14.7 Notes and references

A data-driven model reduction approach by moment matching has been in-
troduced in [10, Chapter 4]. Relying on frequency-domain data, this so-called
Loewner framework has strong connections to classical rational interpolation,
see e.g. [6, 9, 11]. The Loewner framework (see e.g. , see [8, 108]) allows for
obtaining reduced-order systems that achieve interpolation as well as further
properties such as the preservation of stability [65], passivity, and optimal ap-
proximation in the h2 system norm [16]. To enable the use of time-domain
data (rather than frequency-domain data) in this framework, [126] estimates
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transfer function values at given interpolation points by exploiting the relation
between time- and frequency-domain data via the (discrete) Fourier transform,
after which standard interpolatory methods can be used.

Data-driven model reduction from given time-domain data has also become
an attractive topic in recent years. Belonging to the class of moment matching
methods, algorithms for computing (a least-square approximation of) moments
of linear or nonlinear systems are proposed in [141] and [123, Sec. VIA], building
on the framework of [13]. These (estimated) moments are then used to construct
families of reduced-order models. This method however relies on specifically
chosen input data to guarantee that the resulting data (obtained from a steady-
state response) is suitable for estimating a moment.

None of the existing works, however, investigate informativity of the data but
often implicitly assumes it. The first paper that has introduced and characterized
data informativity for moment matching is [30] on which this chapter is based.
In this chapter, we focus on the theoretical aspects and do not discuss numerical
applicability issues. An in-depth discussion on such issues can be found in [2].
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A

Mathematical background

This chapter deals with the mathematical material and basic notation. In Sec-
tion A.1 we introduce basic mathematical notation and concepts. Also, some
useful matrix theoretical lemmas are discussed. In Section A.2 we introduce
quadratic matrix inequalities and discuss their solution sets. Section A.3 is
devoted to an extensive treatment of matrix versions of Finsler’s lemma and
Yakubovich’s S-lemma. The results of that section will be crucial in our treat-
ment of data driven analysis and control in the context of noisy data.

For proofs of some of the results in this chapter we refer to the relevant
references as stated in Section A.4 containing notes and references.

A.1 Basic notation, concepts and facts

We denote by Z+ the set of nonnegative integers and by N the set of positive
integers. The set of real (respectively, complex) numbers is denoted by R (re-
spectively, C). We denote by Re c and Im c the real and imaginary parts of
a complex number c ∈ C. We will use the same notation to denote the real
and imaginary parts of a row or column vector of complex numbers. The n-
dimensional real Euclidean space is denoted by Rn, while Cn denotes the space
of n-tuples of complex numbers. The transpose of a vector v ∈ Cn is given by v⊤

and the complex conjugate transpose by v∗. The Euclidean norm of v is defined
as ∥v∥ :=

√
v∗v.

The space of real m × n matrices is denoted by Rm×n, and the space of
complex m× n matrices by Cm×n. Some conventions on the notation that will
be used for the zero matrix and identity matrix are as follows. If the dimensions
are clear from the context we denote the zero matrix simply by 0 and the identity
matrix by I. For given positive integers m and n we denote the m×n zero matrix
by 0m×n. The square m×m zero matrix is simply denoted by 0m. Finally, the
m×m identity matrix will be written as Im. We use the notation ∥M∥ to denote
the spectral (or induced 2-norm) of a matrix M ∈ Cm×n, that is,

∥M∥ := sup
{
∥Mx∥
∥x∥

| x ∈ Cn, x ̸= 0
}

.

In addition, tr(M) denotes the trace of M ∈ Rm×m.
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For a matrix M ∈ Rm×n, we define its image by im M := {Mx | x ∈ Rn},
kernel by ker M :={x ∈ Rn |Mx = 0}, row space by rsp M :=

{
xM | x ∈ R1×m

}
,

and left kernel by lker M := {x ∈ R1×m | xM = 0}.
The set of eigenvalues of a given M ∈ Rn×n, called the spectrum of M , is

denoted by σ(M). We say that M is Schur if all its eigenvalues have modulus
strictly less than 1. This is equivalent to the asymptotic stability of the associ-
ated discrete-time linear system x(t + 1) = Mx(t), where x(t) ∈ Rn. Since in
this book we focus solely on asymptotic stability, we simply say that M is stable
if it is Schur.

Given a positive integer n, the subset of Rn×n of all symmetric matrices will
be denoted by Sn. Symmetric matrices have only real eigenvalues. We denote by
λmin(M) and λmax(M) the smallest and largest eigenvalue of a symmetric matrix
M , respectively. For a given M ∈ Sn, its number (counting multiplicities) of
negative eigenvalues is denoted by In−(M) and its number of positive eigenvalues
by In+(M). These numbers are called the negative and positive signature of M ,
respectively. In this context, the algebraic multiplicity of the zero eigenvalue of
M is denoted by In0(M). The triple (In−(M), In0(M), In+(M)) is called the
inertia of M and is denoted by In(M).

If a matrix M is symmetric and positive semidefinite we will denote this
simply by M ⩾ 0. Similarly, M > 0 will mean that M is symmetric and positive
definite. Also, M ⩾ N and M > N will mean that M, N are symmetric matrices
and M − N , respectively, positive semidefinite and positive definite. Likewise,
we use the notation M ⩽ 0 and M < 0 to denote negative semidefiniteness and
negative definiteness, respectively. We denote the unique positive semidefinite
square root of a matrix M ⩾ 0 by M

1
2 .

The dimension of a vector space V is denoted by dimV.

A.1.1 Generalized inverses

Given a real m× n matrix M , any matrix M ♯ with the property that

MM ♯M = M

is called a generalized inverse of M . If rank M = m, i.e. M has full row rank,
then every generalized inverse is a right-inverse, i.e. MM ♯ = Im. Conversely,
every right-inverse of M is also a generalized inverse. Similarly, if rank M = n,
i.e., M has full column rank, then every generalized inverse is a left-inverse, i.e.
M ♯M = In. Also, every left-inverse is a generalized inverse. Because of this, we
will use the notation M ♯ both for generalized inverses as well as right-inverses
(left-inverses) of M .

For any m×n matrix M there exists a generalized inverse with the additional
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properties that

M ♯MM ♯ = M ♯,

M ♯M is symmetric,

MM ♯ is symmetric.

Indeed, since every matrix M can be factorized as M = LR with L full column
rank and R full row rank, a generalized inverse with these additional three
properties is given by

M ♯ := R⊤(RR⊤)−1(L⊤L)−1L⊤.

It can be shown that this particular generalized inverse is unique, in the sense
that there is exactly one generalized inverse that satisfies the additional three
properties. This particular generalized inverse is called the Moore-Penrose pseu-
do-inverse of M . It will be denoted in this book by M†.

The Moore-Penrose pseudo-inverse has several useful properties, among which
we mention the following. For a given an m× n matrix M ,

(M†)† = M,

I −M†M is the orthogonal projection of Rn onto ker M,

(M⊤)† = (M†)⊤.

In particular, the last property implies that the Moore-Penrose pseudo-inverse
of a symmetric matrix M is again symmetric, i.e. (M†)⊤ = M†.

A.1.2 Some relevant facts from matrix theory

In this section we formulate some useful lemmas on properties of matrices.

