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Motivation: without experiment design methods,
1 there are no guarantees that collected data are informative
2 trial-and-error leads to large data sets

These lectures: Experiment design for:
m trajectory parameterization
m system identification

m stabilization
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Abstract

We prove that if a component of the response signal of a controllable linear time-invariant system is persistently exciting of
sufficiently high order, then the windows of the signal span the full system behavior. This is then applied to obtain conditions
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m The fundamental lemma was proven in (Willems et al., 2005).

m Applications:

1

2

System identification via subspace methods (Van Overschee & De Moor,
1996), (Verhaegen & Verdult, 2007).
Direct data-driven control. For instance,

© trajectory simulation (Markovsky and Rapisarda, 2008),

¢ stabilization (De Persis and Tesi, 2019), and

© predictive control (Coulson et al., 2019), (Berberich et al., 2020).

m Extensions:
» multiple datasets (van Waarde et al., 2020),
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parameter-varying systems (Verhoek et al., 2021)
descriptor systems (Schmitz et al., 2022)

robust version (Coulson et al., 2022)

stochastic systems (Pan et al., 2022)

switched systems (Petreczky and Bako, 2023)
continuous-time systems (Rapisarda et al., 2023)
frequency domain counterpart (Meijer et al., 2023)
2D systems (Rapisarda and Zhang, 2024)

and several classes of nonlinear systems.
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Consider the input-state-output system
x(t +1) = Ax(t) + Bul(t) %)
*
y(t) = Ca(t) + Duft),

where u(t) € R™, z(t) € R™ and y(t) € R? for all t € Z..

Identify (x) with the quadruple (A, B,C, D) € M"™™P where
MMP . — RX7 « RPXM ¢ RPXT o RPXM
We also define

MET ={(A,B,C,D) € M"™™P | (A, B) is controllable}.

Definition: We define the (input-output) behavior of (A, B,C, D) € M™™P by

B(A,B,C,D) :={(u,y) : Zy - R™ xR? |3z :Z; - R"
such that (%) holds for all t € Z }.
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Given f:Z, — R? and a positive k € Z,., we define
£(0)
_ f()
[0,k—1] *= :
f(k=1)
Definition: Let k,T € Z, be positive with k < T'. We define the Hankel matrix:
o) s - J(T—k)

f(1 f2) - f(Tr—-k+1
Hy(fo,r-1)) == ( ) ( ) ( ) )

fi=1) f(k) - FT-1)

fio,r—1) is persistently exciting of order k if Hy(fjo,r—1j) has full row rank.

Definition: We define the k-restricted behavior of (A, B,C, D) € M™™P by

5.045.0.0) = {10 ] |y e B4 B.C.D)}.

Moreover, we use the shorthand notation: 5, (A, B) := B (A4, B, I,,,0).
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Now, consider the data: [U[O’T_l]} € B, r—1(4, B,C, D).
Ylo,7-1]
Let L € [1,T]. By time-invariance, each column of
[ w0) w@) - w(T-L)]
ugrg) | _ [uE-0 wm) o wr-y |
Hr(ypo,r-1)) y(0)  y(1) y(T'— L)
| y(L—1) y(L) y(T —1) |

is in the restricted behavior By 1 _1)(4, B,C, D).

Since By 1—11(A, B,C, D) is a subspace, all linear combinations of the
columns of (o) are also in By 1_1)(4, B,C, D).
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In other words:
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Important question: Under which conditions do we have

. [Hr(up T—1]):|
: — B ,_11(A, B,C,D) ?
1m |:HL(y[Q7T_1]) [0,L 1]( )

This would allow us to parameterize all length-L trajectories using data:

Uo,-11| ¢ g A,B,C,D) — FLM—H} _ [HL(“[&T—IJ)]
|:y[0,L—1]] o.L-1(4,B,C, D) Y(0,L-1] Hi(yjo,r-11)

for some g € RT-L+1,
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Theorem (Willems et al., 2005): Assume that (4, B,C, D) € M ;"
ufo,7—1] is persistently exciting of order n + L. Then:

m the rank condition

Hy(zo T—L])}
k ! =n+mL
ran |:HL<U[O’T1]) n m

holds for all z(g 7 zj such that F”QTLq € Br_r41(A,B)
Lo, 7-L]

and
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and

Remarks:

m PE of order n + L requires ' > (m + 1)(n+ L) — 1

m If only upper bound N > n is given, use ujg r_y) that is PE of order N + L

m If L > ¢(C, A) where ¢(C, A) is the smallest integer such that
rank[CT (CA)T ..o (CA"Y)T]=rank[CT (CA)T

(i.e., the lag of the system), then By ;1) uniquely determines B

(CANT]
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Universality of Persistently Exciting Inputs

