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Background
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The fundamental lemma

t

u

x(0)

Unknown LTI system:

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

t

y

Rearrange the measurements (u(t), y(t)) for
t = 0, 1, . . . , T − 1 into Hankel matrices:

[
HL(u)
HL(y)

]
︸ ︷︷ ︸

HL

=



u(0) u(1) · · · u(T − L)
...

...
...

u(L− 1) u(L) · · · u(T − 1)
y(0) y(1) · · · y(T − L)
...

...
...

y(L− 1) y(L) · · · y(T − 1)



Any vector

ū(0)
...

ū(L− 1)
ȳ(0)
...

ȳ(L− 1)


∈ imHL

is a trajectory.
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The fundamental lemma

Question: Under which conditions do the columns of HL span ALL length-L trajectories?

The input u is persistently exciting (PE)
of order k if Hk(u) has full row rank.

This requires: T ⩾ (dim(u) + 1)k − 1.

The fundamental lemma: If (A,B) is
controllable and u is PE of order dim(x) + L
then imHL spans all length-L trajectories the
system can produce.
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The fundamental lemma
some follow-up results

Parametric model (A,B,C,D) from HL (Model-free) simulation of trajectories

Prediction and optimization of trajectories

Feedback controllers

Some limitations of the fundamental lemma:

For control, we may not need the entire (exact) restricted behavior. PE necessary?

In general, it is not possible to find restricted behavior. Noisy data?
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The framework
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The point of view
Informativity and data-driven control

M M: model class

S

S: unknown system

D: given data set

ΣD: set of consistent systems
ΣD

O: control objective

Data-driven control := use the data set D to find a controller C that achieves O for
the unknown system S
On the basis of D we cannot distinguish between systems in ΣD so the only way to
proceed is to find a controller that achieves O for all systems in ΣD

Data D are informative for O :⇐⇒ ∃ controller C that achieves O for all systems in
ΣD

Type of robust control problem, where uncertainty stems from imperfect data
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Informativity approach
problems solved so far

Problem Data Problem Data
controllability E-IS reachability (conic constraints) E-IO
observability E-S stability N-S
stabilizability E-IS stabilizability N-IS
stability E-S state feedback stabilization N-IS
state feedback stabilization E-IS state feedback H2 control N-IS
deadbeat controller E-IS dynamic feedback H2 control N-IO
LQR E-IS state feedback H∞ control N-IS
suboptimal LQR E-IS dynamic feedback H∞ control N-IO
suboptimal H2 E-IS stability N-IO
dynamic feedback stabilization E-ISO dynamic feedback stabilization N-IO
dynamic feedback stabilization E-IO dissipativity N-ISO
dissipativity E-ISO model reduction (balancing) N-ISO
tracking and regulation E-IS structural properties N-ISO
model reduction (moment matching) E-IO absolute stabilization Lur’e N-ISO

Table: Summary of results within the informativity approach, see also: “A Tutorial on the
Informativity Framework for Data-Driven Control” (TuBT12).
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Stabilization using quadratic difference forms
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Input-output systems in AR form and data
The model class and data

Model class of all of systems of known order L, input dimension m, output dimension p:

P (σ)y = Q(σ)u+ v,

where v(t) is unknown additive noise, σ is the shift operator ((σf)(t) = f(t+ 1)) and
P,Q are polynomial matrices:

P (ξ) = IξL + PL−1ξ
L−1 + · · ·+ P1ξ + P0,

Q(ξ) = QL−1ξ
L−1 + · · ·+Q1ξ +Q0,

with unknown coefficients P0, P1, . . . , PL−1 ∈ Rp×p, Q0, Q1, . . . , QL−1 ∈ Rp×m.

We collect input-output data

u(0), u(1), . . . , u(T ), y(0), y(1), . . . , y(T ),

for T ⩾ L, generated by the (unknown) true system

Ps(σ)y = Qs(σ)u+ v

within the model class.
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Input-output systems in AR form and data
Assumption on the noise

The τ := T − L+ 1 noise samples v(0), v(1), . . . , v(T − L) are unknown. However, we
assume that the real p× τ matrix

V :=
[
v(0) v(1) · · · v(T − L)

]
,

satisfies the quadratic matrix inequality (QMI)[
I

V ⊤

]⊤

Π

[
I

V ⊤

]
⩾ 0. (1)

Here Π ∈ Sp+τ is a given (known) partitioned matrix

Π =

[
Π11 Π12

Π21 Π22

]
,

with Π22 < 0. Notation: V ⊤ ∈ Zτ (Π).
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Input-output systems in AR form and data
All systems consistent with the data

Notation: R(ξ) =
[
−Q(ξ) P (ξ)

]
, w =

[
u
y

]
, q = m+ p,

Then P (σ)y = Q(σ)u+ v can be written as R(σ)w = v.

