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Quadraticmatrix inequalities basicdefinitions

The object of study is the Q MI

g p I
means symmetricpositivesemidefinite

leg9tr
in the variable I e IR and the solution set

E it err I LEFT E o

Whyshouldwe care about these

Asimple example
Consider the system

x ta As Nlt Bsu t w t

where n t e IR is the state ult ERM is the input andwht e IR is
noise The matrices As and Bs are unknown

Goal Find a controller u kn such that AstBsk is Schur

using the data

X x o x i x t and U uco u i n ult D











































































Define X x o sell act 1 and Xt nd na x t

The noisematrix W who w i wt D is unknown

How to model the noise

Several recent papers use QMI descriptionsof the noise

IN WI S TAXI

E 41 so

Eitel so

Interpretation Energy bound on noise du o du I imply
W WI IFWEWAY I 11

samplebounds hw E Is e ft o b.gl with du ETI

sample covariance bounds W I FIAT WI s 01
take 912 0 du I I FIND
noise free data W so if di so 012 0 and du I











































































The assumption on the noise leads to a set of explainingsystems

2 A B Xt AX BU th for some WIEZt d

In particular CAsBs e E but theremay bemanyothersystems

s a B I 1 I a 01 It go
Since we cannot distinguish between AsBs note aQMI
and anyother A B EE we want to control in theunknown

A and BALL systems in E

Definition The data U X are informative for quadratic
stabilization if there exists a ke rm and P o such that

P A BK P AtBRI O

for all A B E E

Interpretation K stabilizes all systems in withcommon Lyapunov
function at p n

Note The Lyapunov inequality may be written as

É I E pie É o
Also a Qme in a B

for fixed P and K











































































So the question is when do there exist K and P sit

O

Friml a of lt sZnim e pl'd
thismeans

solution set of
strict QMI

Other examples whereQMIs appear

Input outputsystems

yet PSylt 1 t PIYA L QoS ult Qi ult 1 t.it QIult DtWH

where yet ERP ult ERM and w t ERP t L Lts T

Hankel matrix

1 itu L UCLA ult

g L year y

Unknown coefficients R QE Pi Qi Pi Qos

th RH the Iw E Iri
wa wa

set ofexplaining systems 2 r ftp.t 19figiJfrip.o











































































Lur e systems

x ta ASRE Bs ult E Y yet WA

y t Csbelt Ds ult OCT

Data X U as before and Y y o yl yet D
E Yly o p ye Y ly T D

Noise w 1 9 B EB
Setof explaining systems

2 AB so
t E

I B W forsome wet

again governedby a QMI

Purpose of this talk
understand properties of QM Is in the context of
data driven robust control

submitted to SICON











































































Quadraticmatrix inequalities basic properties

First order of business when doesthere exist a solution Ie IRM to

E Ii F o

Tar
In general not soeasy I e Fr it LILIIÉ has r

negative eigenvalues Not that useful

We can say more if Ker Ia f KerTu and Tu 50 Then
Schurcomplement In InTata

1 I ta Intact
o Ir I i t.iq

MoorePenrose

pseudo inverse

Hence forany I e RM

E I É IT Tat Hint 2 Tu IIIa t 2 3 IT lita

So a necessary condition for nonemptinessof Zr it IT112270

Also sufficient because fat IT tatty I 11Th

this is a
solution
if IT112230











































































This motivates the class of IT matrices

Atar It In E 59 Izz so Kerins kertia I To o

Theorem Let Te Mtg r Then Zr it

a is nonempty and convex

b is bounded Tu LO

c has nonempty interior Izz o or I IIe 50

Now onto more interesting stuff

Inclusions of solutionsets of QMIs and matrix S lemmas

Let M N e ga
tr

Problem Under whichconditions do we havethat Zr N S Zr M
i.e all solutions to one Q MI satisfyanother QMI

A classical result Yakubovich's S lemma
Let M N E S and suppose that N has at least one positiveeigenvalue
Then see R and at Nn 30 at Mr 30 if andonly if there
exists a o such that M an 30

Note Here we need an S lemmaformatrixvariables and Loewnerorder











































































Theorem matrix S lemma Let ME59 and Netta r and suppose

that N has at least one positiveeigenvalue
Then Er N E Ar M I a o such that M NN 30

So checking QMI inclusions boilsdown to feasibilityof linearmatrix
inequalities

Alsopossible to derive matrix S lemmas with one strict inequality

Theorem LetM N e 59 and assume that N e19g r and Maz so

Then Fr N S 2rt M 0 thereexist a o andp o such that

M an I

Things simplify if Na Lo

Theorem Leb MN e 9 and assume that NEAtg r and Naco
Then Fr N s Zt M I 230 M LN O