Lemma A.1. Let A ∈ Rr×q and B ∈ Rp×q.

(a) We have that A⊤A ⩽ B⊤B if and only if there exists S ∈ Rr×p such that

A = SB and S⊤S ⩽ I. (A.1)

(b) Assume, in addition, that B has full column rank. Then A⊤A < B⊤B if
and only if there exists S ∈ Rr×p such that

A = SB and S⊤S < I. (A.2)
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Moreover, if A⊤A−B⊤B ⩽ 0 (respectively, < 0), then S := AB† satisfies (A.1)
(respectively, (A.2)).
Proof. The ‘if’ parts of statements (a) and (b) are straightforward. Indeed, as-
sume that A = SB with S⊤S ⩽ I (respectively, < I). Then A⊤A = B⊤S⊤SB ⩽
B⊤B (respectively, < B⊤B), where we have made use of full column rank of B
to prove the strict inequality.

Next, we prove the ‘only if’ part of (a). We thus assume that A⊤A ⩽ B⊤B.
Our goal is to show that S := AB† satisfies (A.1). First, note that A⊤A ⩽ B⊤B
implies that ker B ⊆ ker A, equivalently, im A⊤ ⊆ im B⊤. Thus, there exists a
matrix Z ∈ Rr×q such that A⊤ = B⊤Z⊤, equivalently, A = ZB. Therefore,
SB = AB†B = ZBB†B = ZB = A. Moreover, S⊤S = (B†)⊤A⊤AB† ⩽
(B†)⊤B⊤BB† = BB†BB† = BB† ⩽ I, where the last equality and the last
inequality follow from the fact that BB† is an orthogonal projection. This
shows that S satisfies (A.1).

To prove the ‘only if’ part of statement (b), assume that B has full column
rank and A⊤A < B⊤B. This implies that there exists an ε > 0 such that
(1 + ε)A⊤A ⩽ B⊤B. As such, by statement (a), the matrix S̄ :=

√
1 + εAB†

satisfies
√

1 + εA = S̄B and S̄⊤S̄ ⩽ I. Define S := 1√
1+ε

S̄ = AB†. Then
A = SB and S⊤S = 1

1+ε S̄⊤S̄ < I. We conclude that S satisfies (A.2) which
proves the lemma. □

The following lemma is a direct consequence of [22, Prop. 6.1.7].
Lemma A.2. Let A ∈ Rq×p and B ∈ Rr×p. Then AM = B if and only if
im B ⊆ im A and there exists T ∈ Rr×q such that M = A†B + (Ip −A†A)T .

A.2 Sets induced by quadratic matrix inequalities

In this book, an important role will be played by sets of matrices defined in
terms of quadratic matrix inequalities (QMIs). We begin with sets of the form

Zr(Π) :=
{

Z ∈ Rr×q |
[
Iq

Z

]⊤

Π
[
Iq

Z

]
⩾ 0
}

, (A.3)

where Π ∈ Sq+r is given. The very first question one may ask is: under what
conditions on Π is the set Zr(Π) nonempty? An immediate necessary condition
is that Π must have at least q nonnegative eigenvalues. Clearly, this is not
sufficient in general.

It follows from [22, Fact 8.15.28] that Z ∈ Zr(Π) if and only if the matrixΠ11 Π12 −Z⊤

Π21 Π22 I
−Z I 0

 (A.4)
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has exactly r negative eigenvalues, where Π is partitioned as

Π =
[
Π11 Π12
Π21 Π22

]
. (A.5)

From now on, whenever we partition a matrix Π ∈ Sq+r like (A.5), this means
that Π11 is q × q and Π22 is r × r. We denote by Π |Π22 := Π11 − Π12Π†

22Π21
the (generalized) Schur complement of Π with respect to Π22. The condition on
the eigenvalues of (A.4) does not translate to an easily verifiable condition on Π
for nonemptiness of Zr(Π). Nevertheless, it leads to a useful dualization result
that will be crucial in some of the later chapters. To state this result, for given
S ⊆ Rr×q, we define S⊤ :=

{
Z⊤ | Z ∈ S

}
.

Lemma A.3. Let Π ∈ Sq+r be such that In(Π) = (r, 0, q). Assume that Zr(Π)
is nonempty. Then,

(
Zr(Π)

)⊤ = Zq(Π⋆
r,q) where

Π⋆
r,q :=

[
0 −Ir

Iq 0

]
Π−1

[
0 −Iq

Ir 0

]
.

In order to prove Lemma A.3, we need Haynsworth’s inertia theorem, for
which we refer to [22, Fact 6.5.5]. This result is recalled in the following lemma.

Lemma A.4. Let Π ∈ Sq+r. The following statements hold.

• If ker Π22 ⊆ ker Π12 then In(Π) = In(Π22) + In(Π |Π22).

• If ker Π11 ⊆ ker Π21 then In(Π) = In(Π11) + In(Π |Π11).

Proof of Lemma A.3. Let [
Π̂11 Π̂12
Π̂⊤

12 Π̂22

]
:= −Π−1

where Π̂11 ∈ Rq×q, Π̂12 ∈ Rq×r, and Π̂22 ∈ Rr×r. Also let Z ∈ Rr×q and define

ΘZ :=

0 I Z⊤

I Π̂11 Π̂12
Z Π̂⊤

12 Π̂22

 .

By Lemma A.4, we obtain

In(ΘZ) = In(−Π−1) + In
([

I
Z

]⊤

Π
[

I
Z

])
. (A.6)
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Next, we define

N :=
[
0 I

I Π̂11

]
.

Note that N is nonsingular and

N−1 =
[
−Π̂11 I

I 0

]
.

Let λ1, λ2, . . . , λq be the eigenvalues of Π̂11. Denote the corresponding eigenvec-
tors by v1, v2, . . . , vq ∈ Rq. Then, it can be easily verified that for i = 1, 2, . . . , q,

µ+
i = λi +

√
λ2

i + 4
2 and µ−

i = λi −
√

λ2
i + 4

2
are the 2q eigenvalues of N , with corresponding eigenvectors

w+
i =

[
vi

µ+
i vi

]
and w−

i =
[

vi

µ−
i vi

]
for i = 1, 2, . . . , q.

As such, N has precisely q positive and q negative eigenvalues. In other words,
In(N) = (q, 0, q). We also have that the Schur complement of ΘZ with respect
to N is given by

Π̂22 −
[
Z Π̂⊤

12
] [−Π̂11 I

I 0

] [
Z⊤

Π̂12

]
= Π̂22 + ZΠ̂11Z⊤ − ZΠ̂12 − Π̂⊤

12Z⊤

=
[

I
Z⊤

]⊤ [ Π̂22 −Π̂⊤
12

−Π̂12 Π̂11

] [
I

Z⊤

]
=
[

I
Z⊤

]⊤

Π⋆
r,q

[
I

Z⊤

]
.