(Unknown) coefficient matrix of R(ξ): the p× qL matrix

R̃ :=
[
−Q0 P0 −Q1 P1 · · · −QL−1 PL−1

]
Arrange the data u(0), u(1), . . . , u(T ), y(0), y(1), . . . , y(T ) into the vectors

w(t) =

[
u(t)
y(t)

]
.

(Adapted) Hankel matrix asociated with the data:

H(w) :=


w(0) w(1) · · · w(T − L)

...
...

...

w(L− 1) w(L) · · · w(T − 1)

y(L) y(L+ 1) · · · y(T )

 =

[
H1(w)

H2(w)

]
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Input-output systems in AR form and data
All systems compatible with the data

Observation: if a matrix R̃ satisfies the linear equation[
R̃ I

] [H1(w)
H2(w)

]
= V (∗)

for some V ⊤ ∈ Zτ (Π) then the data w(0), w(1), . . . , w(T ) could have been generated by
the system R(σ)w = v.

Definition: If R̃ satisfies (∗) for some V ⊤ ∈ Zτ (Π), we call the AR system with
coefficient matrix R̃ consistent with the data.

Fact: The system R(σ)w = v is consistent with the data if and only if[
I

R̃⊤

]⊤[
I H2(w)
0 H1(w)

]
Π

[
I H2(w)
0 H1(w)

]⊤

︸ ︷︷ ︸
=:N

[
I

R̃⊤

]
⩾ 0.
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Stability and quadratic difference forms
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Stability of autonomous systems

Some facts on stability and Lyapunov theory for autonomous systems represented by AR
models:

Definition: Let P (ξ) be a nonsingular polynomial matrix. The system P (σ)y = 0 is
(asymptotically) stable if y(t) → 0 as t → ∞ for all solutions y on Z+.

Behavior: B(P ) := {y : Z+ → Rp | P (σ)y = 0}

Stability of autonomous AR systems can be characterized in terms of quadratic difference
forms (QDFs) along the behavior12.

We will discuss QDFs now...

1
Willems and Trentelman, “On quadratic differential forms” (1998).

2
Kojima and Takaba, “A generalized Lyapunov stability theorem for discrete-time systems based on quadratic difference forms” (2005).
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Quadratic difference forms

A quadratic difference form (QDF): operator QΦ mapping w : Z+ → Rq to
QΦ(w) : Z+ → R, defined by

QΦ(w)(t) :=

N∑
k,ℓ=0

w(t+ k)⊤Φk,ℓ w(t+ ℓ).

Here, N and q are positive integers and Φi,j ∈ Rq×q. We assume

Φ :=


Φ0,0 Φ0,1 · · · Φ0,N

Φ1,0 Φ1,1 · · · Φ1,N

...
...

. . .
...

ΦN,0 ΦN,1 · · · ΦN,N

 ∈ Sq(N+1).

Φ is called a coefficient matrix of the QDF.
The degree deg(QΦ) of the QDF: the smallest integer d such that Φij = 0 for all i > d
or j > d.
The coefficient matrix is not unique. If deg(QΦ) = d it allows a coefficient matrix in
Sq(d+1).
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Quadratic difference forms

For a given QDF QΦ, its rate of change along w : Z+ → Rq is

QΦ(w)(t+ 1)−QΦ(w)(t).

This defines a QDF itself. Indeed, Q∇Φ(w)(t) = QΦ(w)(t+ 1)−QΦ(w)(t) where

∇Φ :=

[
0q×q 0
0 Φ

]
−

[
Φ 0
0 0q×q

]
∈ Sq(N+2).

R(ξ) real p× q polynomial matrix. AR system represented by R(σ)w = 0.
The behavior of this system is denoted by B(R).

QΦ is called nonnegative if QΦ(w) ⩾ 0 for all w : Z+ → Rq. We denote this as
QΦ ⩾ 0. Equivalent with Φ ⩾ 0.

QΦ is called nonnegative on B(R) if QΦ(w) ⩾ 0 for all w ∈ B(R). Notation:
QΦ ⩾ 0 on B(R).

QΦ is called positive if QΦ ⩾ 0 and, in addition, QΦ(w) = 0 if and only if w = 0.
This is denoted as QΦ > 0.

It is called positive on B(R) if, in addition, QΦ(w) = 0 if and only if w = 0.
Notation: QΦ > 0 on B(R). Likewise: nonpositivity and negativity on B(R).
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Stability of autonomous systems

Consider the autonomous AR system represented by P (σ)y = 0, where we recall that
P (ξ) = IξL + PL−1ξ

L−1 + · · ·+ P1ξ + P0.

Lemma: The autonomous system P (σ)y = 0 of order L is stable if and only if there
exists a QDF QΨ of degree at most L− 1 such that QΨ ⩾ 0 and Q∇Ψ < 0 on B(P ).

The QDF QΨ is called a Lyapunov function.

