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Topic of this talk

This talk is about assessing system properties and finding controllers from data

Some recent contributions:

Lyapunov approaches with stability/dissipativity guarantees despite noisy data

Solution often phrased in terms of data-based LMIs

Common Lyapunov function for all systems consistent with data.

Can we design/analyze systems without the assumption of common Lyapunov functions?

Motivations:

CLF is conservative in general

Computation
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Outline of the talk

1 Data-based stability, stabilizability and stabilization
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Data-based stability, stabilizability and stabilization
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Data-based stability analysis

Consider the system
x(t+ 1) = A∗x(t) +w(t),

where x ∈ Rn is the state and w ∈ Rn denotes noise.

The real matrix A∗ is unknown.

Data:
X =

[
x(0) x(1) · · · x(T )

]
.

Shifted data:
X− =

[
x(0) x(1) · · · x(T − 1)

]
X+ =

[
x(1) x(2) · · · x(T )

]
.

Noise: matrix W− =
[
w(0) w(1) · · · w(T − 1)

]
is unknown but bounded:[

I

W⊤
−

]⊤

Φ

[
I

W⊤
−

]
⩾ 0.

for some known matrix Φ ∈ Sn+T satisfying Φ22 < 0 and Φ11 − Φ12Φ
−1
22 Φ21 ⩾ 0.
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Notion of informative data
stability analysis

The set of all systems explaining the data:

Σs = {A ∈ Rn×n | X+ = AX− +W− for some W− satisfying bound}.

Note: A ∈ Σs if and only if[
I

A⊤

]⊤ [
I X+

0 −X−

]
Φ

[
I X+

0 −X−

]⊤ [
I

A⊤

]
⩾ 0.

Definition: The data X are called

1 informative for stability if every A ∈ Σs is Schur.

2 informative for quadratic stability if there exists a real matrix P > 0 such that
P −APA⊤ > 0 for all A ∈ Σs.

Thus, informativity for quadratic stability implies that x⊤P−1x is a common Lyapunov
function for all A ∈ Σs.
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Data-based stabilizability analysis and stabilization

Next, consider the system

x(t+ 1) = A∗x(t) +B∗u(t) +w(t),

where u ∈ Rm is the input.

Data: state samples X and inputs U− =
[
u(0) u(1) · · · u(T − 1)

]
.

All systems explaining the data:

Σi/s :={(A,B) |X+=AX− +BU− +W− for some W− satisfying the bound}.

Definition: The data (X,U−) are called

1 informative for stabilizability if every (A,B) ∈ Σi/s is stabilizable.

2 informative for quadratic stabilizability if there exists a real matrix P > 0 such that
P −APA⊤ +BB⊤ > 0 for all (A,B) ∈ Σi/s.

3 informative for stabilization if there exists a K ∈ Rm×n such that A+BK is Schur
for all (A,B) ∈ Σi/s.

4 informative for quadratic stabilization if there exists a matrix K ∈ Rm×n and a real
matrix P > 0 such that P − (A+BK)P (A+BK)⊤ > 0 for all (A,B) ∈ Σi/s.
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Conditions with a common Lyapunov function
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Conditions for quadratic stability
LMI for robust stability

Proposition: The data X, generated by x(t+ 1) = A∗x(t) +w(t), are informative for
quadratic stability if and only if there exists a real matrix P > 0 such that[

P 0
0 −P

]
−

[
I X+

0 −X−

]
Φ

[
I X+

0 −X−

]⊤

> 0.

Interpretation: robust stability since for any A ∈ Σs:[
I

A⊤

]⊤ [
P 0
0 −P

] [
I

A⊤

]
︸ ︷︷ ︸

Lyapunov inequality

−
[

I

A⊤

]⊤ [
I X+

0 −X−

]
Φ

[
I X+

0 −X−

]⊤ [
I

A⊤

]
︸ ︷︷ ︸

⩾0

> 0.

Only if direction via matrix S-lemma:
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Conditions for quadratic stabilizability and stabilization

Simplifying assumption (can be removed): The input-state data, generated by
x(t+ 1) = A∗x(t) +B∗u(t) +w(t), satisfy rank

[
X⊤

− U⊤
−
]
= n+m.

Proposition: The data (X,U−) are informative for quadratic stabilizability if and only if
there exists a real matrix P > 0 satisfying[

P 0
0 −P

]
−

[
I X+

0 −X−

]
Φ

[
I X+

0 −X−

]⊤

> 0. (1)

Note: Exactly the same LMI as before! (but X depends on U− now)

Proposition: Let Θ := Φ12 +X+Φ22. The data (X,U−) are informative for quadratic
stabilization if and only if there exists a matrix P satisfying (1) and

P >

[
I

X⊤
+

]⊤

Φ

[
I

X⊤
+

]
−Θ

[
X−
U−

]⊤ ([
X−
U−

]
Φ22

[
X−
U−

]⊤ )−1 [
X−
U−

]
Θ⊤

Moreover, if P satisfies both inequalities then

K =
(
U−(Φ22 +Θ⊤Γ†Θ)X⊤

−
)(
X−(Φ22 +Θ⊤Γ†Θ)X⊤

−
)†

is stabilizing for all systems (A,B) ∈ Σi/s, where Γ := P −
[
I X+

]
Φ
[
I X+

]⊤
.
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Beyond common Lyapunov functions
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Beyond common Lyapunov functions
stability analysis without LMIs

Theorem: Define, for λ ∈ C,

Ψ(λ) :=

[
I

(X+ − λX−)
⊤

]∗

Φ

[
I

(X+ − λX−)
⊤

]
.

Assume that Ψ(1) is invertible and the matrix[
0 Ψ(1)

−1

Ψ(−1) 2(ΘX⊤
− −X−Θ

⊤)Ψ(1)
−1

]
has no eigenvalues on the imaginary axis. Then the following are equivalent:

1 The data X are informative for quadratic stability.

2 The data X are informative for stability.

3 Ψ(1) < 0, X− has full row rank, and the matrix (X−Φ22X
⊤
− )

−1

X−Θ
⊤ is Schur.

Note: Third condition is not phrased in terms of LMIs.

Proof relies on the KYP lemma.

Also possible to extend result to stabilizability analysis (but stronger conditions on data).
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Beyond common Lyapunov functions
simple example

Consider the discrete-time consensus protocol with one stubborn agent:

x(t+ 1) =

[
I − aLg 0(n−1)×1

01×(n−1) 01×1

]
x(t) +w(t),

where Lg is the grounded Laplacian of an undirected cycle graph with n = 500 nodes.

The noise affects only node 1, and is bounded as ∥w(t)∥ ⩽ ϵ.
Experiments for different ϵ, with T = 3000 samples each (random initial state).

ϵ im. eigenvalues Ψ(1) < 0 rankX− = n Schur

0.10 100% 100% 100% 100%
0.15 100% 95% 100% 100%
0.20 100% 75% 100% 100%
0.25 100% 55% 100% 100%
0.30 100% 33% 100% 100%

Table: Percentage of trials in which the different conditions hold, for various levels of ϵ.

Example would already be challenging for LMI solvers (125000+ variables...)
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Conclusions
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Conclusions
summary and future work

1 Informativity for (quadratic) stability, stabilizability and stabilization

2 Striking similarity between conditions for quadratic properties

3 Under an eigenvalue condition, informativity for stability and quadratic stability are
equivalent

4 New condition for informativity for stability, that does not rely on LMIs

5 Future goals: extend to stabilizability and stabilization.
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Thank you!
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