By Lemma A.4, this implies that

In(ΘZ) = In(N) + In
([

I
Z⊤

]⊤

Π⋆
r,q

[
I

Z⊤

])
. (A.7)

By combining (A.6) and (A.7) we obtain

In
([

I
Z

]⊤

Π
[

I
Z

])
= In

([
I

Z⊤

]⊤

Π⋆
r,q

[
I

Z⊤

])
+ (0, 0, q − r)

since In(−Π−1) = (q, 0, r) and In(N) = (q, 0, q). This implies that[
I
Z

]⊤

Π
[

I
Z

]
⩾ 0 ⇐⇒

[
I

Z⊤

]⊤

Π⋆
r,q

[
I

Z⊤

]
⩾ 0

which proves the lemma. □
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It turns out that for particular matrices Π, a Schur complement argument
on the matrix Π itself leads to a simple characterization of nonemptiness of the
set Zr(Π). Specifically, suppose that Π22 ⩽ 0 and ker Π22 ⊆ ker Π12. Since the
latter condition is equivalent to Π12Π22Π†

22 = Π12, we have that[
Π11 Π12
Π21 Π22

]
=
[
Iq Π12Π†

22
0 Ir

] [
Π |Π22 0

0 Π22

] [
Iq 0

Π†
22Π21 Ir

]
. (A.8)

This results in[
Iq

Z

]⊤ [Π11 Π12
Π21 Π22

] [
Iq

Z

]
= Π |Π22 + (Z + Π†

22Π21)⊤Π22(Z + Π†
22Π21) (A.9)

and, since Π22 ⩽ 0,

Π |Π22 =
[

Iq

−Π†
22Π21

]⊤ [Π11 Π12
Π21 Π22

] [
Iq

−Π†
22Π21

]
⩾

[
Iq

Z

]⊤ [Π11 Π12
Π21 Π22

] [
Iq

Z

]
(A.10)

for any Z ∈ Rr×q. The conclusion is that if Π22 ⩽ 0 and ker Π22 ⊆ ker Π12 then
Zr(Π) is nonempty if and only if Π |Π22 ⩾ 0. Motivated by this observation, we
define the set

Πq,r =
{[

Π11 Π12
Π21 Π22

]
∈ Sq+r | Π22 ⩽ 0, Π |Π22 ⩾ 0 and ker Π22 ⊆ ker Π12

}
.

(A.11)
Note that it follows from the definition of Πq,r that the set Zr(Π) is nonempty

for all Π ∈ Πq,r. Next, in the following subsection, for Π ∈ Πq,r we will
investigate basic properties of the sets Zr(Π) and the following closely related
sets

Z+
r (Π) :=

{
Z ∈ Rr×q |

[
Iq

Z

]⊤

Π
[
Iq

Z

]
> 0
}

(A.12)

Z0
r (Π) :=

{
Z ∈ Rr×q |

[
Iq

Z

]⊤

Π
[
Iq

Z

]
= 0
}

. (A.13)

A.2.1 Basic properties

In the following theorem, we study nonemptiness, convexity, and boundedness
of the sets induced by QMIs as introduced above.

Theorem A.5. Let Π ∈ Πq,r. Then, Zr(Π)

(a) is nonempty and convex.
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(b) is bounded if and only if Π22 < 0.

(c) has nonempty interior if and only if Π22 = 0 or Π |Π22 > 0.

Further,

(d) Z+
r (Π) is nonempty if and only if Π |Π22 > 0.

(e) Z0
r (Π) is nonempty if and only if rank Π22 ⩾ rank Π |Π22.

Proof. (a): Since Π |Π22 ⩾ 0, it follows from (A.10) that −Π†
22Π21 ∈ Zr(Π).

This proves nonemptiness whereas convexity readily follows from Π22 ⩽ 0.
(b): We first prove the ‘if’ part. Let Z ∈ Zr(Π). Then, it follows from (A.9)

that (Z+Π†
22Π21)⊤(−Π22)(Z+Π†

22Π21) ⩽ Π |Π22. This leads to λmin(−Π22)(Z+
Π†

22Π21)⊤(Z + Π†
22Π21) ⩽ λmax(Π |Π22)I. Since −Π22 > 0 and Π |Π22 ⩾ 0, we

see that ∥Z + Π†
22Π21∥ ⩽ α for some α ⩾ 0. Hence, Zr(Π) is bounded.

For the ‘only if’ part, let Z ∈ Zr(Π) and let ξ ∈ Rr be such that Π22ξ = 0.
Since Π ∈ Πq,r, we see that Z + αξξ⊤ ∈ Zr(Π) for any α ∈ R. Since Zr(Π) is
bounded, this implies ξ = 0. This proves that Π22 is nonsingular. Thus Π22 ⩽ 0
implies Π22 < 0.

(c): For the ‘if’ part, let ∆ ∈ Rr×q be such that ∥∆∥ ⩽ 1, equivalently,
∆⊤∆ ⩽ I. For all ε > 0, we have

Π |Π22 + ε2∆⊤Π22∆ ⩾ λmin(Π |Π22)I + ε2λmin(Π22)∆⊤∆
⩾ λmin(Π |Π22)I + ε2λmin(Π22)I

where the last inequality follows from the facts that Π22 ⩽ 0 and ∆⊤∆ ⩽ I. If
Π22 = 0, then the right hand side is nonnegative for any ε since Π | Π22 ⩾ 0.
If Π |Π22 > 0, then the right hand side is nonnegative for all sufficiently small
ε > 0. Therefore, there exists ε > 0 such that

Π |Π22 + ε2∆⊤Π22∆ ⩾ 0 (A.14)

for all ∆ with ∥∆∥ ⩽ 1. Now, take Z0 = −Π†
22Π21 and note that

Π |Π22 +(Z0 +ε∆+Π†
22Π21)⊤Π22(Z0 +ε∆+Π†

22Π21) = Π |Π22 +ε2∆⊤Π22∆ ⩾ 0

for all ∆ with ∥∆∥ ⩽ 1 due to (A.14). Then, it follows from (A.9) that Z0 +ε∆ ∈
Zr(Π) for all ∆ with ∥∆∥ ⩽ 1. This means that the set Zr(Π) has nonempty
interior.

For the ‘only if’ part, suppose that Z0 is in the interior of Zr(Π). This means
that there exists ε > 0 such that Z0 + ε∆ ∈ Zr(Π) for all ∆ with ∥∆∥ ⩽ 1. By
(A.9),

Π |Π22 + (Z0 + ε∆ + Π†
22Π21)⊤Π22(Z0 + ε∆ + Π†

22Π21) ⩾ 0. (A.15)
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Suppose that ξ ∈ Rq is such that (Π |Π22)ξ = 0. Since Π22 ⩽ 0, (A.15) yields
the equation Π22(Z0 + ε∆ + Π†

22Π21)ξ = 0 for all ∆ with ∥∆∥ ⩽ 1. By taking
∆ = 0, we see that Π22(Z0 + Π†

22Π21)ξ = 0. Therefore, Π22∆ξ = 0 for all
∆ with ∥∆∥ ⩽ 1. In particular, consider ∆ = ζξ⊤ where ζ ∈ Rr. Then, we
conclude that Π22ζξ⊤ξ = 0 for all ζ ∈ Rr. Therefore, either Π22 = 0 or ξ = 0.
Equivalently, either Π22 = 0 or Π |Π22 > 0.

(d): For the ‘if’ part, suppose that Π |Π22 > 0. Then, it follows from (A.10)
that −Π†

22Π21 ∈ Z+
r (Π). Thus, Z+

r (Π) is nonempty. For the ‘only if’ part,
suppose that Z+

r (Π) is nonempty. Let Z ∈ Z+
r (Π). Then, (A.10) implies that

Π |Π22 > 0.
(e): For the ‘only if’ part, suppose that Z0

r (Π) is nonempty. Let Z ∈ Z0
r (Π).