In terms of the coefficient matrix P̃ =
[
P0 P1 · · · PL−1

]
∈ Rp×pL this can be

translated to:
Theorem: The autonomous system P (σ)y = 0 of order L is stable if and only if there
exists Ψ ∈ SpL, Ψ ⩾ 0, such that[

I

−P̃

]⊤ ([
0p 0
0 Ψ

]
−

[
Ψ 0
0 0p

])[
I

−P̃

]
< 0. (QMI with P̃ and Ψ)

Any such Ψ defines a Lyapunov function QΨ.
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Data-driven controller synthesis
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Data-driven stabilization
Dynamic output feedback controllers

Feedback controller for P (σ)y = Q(σ)u+ v of the form

G(σ)u = F (σ)y

with
G(ξ) = IξL +GL−1ξ

L−1 + · · ·+G1ξ +G0,

F (ξ) = FL−1ξ
L−1 + · · ·+ F1ξ + F0.

Note: the leading coefficient matrix of G(ξ) is the m×m identity matrix and
Gi ∈ Rm×m, Fi ∈ Rm×p for i = 0, 1, . . . , L− 1.
Closed loop system given by[

G(σ) −F (σ)
−Q(σ) P (σ)

] [
u
y

]
=

[
0
I

]
v.

The leading coefficient matrix is the q × q identity matrix. We call the controller a
stabilizing controller if the closed loop system is stable in the sense that if v = 0 then
u(t) and y(t) tend to 0 as t tends to infinity.
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Data-driven stabilization

Denote C(ξ) :=
[
G(ξ) −F (ξ)

]
and

C̃ :=
[
G0 −F0 G1 −F1 · · · GL−1 −FL−1

]
∈ Rm×qL.

Lemma: The closed loop system is stable if and only if there exists Ψ ∈ SqL such that
Ψ ⩾ 0 and  I

−C̃

−R̃

⊤ ([
0q 0
0 Ψ

]
−

[
Ψ 0
0 0q

]) I

−C̃

−R̃

 < 0. (closed loop stability)

Moreover, in that case, Ψ > 0.

Definition: The data u(0), u(1), . . . , u(T ), y(0), y(1), . . . , y(T ) are called informative for
quadratic stabilization if there exist C̃ ∈ Rm×qL and Ψ ∈ SqL such that Ψ ⩾ 0 and QMI
(closed loop stability) holds for all R̃ that satisfy[

I

R̃⊤

]⊤

N

[
I

R̃⊤

]
⩾ 0.

In other words: there exists a controller G(σ)u = F (σ)y and Ψ ∈ SqL such that QΨ is a
common Lyapunov function for all closed loop systems obtained by interconnecting the
controller with a system compatible with the data.
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Data-driven stabilization
The main tools

Informativity for quadratic stabilization thus means that there exists a controller C̃ and
(common) Lyapunov function Ψ such that all solutions to the QMI[

I

R̃⊤

]⊤

N

[
I

R̃⊤

]
⩾ 0

also satisfy the QMI  I

−C̃

−R̃

⊤ ([
0q 0
0 Ψ

]
−

[
Ψ 0
0 0q

]) I

−C̃

−R̃

 < 0.

To characterize informativity we use two main ingredients:
A dualization and projection step
A matrix version of Yakubovich’s S-lemma3

3
van Waarde et al., “Quadratic matrix inequalities with applications to data-based control”, https://arxiv.org/abs/2203.12959, 2022.
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Data-driven stabilization

Let J :=
[
0q(L−1)×q Iq(L−1)

]
and define the 2qL× 2qL matrix N̄ by

N̄ :=
[[

0 0 −Ip
]

0
0 IqL

]⊤
N

[[
0 0 −Ip

]
0

0 IqL

]
.

Theorem4: Assume that H1(w) has full row rank. The data u(0), u(1), . . . , u(T ),
y(0), y(1), . . . , y(T ) are informative for quadratic stabilization if and only if there exist
matrices D̃ ∈ Rm×qL and Φ ∈ SqL such that

Φ

JΦD̃
0

 JΦD̃
0


JΦD̃

0

⊤

−Φ 0

JΦD̃
0

⊤

0 Φ


−

[
N̄ 0
0 0qL

]
> 0.

In that case, the controller with coefficient matrix C̃ := −D̃Φ−1 stabilizes all systems
that are compatible with the data. Moreover, the QDF QΨ with Ψ := Φ−1 is a common
Lyapunov function for all closed loop systems.

4
van Waarde et al., “A behavioral approach to data-driven control with noisy input-output data”,arxiv.org/abs/2206.08408, 2022.
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Conclusions
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Conclusions
summary and future work

General framework of data informativity:

1 Set of systems explaining the data

2 Control all systems in this set

Conditions for data informativity for stabilization, LQR, tracking and regulation,...

Control design via linear matrix inequalities

Controllers are obtained directly using a finite batch of (noisy) data

Approach relies on behavioral theory (QDFs) and robust control (matrix S-lemma)

Nonconservative design

Ongoing and future work:

(Common) Lyapunov functions (also see WeBT05.5)

Online experiment design (PhD work of Amir Shakouri)
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Thank you!
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