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Topic of this talk

This talk is about assessing system properties and finding controllers from data

Some recent contributions:

Formulas for Data-Driven Control: Stabilization, From Noisy Data to Feedback Controllers: On Data-Driven Control: Informativity of Noisy
Optimality, and Robustness Nonconservative Design via a Matrix S-Lemma Input-Output Data With Cross-Covariance
Glaudo D Porsis® and oo Tos Honk .van Waardo . M. Karat Camiel©, Moo EEE, and Menvan st ©, Folow EEE. Bounds

Tom B V. Steantes”, Graduate Student Member, IEEE, Mrcea Lazar®, Member, IEEE,

X . - » % Paut M. Van den Hof Felow, IEEE.

Robust data-driven state-feedback design Provably Robust Verification of Dissipativity Properties from Data
‘Anne Koch ®, Julan Berberich , and Frank Aljgower

Julian Berberich’, Anne Koch?, Carsten W. Scherer?, and Frank Allgower!

m Lyapunov approaches with stability/dissipativity guarantees despite noisy data
m Solution often phrased in terms of data-based LMlIs

m Common Lyapunov function for all systems consistent with data.

Can we design/analyze systems without the assumption of common Lyapunov functions?

Motivations:
m CLF is conservative in general

m Computation

Henk van Waarde Data-driven control CDC Canciin, December 2022 2/16



Outline of the talk

1 Data-based stability, stabilizability and stabilization
2 Conditions with a common Lyapunov function
3 Beyond common Lyapunov functions

4 Conclusions
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Data-based stability, stabilizability and stabilization
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Data-based stability analysis

Consider the system
z(t+1) = Acx(t) + w(t),
where & € R™ is the state and w € R™ denotes noise.

The real matrix A, is unknown.

Data:
X =[z(0) =z(1) z(T)]
Shifted data:
X_=[z(0) =z(1) (T —1)]
Xy =[=(1) z(2) z(T)]
Noise: matrix W_ = [w(0) w(1) --- w(T —1)] is unknown but bounded:

-
I I
o > 0.
{W_T ] [W_T ] -
for some known matrix ® € S™*7 satisfying @22 < 0 and ®11 — P12P5, o1 > 0.
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Notion of informative data
stability analysis

The set of all systems explaining the data:

S ={AeRV" | X; = AX_ + W_ for some W_ satisfying bound}.

Note: A € X if and only if
T T
I I Xy I Xy 1
o]l el A L)

Definition: The data X are called

1 informative for stability if every A € X5 is Schur.

2 informative for quadratic stability if there exists a real matrix P > 0 such that
P—APAT >0 forall A€ %,.

Thus, informativity for quadratic stability implies that " P~ 12 is a common Lyapunov
function for all A € Xs.
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Data-based stabilizability analysis and stabilization
Next, consider the system
z(t+1) = Avz(t) + Bau(t) + w(t),

where u € R™ is the input.

Data: state samples X and inputs U_ = [u(0) w(1) --- (T —1)].

All systems explaining the data:
Yis:={(A,B)| X+ =AX_+ BU_ + W_ for some W_ satisfying the bound}.

Definition: The data (X,U_) are called
1 informative for stabilizability if every (A, B) € X/ is stabilizable.

2 informative for quadratic stabilizability if there exists a real matrix P > 0 such that
P —APAT + BBT > 0 for all (4, B) € Sys.

3 informative for stabilization if there exists a K € R™*" such that A + BK is Schur
for all (A, B) € .