Then, it follows from (A.9) that Π |Π22 = −(Z + Π†
22Π21)⊤Π22(Z + Π†

22Π21).
Since the rank of a product of matrices is less than or equal to the ranks of
individual matrices, we see that rank Π22 ⩾ rank(Π | Π22). For the ‘if’ part,
suppose that rank Π22 ⩾ rank(Π |Π22). Let U1Σ1U⊤

1 and U2Σ2U⊤
2 be eigenvalue

decompositions of Π | Π22 and −Π22, respectively. Then, rank Σ2 ⩾ rank Σ1.
Hence, there exists a diagonal matrix D ⩾ 0 such that Σ1 = DΣ2. Take Z̄ =
−Π†

22Π21 +U2D
1
2 UT

1 . Note that (Z̄ +Π†
22Π21)⊤Π22(Z̄ +Π†

22Π21) = −U1Σ1U⊤
1 =

−Π | Π22. Consequently, it follows from (A.9) that Z̄ ∈ Z0
r (Π) and Z0

r (Π) is
nonempty. □

A.2.2 Parameterization of Zr(Π) and Z+
r (Π)

It turns out that one can explicitly parameterize all solutions of a given QMI
associated with Π ∈ Πq,r, as stated in the following theorem.

Theorem A.6. Let Π ∈ Πq,r. The following statements hold:

(a) Z ∈ Zr(Π) if and only if

Z = −Π†
22Π21 +

(
(−Π22)†) 1

2 S(Π |Π22) 1
2 + (I −Π†

22Π22)T (A.16)

for some S, T ∈ Rr×q with S⊤S ⩽ I.

(b) Assume that Z+
r (Π) is nonempty, equivalently, Π | Π22 > 0. Then, Z ∈

Z+
r (Π) if and only if

Z = −Π†
22Π21 +

(
(−Π22)†) 1

2 S(Π |Π22) 1
2 + (I −Π†

22Π22)T (A.17)

for some S, T ∈ Rr×q with S⊤S < I.

Proof. We first prove (b). From (A.9) we have that Z ∈ Z+
r (Π) if and only if

(Z + Π†
22Π21)⊤(−Π22)(Z + Π†

22Π21) < Π |Π22. (A.18)
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By Lemma A.1.(b), we then have that Z ∈ Z+
r (Π) if and only if there exists a

matrix S such that S⊤S < I and (−Π22) 1
2 (Z + Π†

22Π21) = S(Π |Π22) 1
2 . Using

the fact that ker(−Π22) 1
2 = ker Π22, and by exploiting Lemma A.2, we see that

this is equivalent to Z + Π†
22Π21 =

(
(−Π22) 1

2
)†

S(Π |Π22) 1
2 + (I −Π†

22Π22)T for
some T ∈ Rr×q. This proves (b). The proof of (a) follows the same arguments
but instead invokes Lemma A.1.(a). □

A.2.3 Image of Zr(Π) and Z+
r (Π) under linear maps

Let W ∈ Rq×p. For S ⊆ Rr×q, we define SW := {SW | S ∈ S}. Also, for
Π ∈ Sq+r we define

ΠW :=
[
W ⊤ 0

0 Ir

]
Π
[
W 0
0 Ir

]
=
[
W ⊤Π11W W ⊤Π12

Π21W Π22

]
∈ Sp+r. (A.19)

Note that
ΠW ∈ Πp,r (A.20)

provided that Π ∈ Πq,r. Next, we will study the relationship between the sets
Zr(Π) and Zr(ΠW ).

Theorem A.7. Let Π ∈ Πq,r and W ∈ Rq×p. We have that Zr(Π)W ⊆
Zr(ΠW ). Assume, in addition, that at least one of the following two conditions
hold:

(a) W has full column rank.

(b) Π22 is nonsingular.

Then, Zr(Π)W = Zr(ΠW ).

Proof. First we prove that Zr(Π)W ⊆ Zr(ΠW ). Let Z ′ ∈ Zr(Π)W . Then,
Z ′ = ZW where Z ∈ Zr(Π), that is[

Iq

Z

]⊤

Π
[
Iq

Z

]
⩾ 0.

By pre- and post-multiplying by W ⊤ and W , we obtain

W ⊤
[
Iq

Z

]⊤

Π
[
Iq

Z

]
W =

[
Ip

Z ′

]⊤

ΠW

[
Ip

Z ′

]
⩾ 0.

This means that Z ′ ∈ Zr(ΠW ) and hence Zr(Π)W ⊆ Zr(ΠW ).
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Now, we assume that at least one of the conditions on W and Π22 hold.
We claim that Zr(ΠW ) ⊆ Zr(Π)W . Let Z ′ ∈ Zr(ΠW ). Note that ΠW |Π22 =
W ⊤(Π |Π22)W . From (A.19) and Theorem A.6.(a), we see that

Z ′ = −Π†
22Π21W +

(
(−Π22

)†) 1
2 S
(
W ⊤(Π |Π22)W

) 1
2 + (I −Π†

22Π22)V (A.21)

where V, S ∈ Rr×p with S⊤S ⩽ Ip. Since
(
W ⊤(Π |Π22)W

) 1
2
(
W ⊤(Π |Π22)W

) 1
2 =

W ⊤(Π |Π22) 1
2 (Π |Π22) 1

2 W , due to Lemma A.1 we have that
(
W ⊤(Π |Π22)W

) 1
2 =

T (Π |Π22) 1
2 W where T ∈ Rp×q is such that T ⊤T ⩽ Iq. If W has full column

rank then (A.21) results in Z ′ = ZW where

Z := −Π†
22Π21 +

(
(−Π22

)†) 1
2 ST (Π |Π22) 1

2 + (I −Π†
22Π22)V (W ⊤W )−1W ⊤.

(A.22)
On the other hand, if Π22 is nonsingular then I − Π†

22Π22 = 0 and Z ′ = ZW
with

Z := −Π−1
22 Π21 +

(
−Π−1

22
) 1

2 ST (Π |Π22) 1
2 . (A.23)

In either of these two cases, we observe that T ⊤S⊤ST ⩽ T ⊤T ⩽ Iq. Therefore,
Theorem A.6.(a) implies that Z ∈ Zr(Π). Consequently, we see that Z ′ = ZW
for some Z ∈ Zr(Π) and thus Zr(ΠW ) ⊆ Zr(Π)W . This proves the theorem. □

A similar result holds for the sets Z+
r (Π) and Z+

r (ΠW ), as shown next.

Theorem A.8. Let Π ∈ Πq,r and W ∈ Rq×p. Assume that W has full column
rank and Z+

r (Π) is nonempty. Then, Z+
r (Π)W = Z+

r (ΠW ).

The proof of Theorem A.8 is similar to that of Theorem A.7, but applies
Theorem A.6.(b) instead of Theorem A.6.(a).

The following two corollaries follow from Theorems A.7 and A.8 and provide
conditions under which there exists a ‘structured’ matrix in Zr(Π) (respectively,
Z+

r (Π)) that satisfies a linear equation.