Now how to apply this to data driven control e.g stabilization











































































Recall that the input state data u X are informativefor
stabilisation if and only if there exist P o and k sit

O

Friml a of at s Zim to e pl'd

I
assumed to be
in set Tin Bymatrix S lemma

There exist P O K e IRM and scalars a O B so sit

O

t.edu at a of at o

Observation We can scale P and B by and apply
a changeof variables and Schur complement to obtain
the equivalent LMI condition

The data U X are informative for quadratic stabilization
There exist P o LERM and B o sit

I Xt I Xt
T

1 o P E ph
18 qg yo11

O O

Here K and L are related by L KP











































































Remarks The matrix S lemmas presented here operate under
mild assumptions N eMar in comparison to

Amatrix S lemma derived from full block S procedure
by C Scherer

A closely related result known as Petersen's lemma

The new matrix S lemmas enable

general necessary sufficient conditions for informativity withou
making a priori assumptions on thedata

general noise models of e In

e.g cross covariance
bounds

treatment of noise in a subspace of the state space
W t E im E f t O l T l

But there is more to tell











































































Image of Zr it under linear maps

Question Let Telfair and We 1129
P
Can we characterise

the set of matrices Er It W S Rr

YES using another QMI

Theorem Assume that either Izz do or W has full column rank
Then Fr It W Zr Tw where

In wish WE

So the imageof a QMI solutionset under a linearmap is again a
solution setof a different Q MI

Corollary Let IT e 59 with Izz 30 and her Izz f KerTai

Consider We 1129
P and Ye R P Suppose that Whasfull column

rank or Izz O Then I I e Zr IT such that 2W Y

if and only if IT EHair and Y E Zr Iw











































































Applications in data drivencontrol

Noise within a subspace

Let delta with 2220 Let EeRn'd

Then W EW for some Wt e Zt d if and only if
WI e Zt O where

E E Ede
IaEt Ia

so we can capture the constraint inW Sim E inthenoisemodel o

Input outputsystems

yet Pis y t 1 t PLSYA L QoS ult Qi ult 1 t.it QIult DtWH

A structured state space representation

ult Lti

yet

MM
known matrix

Ig É f wit
ult ult D

yet i III YTB











































































As also noted here

Hs Bs are structured

Suppose that we want to design a dynamicoutputfeedback
U t Knelt

I unknodefficients
known

uncertain A B s are of the form A B E

I F o R o I

As before the unknown coefficients satisfy

RT E Zoom um 1 1,791 1
T

We want that P A B E P E ft 0 that is

I P 8 E it t 8 E PIE I

111 111Riot

jtf
Riot











































































We thus want Rt E Fermium N 7 RT O 1 EZitmumM

Equivalently Zip mum N o 1 E FLpfm Ltm M

4 But this is again a

Q MI solution set

Rest follows again from matrix S lemma

A behavioral approach is
also available that avoids
state space representations

Reduction of computational complexity

Recall that the input state data are informativefor quadratic
stabilization there exist p yo B o and K E Rm ns.t

O

t.edu I a of if o

This inequality could be reformulated as an LMI

But we can also reduce computational complexity as follows











































































Hi
p i a I pI

0 0 kt O P O P O O Kt

1 x
So we are lookingfor
astructuredsolution
to a QMI

Idea Apply corollary with IT Y W y o o

Theorem Define dict Xt422 The data UX are

informative for quadratic stabilisation if and only if there
exist Pe's and B o sit

I 101 I o

P BI LITTLE to f E out Got o

If these LMIs are feasible then

K U dat Otto XI X Out Otto XI t

is a stabilising feedback gain for all A B EE











































































where F P BI I Xt d txt

Note Dimensions of LM Is is smaller and less decisionvariables

Explicit formula for controller given P and B

Remark This formulation willalso play an important role for

getting insight into the conservatism of common Lyapunov function
see WeBT 05.5











































































Conclusions

Main message Results on QM Is as a toolbox for data
driven robustcontrol

Solution sets of QM Is describe
sets of systems consistentwith data
stability performance guarantees via

Lyapunov dissipation inequalities

Inclusion of solution sets a matrix S lemmas
LMI conditions for stabilisation Ha Ha

Image of solution sets under linearmaps
structured solutions to QM Is
input output systems noise in subspace reducingcomplexity











































































Thanks to the organisers

and

THANK YOU ALL