4 informative for quadratic stabilization if there exists a matrix K € R™*™ and a real
matrix P > 0 such that P — (A + BK)P(A+ BK)' > 0 for all (4, B) € Zy.
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Conditions with a common Lyapunov function
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Conditions for quadratic stability
LMI for robust stability

Proposition: The data X, generated by @(t + 1) = A,x(t) + w(t), are informative for

quadratic stability if and only if there exists a real matrix P > 0 such that

.
Poo] I Xelg[t X1 oy
0o -~ o -x_| |0 —x_

Interpretation: robust stability since for any A € ¥s:

g e e A R e P

Lyapunov inequality >0

Only if direction via matrix S-lemma:

QUADRATIC MATRIX INEQUALITIES WITH APPLICATIONS TO DATA-BASED CONTROL
HENK J. VAN WAARDE, M. KANAT CAMLIBEL, JAAP EISING, AND HARRY L. TRENTELMAN

Abstract. This paper studies several problems related to quadratic matrix inequalities (QMI's), i.e., i lities in the semidefini
ordering involving quadratic functions of matrix variables. In particular, we provide conditions under which the solution set of a
QMI is nonempty, convex, bounded, or has nonempty interior. We also provide a parameterization of the solution set of a given QML
In addition, we state projection results, that characterize a subset of “structured” solutions to a QMI. Thereafter, we derive matrix
versions of the classical S-lemma and Finsler’s lemma, that provide conditions under which all solutions to one QMI also satisfy
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Conditions for quadratic stabilizability and stabilization

Simplifying assumption (can be removed): The input-state data, generated by
x(t+ 1) = A.x(t) + Bou(t) + w(t), satisfy rank [XT U] =n+m.

Proposition: The data (X,U_) are informative for quadratic stabilizability if and only if
there exists a real matrix P > 0 satisfying

[ﬁ’ —OP]‘[é —)gdq’{é _)_(x*r”- (1)

Note: Exactly the same LMI as before!l (but X depends on U_ now)

Proposition: Let © := ®12 + X 2o, The data (X, U_) are informative for quadratic
stabilization if and only if there exists a matrix P satisfying (1) and

1171 X 1"/ [x_ ol RN B il
P> L) o] e o) ([]e= ) ) 0]
Moreover, if P satisfies both inequalities then
K= (U_(®22+0 ' TTO)XT)(X_(®22 + 0 ' TTO)X )"

. . T
is stabilizing for all systems (A, B) € %5, where I' := P — [I X+] P [I X+] .
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Beyond common Lyapunov functions
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Beyond common Lyapunov functions
stability analysis without LMIs

Theorem: Define, for A € C,

)= {(X+ —IAX-f] E [(X+ —IAX-)T] '

Assume that (1) is invertible and the matrix

-1

0 (1)
T(-1) 20X -X_0")u1)

—1

has no eigenvalues on the imaginary axis. Then the following are equivalent:
1 The data X are informative for quadratic stability.
2 The data X are informative for stability.
3 W(1) <0, X_ has full row rank, and the matrix (X_®2,X_)  X_©" is Schur.

Note: Third condition is not phrased in terms of LMlIs.

Proof relies on the KYP lemma.

Also possible to extend result to stabilizability analysis (but stronger conditions on data).
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Beyond common Lyapunov functions

simple example
Consider the discrete-time consensus protocol with one stubborn agent:

I—alL, O(nfl)xl

t t
01><(n—1) 01><1 il!( ) + w( )’

z(t+1) =

where L, is the grounded Laplacian of an undirected cycle graph with n = 500 nodes.

The noise affects only node 1, and is bounded as ||w(t)|| < e.
Experiments for different €, with T = 3000 samples each (random initial state).

H € ‘ im. eigenvalues ¥(1) <0 rankX_=mn Schur H

0.10 100% 100% 100% 100%
0.15 100% 95% 100% 100%
0.20 100% 75% 100% 100%
0.25 100% 55% 100% 100%
0.30 100% 33% 100% 100%

Table: Percentage of trials in which the different conditions hold, for various levels of e.

Example would already be challenging for LMI solvers (125000+ variables...)
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Conclusions
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Conclusions

summary and future work

1 Informativity for (quadratic) stability, stabilizability and stabilization
2 Striking similarity between conditions for quadratic properties

3 Under an eigenvalue condition, informativity for stability and quadratic stability are
equivalent

4 New condition for informativity for stability, that does not rely on LMIs

5 Future goals: extend to stabilizability and stabilization.
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Thank you!
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