Corollary A.9. Let Π ∈ Sq+r with Π22 ⩽ 0 and ker Π22 ⊆ ker Π21, W ∈
Rq×p, and Y ∈ Rr×p. Suppose that either W has full column rank or Π22 is
nonsingular. Then there exists a Z ∈ Zr(Π) such that ZW = Y if and only if
Π ∈ Πq,r and Y ∈ Zr(ΠW ).

Proof. To prove the ‘if’ statement, suppose that Π ∈ Πq,r and Y ∈ Zr(ΠW ).
By Theorem A.7 there exists a Z ∈ Zr(Π) such that ZW = Y . To prove the
‘only if’ statement, suppose that there exists a Z ∈ Zr(Π) satisfying ZW = Y .
Therefore, Zr(Π) is nonempty and (A.9) implies that Π |Π22 ⩾ 0. Consequently,
Π ∈ Πq,r. Finally, Y ∈ Zr(ΠW ) follows directly from multiplying the defining
quadratic matrix inequality from left by W ⊤ and right by W . □
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Corollary A.10. Let Π ∈ Sq+r with Π22 ⩽ 0 and ker Π22 ⊆ ker Π21. Consider
W ∈ Rq×p and Y ∈ Rr×p. Assume that W has full column rank. Then there
exists a matrix Z ∈ Z+

r (Π) satisfying ZW = Y if and only if Π |Π22 > 0 and
Y ∈ Z+

r (ΠW ).

The proof of Corollary A.10 follows the same lines as that of Corollary A.9,
but applies Theorem A.8 rather than Theorem A.7. It is therefore omitted.

A.3 Matrix S-lemma and Finsler’s lemma

In this section we deal with the question under what conditions all solutions to
one quadratic matrix inequality also satisfy another QMI. In other words, we aim
at finding necessary and sufficient conditions for the inclusion Zr(N) ⊆ Zr(M),
where M, N ∈ Sq+r. We will also consider this inclusion with Z0

r (N) instead
of Zr(N), and for Z+

r (M) replacing Zr(M). This leads to non-strict and strict
versions of Yakubovich’s S-lemma and Finsler’s lemma.

A.3.1 Recap of standard S-lemma and Finsler’s lemma

For future reference, we will start with a brief recap of ‘standard’ (vector-valued)
S-lemmas and Finsler’s lemma. The idea behind all of these results is that certain
implications involving quadratic inequalities and equalities can be characterized
in terms of feasibility of linear matrix inequalities. The following statement is
the S-lemma for non-strict inequalities, which was first proven by Yakubovich
in the 1970s.

Proposition A.11 (S-lemma). Let M, N ∈ Sn and suppose that N has at least
one positive eigenvalue. Then x⊤Mx ⩾ 0 for all x ∈ Rn satisfying x⊤Nx ⩾ 0 if
and only if there exists a real number α ⩾ 0 such that M − αN ⩾ 0.

Next, we recall a version of the S-lemma involving a strict inequality on
x⊤Mx.

Proposition A.12 (Strict S-lemma). Let M, N ∈ Sn and suppose that N has at
least one positive eigenvalue. Then x⊤Mx > 0 for all nonzero x ∈ Rn satisfying
x⊤Nx ⩾ 0 if and only if there exists a real number α ⩾ 0 such that M−αN > 0.

Finally, we recall Finsler’s lemma, which involves an equality x⊤Nx = 0. We
state the result for a strict inequality on x⊤Mx. We note that also a non-strict
version of the result exists, but this will not be used in this book.

Proposition A.13 (Finsler’s lemma). Let M, N ∈ Sn. Then x⊤Mx > 0 for all
nonzero x ∈ Rn satisfying x⊤Nx = 0 if and only if there exists a real number
α ∈ R such that M − αN > 0.
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A.3.2 Reduction of the matrix case to the vector case

Throughout this section, we will consider matrices M, N ∈ Sq+r partitioned as

M =
[
M11 M12
M21 M22

]
and N =

[
N11 N12
N21 N22

]
. (A.24)

We will provide conditions under which the inclusion Zr(N) ⊆ Zr(M) is
equivalent to the vector-valued implication x⊤Nx ⩾ 0 =⇒ x⊤Mx ⩾ 0. This
will provide an important building block in obtaining matrix versions of the
S-lemma. To proceed, we will need the following lemmas.
Lemma A.14. Let S ∈ Sn be positive semidefinite. Given a nonzero vector
x ∈ Rn, there exists a matrix X̄ ∈ Rn×(n−1) such that x⊤SX̄ = 0 and

[
x X̄

]
is

nonsingular.
Proof. If x⊤S = 0 the statement is immediate. Thus, assume that x⊤S ̸= 0.
Let X̄ ∈ Rn×(n−1) be a matrix whose columns form a basis for ker x⊤S. If

[
x X̄

]
is singular, then x ∈ im X̄ and, hence, x⊤Sx = 0. However, since S is symmetric
and positive semidefinite, this implies that x⊤S = 0. This yields a contradiction,
and we conclude that

[
x X̄

]
is nonsingular. This proves the lemma. □

Lemma A.15. Let N ∈ Πq,r. Let x ∈ Rq and y ∈ Rr be vectors, with x
nonzero, such that [

x
y

]⊤

N

[
x
y

]
⩾ 0.

Then there exists a matrix Z ∈ Zr(N) such that y = Zx.

Proof. Since x is nonzero and N |N22 ⩾ 0, we conclude from Lemma A.14 that
there exists a matrix X̄ ∈ Rq×(q−1) such that x⊤(N |N22)X̄ = 0 and

[
x X̄

]
is

nonsingular. Define the matrix Ȳ := −N†
22N21X̄. Note that[

N11 N12
N21 N22

]
=
[
I N12N†

22
0 I

] [
N |N22 0

0 N22

] [
I 0

N†
22N21 I

]
.

Therefore, we have[
x
y

]⊤

N

[
X̄
Ȳ

]
= 0 and

[
X̄
Ȳ

]⊤

N

[
X̄
Ȳ

]
= X̄⊤(N |N22)X̄ ⩾ 0

since N |N22 ⩾ 0. The latter two results imply that

[
x X̄
y Ȳ

]⊤

N

[
x X̄
y Ȳ

]
=


[
x
y

]⊤

N

[
x
y

]
0

0
[
X̄
Ȳ

]⊤

N

[
X̄
Ȳ

]
 ⩾ 0.
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Recall that
[
x X̄

]
is nonsingular. Thus, the matrix Z :=

[
y Ȳ

] [
x X̄

]−1 is a
member of Zr(N). In addition, note that y = Zx. This proves the lemma. □

The following theorem provides conditions under which the inclusions Zr(N) ⊆
Zr(M) and Zr(N) ⊆ Z+

r (M) are equivalent to their respective vector-valued im-
plications.

Theorem A.16. Let M, N ∈ Sq+r with N ∈ Πq,r.

(a) Assume that N has at least one positive eigenvalue. Then the following
two statements are equivalent:

(i) Zr(N) ⊆ Zr(M),
(ii) z⊤Mz ⩾ 0 for all z ∈ Rq+r satisfying z⊤Nz ⩾ 0.

(b) Assume that N22 < 0. Then the following two statements are equivalent:

(i) Zr(N) ⊆ Z+
r (M),

(ii) z⊤Mz > 0 for all nonzero z ∈ Rq+r satisfying z⊤Nz ⩾ 0.

Proof. We first prove that (a).(i) implies (a).(ii). Assume that (a).(i) holds
but, on the contrary, (a).(ii) does not hold. This implies that there exist vectors
x ∈ Rq and y ∈ Rr, not both zero, such that[

x
y

]⊤

N

[
x
y

]
⩾ 0 and

[
x
y

]⊤

M

[
x
y

]
< 0. (A.25)

We claim that there exists a pair (x, y) satisfying (A.25) with x ̸= 0.
To see this, suppose that x = 0 and y satisfy (A.25). We will use these vectors

to construct a new pair (x̃, ỹ) satisfying (A.25) with x̃ ̸= 0. By the hypothesis
that N22 ⩽ 0, we have that N22y = 0. In addition, since ker N22 ⊆ ker N12 we
obtain

N

[
0
y

]
= 0. (A.26)

Let
[
x̄⊤ ȳ⊤]⊤ be an eigenvector of N corresponding to a positive eigenvalue λ.

Note that x̄ ̸= 0 because N22 ⩽ 0. By (A.26), we see that([
0
y

]
+ ε

[
x̄
ȳ

])⊤

N

([
0
y

]
+ ε

[
x̄
ȳ

])
= ε2λ

[
x̄
ȳ

]⊤ [
x̄
ȳ

]
⩾ 0

for any ε ∈ R. In addition,([
0
y

]
+ ε

[
x̄
ȳ

])⊤

M

([
0
y

]
+ ε

[
x̄
ȳ

])
< 0
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if ε is sufficiently small. Therefore, for sufficiently small ε ̸= 0, the pair (εx̄, y +
εȳ) satisfies (A.25). As x̄ ̸= 0, the pair (x̃, ỹ) := (εx̄, y + εȳ) satisfies (A.25)
with x̃ ̸= 0. Let (x, y) be such a pair. By Lemma A.15 there exists a matrix
Z ∈ Zr(N) satisfying ỹ = Zx̃. By (A.25) we see that

x̃⊤
[

I
Z

]⊤

M

[
I
Z

]
x̃ < 0

that is, Z ̸∈ Zr(M). This, however, contradicts the assumption that Zr(N) ⊆
Zr(M). Therefore, we conclude that (a).(ii) holds.

Next, we prove that (b).(i) implies (b).(ii). Therefore, assume that (b).(i)
holds but, on the contrary, (b).(ii) does not hold. This implies that there exist
vectors x ∈ Rq and y ∈ Rr, not both zero, such that[

x
y

]⊤

N

[
x
y

]
⩾ 0 and

[
x
y

]⊤

M

[
x
y

]
⩽ 0. (A.27)

This implies that x ̸= 0. Indeed, if x = 0 then also y = 0 by the hypothesis that
N22 < 0. Thus, by Lemma A.15 there exists a matrix Z ∈ Zr(N) satisfying
y = Zx. By (A.27) this implies that

x⊤
[

I
Z

]⊤

M

[
I
Z

]
x ⩽ 0

that is, Z ̸∈ Z+
r (M). This contradicts the hypothesis that Zr(N) ⊆ Z+

r (M).
This shows that (b).(ii) holds.

Next, we prove that (a).(ii) implies (a).(i). Suppose that Z ∈ Zr(N). Then
we have that

y⊤
[

I
Z

]⊤

N

[
I
Z

]
y ⩾ 0, and thus y⊤

[
I
Z

]⊤

M

[
I
Z

]
y ⩾ 0

for all y ∈ Rq. In other words, Z ∈ Zr(M). The proof that (b).(ii) implies
(b).(i) is analogous and therefore omitted. This proves the theorem. □

A.3.3 Non-strict matrix S-lemma and Finsler’s lemma

In the following theorem we apply the results of the previous section to establish
a matrix version of the S-lemma.

Theorem A.17 (Matrix S-lemma). Let M, N ∈ Sq+r. If there exists a real
α ⩾ 0 such that M − αN ⩾ 0, then Zr(N) ⊆ Zr(M). Next, assume that
N ∈ Πq,r and N has at least one positive eigenvalue. Then Zr(N) ⊆ Zr(M) if
and only if there exists a real α ⩾ 0 such that M − αN ⩾ 0.
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Proof. The ‘if’ statements are obvious. We thus focus on proving the ‘only if’
part of the second statement. Assume that Zr(N) ⊆ Zr(M). By Theorem A.16,
x⊤Mx ⩾ 0 for all x ∈ Rq+r satisfying x⊤Nx ⩾ 0. Finally, by Lemma A.11, we
conclude that there exists a scalar α ⩾ 0 such that M − αN ⩾ 0. □

Similar to the ‘standard’ S-lemma (Lemma A.11), we note that the matrix S-
lemma requires N to have at least one positive eigenvalue, an assumption known
as the Slater condition. It turns out, however, that under additional assumptions
on M and N , we can state a theorem analogous to Theorem A.17 in the case
where N ∈ Πq,r has no positive eigenvalues, equivalently, N |N22 = 0. In this
special case, Zr(N) = Z0

r (N) which leads to a matrix version of Finsler’s lemma.

Theorem A.18 (Matrix Finsler’s lemma). Let M, N ∈ Sq+r. If there exists
α ∈ R such that M − αN ⩾ 0 then Z0

r (N) ⊆ Zr(M). Next, define Θ ∈ Sq by

Θ :=
[

I

−N†
22N21

]⊤

M

[
I

−N†
22N21

]
.

Assume that

(a) M, N ∈ Πq,r,

(b) N |N22 = 0, and

(c) ker Θ ⊆ ker M |M22.

Then Z0
r (N) ⊆ Zr(M) if and only if there exists α ⩾ 0 such that M − αN ⩾ 0.

Proof. The ‘if’ statements are obvious. Now, assume that Z0
r (N) ⊆ Zr(M).

Let Z ∈ Z0
r (N), ξ ∈ ker N22, and η ∈ Rq be a nonzero vector. By hypothesis,

we have
Z + γξη⊤ ∈ Zr(M) (A.28)

for all γ ∈ R. Recall that M ∈ Πq,r and therefore M22 ⩽ 0. This implies
that M22ξ = 0, for otherwise there exists a sufficiently large γ ∈ R that violates
(A.28). We have thus proven that ker N22 ⊆ ker M22. Next, define the matrix

T :=
[

I 0
−N†

22N21 I

]
.

Note that

T ⊤NT =
[
0 0
0 N22

]
and T ⊤MT =

[
Θ M12 −N12N†

22M22
M21 −M22N†

22N21 M22

]
.
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This yields

T ⊤(M − αN)T =
[

Θ M12 −N12N†
22M22

M21 −M22N†
22N21 M22 − αN22

]
. (A.29)

Next, note that ker M22 ⊆ ker M12 implies that

Θ = M |M22 + (M†
22M21 −N†

22N21)⊤M22(M†
22M21 −N†

22N21) (A.30)

and
M22(M†

22M21 −N†
22N21) = M21 −M22N†

22N21. (A.31)

Since −N†
22N21 ∈ Z0

r (N) ⊆ Zr(M), we have Θ ⩾ 0. Therefore, since M22 ⩽
0, (A.30) and (A.31) imply ker(M | M22) = ker Θ ∩ ker(M21 − M22N†

22N21).
Therefore, by the hypothesis that ker Θ ⊆ ker(M |M22) we must have ker Θ =
ker(M |M22), and it follows that ker Θ = ker(M21−M22N†

22N21). Consequently,
by (A.29) and Θ ⩾ 0, we see that T ⊤(M − αN)T ⩾ 0 if and only if

M22 − αN22 − (M21 −M22N†
22N21) Θ†(M12 −N12N†

22M22) ⩾ 0. (A.32)

Since N22 ⩽ 0 and ker N22 ⊆ ker M22 ⊆ ker M12, we conclude that there
exists a sufficiently large α ⩾ 0 such that (A.32) holds. This implies that there
exists an α ⩾ 0 such that M − αN ⩾ 0. This proves the theorem. □

The assumption (c) on the matrix Θ is required in the sense that Theo-
rem A.18 is, in general, not valid without it. We illustrate this as follows.

Example A.19. Suppose that

N =
[
−1 1
1 −1

]
and M =

[
1 0
0 −1

]
.

Note that M, N ∈ Π1,1 and N |N22 = 0. In this case, Θ = 0 and M |M22 = 1
so the assumption (c) of Theorem A.18 does not hold. In addition, we see that
Z0

1 (N) = {1} ⊆ Z1(M). Nonetheless, there does not exist an α ⩾ 0 such that
M − αN ⩾ 0. ■

A.3.4 Strict matrix S-lemma and Finsler’s lemma

Subsequently, we consider strict versions of the above theorems. We focus on
the case that the inequality involving M is strict while the one on N is nonstrict.
The following theorem provides a strict matrix S-lemma in case N22 is negative
definite.
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Theorem A.20 (Strict matrix S-lemma). Let M, N ∈ Sq+r. If there exists a
real α ⩾ 0 such that M − αN > 0, then Zr(N) ⊆ Z+

r (M). Next, assume that
N ∈ Πq,r and N22 < 0. Then Zr(N) ⊆ Z+

r (M) if and only if there exists a real
α ⩾ 0 such that M − αN > 0.

Proof. The ‘if’ parts are clear. Therefore, we focus on proving the ‘only if’ part
of the second statement. Suppose that Zr(N) ⊆ Z+

r (M). By Theorem A.16, we
have that x⊤Mx > 0 for all nonzero x ∈ Rq+r satisfying x⊤Nx ⩾ 0. We now
distinguish two cases. First suppose that N has at least one positive eigenvalue.
Then, by Lemma A.12, there exists a real α ⩾ 0 such that M − αN > 0. Next,
suppose that N does not have any positive eigenvalues, i.e., N ⩽ 0. We clearly
have that x⊤Mx > 0 for all nonzero x ∈ Rq+r satisfying x⊤Nx = 0. Then, by
Lemma A.13, there exists a real ᾱ ∈ R such that M − ᾱN > 0. If ᾱ ⩾ 0 then we
have M − αN > 0 for α = ᾱ. On the other hand, if ᾱ < 0 then M > ᾱN ⩾ 0,
so M − αN > 0 for α = 0. This proves the theorem. □

One can even prove a strict matrix S-lemma in the case that N22 is not
necessarily negative definite, but under the extra assumptions that M22 ⩽ 0 and
the Slater condition holds on N . It turns out, however, that in that case we need
two real numbers α ⩾ 0 and β > 0 to state a necessary and sufficient condition.

Theorem A.21 (Strict matrix S-lemma with α and β). Let M, N ∈ Sq+r.
Then we have that Zr(N) ⊆ Z+

r (M) if there exist scalars α ⩾ 0 and β > 0 such
that

M − αN ⩾

[
βI 0
0 0

]
. (A.33)

Assume, in addition, that N ∈ Πq,r, M22 ⩽ 0 and N has at least one positive
eigenvalue. Then Zr(N) ⊆ Z+

r (M) if and only if there exist α ⩾ 0 and β > 0
such that (A.33) holds.

Proof. Both ‘if’ statements are clear, so we focus on the ‘only if’ part. Assume
that Zr(N) ⊆ Z+

r (M). We will first prove that ker N22 ⊆ ker M22 and ker N22 ⊆
ker M12. Let Z ∈ Zr(N) and v ∈ ker N22. In addition, select any nonzero vector
w ∈ Rq and define Ẑ := vw⊤. Since N ∈ Πq,r, we have that Z + γẐ ∈ Zr(N)
for all γ ∈ R. Therefore Z + γẐ ∈ Z+

r (M). We write

0 <

[
I

Z + γẐ

]⊤

M

[
I

Z + γẐ

]
= L(γ) + γ2(v⊤M22v) ww⊤ (A.34)

where L(γ) is a matrix that depends affinely on γ. This implies that M22v = 0.
Indeed, if M22v ̸= 0 then v⊤M22v < 0 and we can find a sufficiently large γ ∈ R
that violates (A.34). We conclude that ker N22 ⊆ ker M22. Next, let v ∈ ker N22
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and define Ẑ := −vv⊤M21. Since v ∈ ker M22, we can write

0 <

[
I

Z + γẐ

]⊤

M

[
I

Z + γẐ

]
=
[

I
Z

]⊤

M

[
I
Z

]
− 2γ M12vv⊤M21. (A.35)

This implies that M12v = 0, for otherwise we can select a sufficiently large γ ∈ R
violating (A.35). Therefore, we conclude that ker N22 ⊆ ker M12. Subsequently,
we claim that there exists a scalar β > 0 such that

Zr(N) ⊆ Z+
r

(
M −

[
βI 0
0 0

])
. (A.36)

Suppose on the contrary that this claim is false. Then there exists a sequence
{βi} such that βi → 0 (i→∞) and for all i there exists Zi ∈ Zr(N) such that

Zi ̸∈ Z+
r

(
M −

[
βiI 0
0 0

])
. (A.37)

Define V := {Z ∈ Rr×q | N22Z = 0}. Write Zi as Zi = Z1
i + Z2

i where Z1
i ∈ V⊥

and Z2
i ∈ V. Here V denotes the orthogonal complement of V with respect

to the standard trace inner product on Rr×q. Since ker N22 ⊆ ker N12 we see
that Z1

i ∈ Zr(N) for all i. Next, we claim that {Z1
i } is bounded. We will

prove this by contradiction. Thus, assume that {Z1
i } is unbounded. Clearly, the

sequence
{

Z1
i

∥Z1
i

∥

}
is bounded. By Bolzano-Weierstrass, it thus has a convergent

subsequence with limit, say Z∗. Note that

1
∥Z1

i ∥2 (N11 + N12Z1
i + (N12Z1

i )⊤ + (Z1
i )⊤N22Z1

i ) ⩾ 0.

By taking the limit along the subsequence as i→∞, we obtain Z⊤
∗ N22Z∗ ⩾ 0.

Using the fact that N22 ⩽ 0, we conclude that Z∗ ∈ V. Since Z1
i ∈ V⊥ for all

i, also Z1
i

∥Z1
i

∥ ∈ V
⊥ and thus Z∗ ∈ V⊥. Therefore, we conclude that both Z∗ ∈ V

and Z∗ ∈ V⊥. That is, Z∗ = 0. This is a contradiction as Z1
i

∥Z1
i

∥ has norm 1
for all i. We conclude that the sequence {Z1

i } is bounded. It thus contains a
convergent subsequence with limit, say Z∗. Note that Zr(N) is closed and thus
Z∗ ∈ Zr(N). Since ker N22 ⊆ ker M22 and ker N22 ⊆ ker M12, (A.37) implies
that

Z1
i ̸∈ Z+

r

(
M −

[
βiI 0
0 0

])
for all i. We take the limit as i→∞ along a subsequence with limit Z∗, which
yields Z∗ ̸∈ Z+

r (M). However, since Z∗ ∈ Zr(N), this contradicts our hypothesis
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that Zr(N) ⊆ Z+
r (M). Therefore, we conclude that there exists a β > 0 such

that (A.36) holds. In particular, this implies that there exists β > 0 such that

Zr(N) ⊆ Zr

(
M −

[
βI 0
0 0

])
.

Finally, by Theorem A.17, there exists a scalar α ⩾ 0 such that (A.33) holds. □

Next, we state a matrix Finsler’s lemma in the case of a strict inequality.

Theorem A.22 (Strict matrix Finsler’s lemma). Let M, N ∈ Sq+r. Then
Z0

r (N) ⊆ Z+
r (M) if there exist scalars α ∈ R and β > 0 such that (A.33) holds.

Next, assume that N ∈ Πq,r, N |N22 = 0 and M22 ⩽ 0. Then Z0
r (N) ⊆ Z+

r (M)
if and only if there exist α ⩾ 0 and β > 0 such that (A.33) holds.

Proof. The ‘if’ statements are obvious. To prove the ‘only if’ statement, assume
that Z0

r (N) ⊆ Z+
r (M). Since N |N22 = 0 and N ∈ Πq,r, we have that N ⩽ 0.

This implies that Z0
r (N) = Zr(N). Therefore, we also have that Zr(N) ⊆

Z+
r (M). We can thus use the same argument as in the proof of Theorem A.17

to show that ker N22 ⊆ ker M22 and ker N22 ⊆ ker M12. Next, define the matrices

T :=
[

I 0
−N†

22N21 I

]
and Θ :=

[
I

−N†
22N21

]⊤

M

[
I

−N†
22N21

]
and observe that

T ⊤NT =
[
0 0
0 N22

]
and T ⊤MT =

[
Θ M12 −N12N†

22M22
M21 −M22N†

22N21 M22

]
.

Since −N†
22N21 ∈ Z0

r (N) ⊆ Z+
r (M) we have Θ > 0. Then obviously, there exists

a real β > 0 so that Θ− βI > 0. We have that

T ⊤
(

M − αN −
[
βI 0
0 0

])
T =

[
Θ− βI M12 −N12N†

22M22
M21 −M22N†

22N21 M22 − αN22

]
.

Therefore it holds that T ⊤
(

M − αN −
[
βI 0
0 0

])
T ⩾ 0 if and only if

M22−αN22− (M21−M22N†
22N21) (Θ−βI)−1(M12−N12N†

22M22) ⩾ 0. (A.38)

Because N22 ⩽ 0, ker N22 ⊆ ker M22 and ker N22 ⊆ ker M12, there exists a
sufficiently large α ⩾ 0 such that (A.38) holds. This proves the statement. □

Finally, we note that it is possible to combine the strict versions of the matrix
S-lemma and Finsler’s lemma, Theorems A.21 and A.22, into one result. This
results in the following corollary. Note the absence of the Slater condition on N .
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Corollary A.23. Let M, N ∈ Sq+r. Then Zr(N) ⊆ Z+
r (M) if there exist

scalars α ⩾ 0 and β > 0 such that (A.33) holds. Next, assume that N ∈ Πq,r

and M22 ⩽ 0. Then Zr(N) ⊆ Z+
r (M) if and only if there exist α ⩾ 0 and β > 0

such that (A.33) holds.

Proof. Once again, the ‘if’ parts are clear. To prove the ‘only if’ statement,
we distinguish the cases that N has at least one positive eigenvalue, and N ⩽ 0
(equivalently, N |N22 = 0). In the first case, Theorem A.21 is directly applicable,
resulting in the existence of α ⩾ 0 and β > 0 such that (A.33) holds. In the
second case, Zr(N) = Z0

r (N) and Theorem A.22 yields α ⩾ 0 and β > 0
satisfying (A.33). □

A.4 Notes and references

The majority of the results in this chapter, such as the parameterizations (The-
orem A.6), and the matrix versions of the S-lemma and Finsler’s lemma (Theo-
rems A.17, A.18, A.20, A.21, and A.22), are based on the paper [168]. Additional
matrix versions of the S-lemma can be found in [169].

The parameterization of Theorem A.6 can be simplified under the additional
assumption that Π22 < 0. Indeed, in this case the last term of (A.17) (depending
on the matrix T ) is zero. If Π22 < 0, Theorem A.6.(b) can also be proven
using [155, Corollary 2.3.6] by defining the matrices A = Π12Π−1

22 , B = I,
Q = Π |Π22, R = −Π22 and X = Z⊤ in that result.

Corollary A.10 is intimately related to the so-called elimination lemma [70,
142]. In fact, in the case that Π is nonsingular and has r negative and q positive
eigenvalues, Corollary A.10 can also be obtained from [142, Lem. A.2] by taking
P = −Π, A = I, B = W ⊥ and C = Y W † where W ⊥ ∈ R(q−p)×q is any full row
rank matrix such that W ⊥W = 0.

The standard (non-strict) S-lemma in Proposition A.11 was first proven by
Yakubovich in [195]. We also refer to the survey paper [130]. For the strict
version in Proposition A.12, we refer to [195] and [26, p. 24]. Moreover,
Finsler’s lemma (Proposition A.13) is named after the German mathematician
Paul Finsler, and was first proven in 1936 [53]. Also a non-strict version of this
result exists, see e.g., [200], although for this version a so-called Slater condition
is required.

Lemma A.15 was instrumental in proving the matrix versions of the S-
lemma. It can be regarded as an extension of [143, Lemma A.2] to the set
of matrices Πq,r. Indeed, instead of requiring that N satisfies N22 < 0 and
N11 −N12N−1

22 N21 > 0, we have merely assumed non-strict inequalities.
The proof of Lemma A.1 for the case r = q = p is given in [22, Fact 5.10.19]

and for the case r = p in [132, Lem. 3]. In this chapter, we have provided a
constructive proof for the case that r and p are not necessarily equal.
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Some of the other matrix theoretical results in this chapter are also taken
from the work of Bernstein [22]. Indeed, Lemma A.2 is a direct consequence
of [22, Prop. 6.1.7]. Moreover, the fact that (A.4) holds if and only if Z ∈
Zr(Π) follows from [22, Fact 8.15.28]. For a proof of Haynsworth inertia theorem
(Lemma A.4) we refer to [22, Fact 6.5.5].

One of the steps of the proof of Lemma A.3 was to show that the 2q × 2q
partitioned matrix [

0 Iq

Iq Π̂11

]
where Π̂11 is a symmetric matrix, has q positive and q negative eigenvalues. The
proof of this fact was taken from Maddocks [101, Lem. 5.1].
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