Amir Shakouri, Henk J. van Waarde, M. Kanat Camlibel

Abstract—In this letter, we provide new insight into Willems The persistency of excitation condition imposes a lower
et al’s fund: tal lemma by ying the concept of universal  pound on the required number of data samples. As shown for
inputs. An input is called universal if, when applied to any con- e firgt time in [301. for a sinele controllable svstem. one can




Universal inputs = =

A New Perspective on Willems’ Fundamental Lemma:
Universality of Persistently Exciting Inputs

Amir Shakouri, Henk J. van Waarde, M. Kanat Camlibel

Abstract—In this letter, we provide new insight into Willems The persistency of excitation condition imposes a lower
et al’s fund: tal lemma by ying the concept of universal  pound on the required number of data samples. As shown for
inputs. An input is called universal if, when applied to any con- e firgt time in [301. for a sinele controllable svstem. one can

11/41

Question: To what extent is the PE condition necessary to parameterize all
length-L trajectories?



Universal inputs = =

A New Perspective on Willems’ Fundamental Lemma:
Universality of Persistently Exciting Inputs

Amir Shakouri, Henk J. van Waarde, M. Kanat Camlibel

Abstract—In this letter, we provide new insight into Willems The persistency of excitation condition imposes a lower
et al’s fund: tal lemma by ying the concept of universal  pound on the required number of data samples. As shown for
inputs. An input is called universal if, when applied to any con- e firgt time in [301. for a sinele controllable svstem. one can

11/41

Question: To what extent is the PE condition necessary to parameterize all
length-L trajectories?

. 0 1 0
Example: Consider A = {0 0} , B= [1} , C= [1 O] , and D = 0.



Universal inputs = =

A New Perspective on Willems’ Fundamental Lemma:
Universality of Persistently Exciting Inputs

Amir Shakouri, Henk J. van Waarde, M. Kanat Camlibel

Abstract—In this letter, we provide new insight into Willems The persistency of excitation condition imposes a lower
et al’s fund: tal lemma by ying the concept of universal  pound on the required number of data samples. As shown for
inputs. An input is called universal if, when applied to any con- e first time in [301. for a sinele controllable svstem. one can

11/41

Question: To what extent is the PE condition necessary to parameterize all
length-L trajectories?

Example: Consider A = {O 1} , B= [O] , C [1 O] , and D = 0.

0 0
Let L =1 and u(0) =1, and u(1) = u(2) = 0 (not PE of order 3 =n + L).



Universal inputs = z

A New Perspective on Willems’ Fundamental Lemma:
Universality of Persistently Exciting Inputs

Amir Shakouri, Henk J. van Waarde, M. Kanat Camlibel

Abstract—In this letter, we provide new insight into Willems The persistency of excitation condition imposes a lower
et al’s fund: tal lemma by ying the concept of universal  pound on the required number of data samples. As shown for
inputs. An input is called universal if, when applied to any con- e first time in [301. for a sinele controllable svstem. one can

11/41

Question: To what extent is the PE condition necessary to parameterize all
length-L trajectories?

0 0
Let L =1 and u(0) =1, and u(1) = u(2) = 0 (not PE of order 3 =n + L).

We have I 1 0 0
)= e o 1

which has rank 2 for all z(0) € R2.

Example: Consider A = {O 1} , B= [O] , C= [1 O] , and D = 0.
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Question: To what extent is the PE condition necessary to parameterize all
length-L trajectories?

. 0 1 0
Example: Consider A = {0 0} , B= [1] , C= [1 O] , and D = 0.

Let L =1 and u(0) =1, and u(1) = u(2) = 0 (not PE of order 3 =n + L).

We have I 1 0 0
)= e o 1

which has rank 2 for all z(0) € R2. Thus, B1(4, B,C, D) = im [
Hi(ypo,2))

Hl(u[o,z])] '
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Conclusion: For a single system, persistency of excitation is not necessary.

But PE inputs are universal because they guarantee sufficiently rich data for all
controllable systems...

Definition: An input up 7_1; is called universal for determining the L-restricted
behavior if

.| Hg(uo Tl])}
B (A B,C,D)= ’
L( ) lm {HL(?J[O,TI])

for all (A, B,C,D) € Mcn” and all yjo 7_qj satisfying

{“W—”] € Br(A, B,C, D).
Ylo,7-1]

Observation and question:
1 If ug,r_1) is PE of order n + L then it is universal.

2 But are there other universal inputs?
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A New Perspective on Willems’ Fundamental Lemma:
Universality of Persistently Exciting Inputs

Amir Shakouri, Henk J. van Waarde, M. Kanat Camlibel

Abstract—In this letter, we provide new insight into Willems The persistency of excitation condition imposes a lower
et al’s fundamental lemma by studying the concept of universal  bound on the required number of data samples. As shown for
inputs. An input is called universal if, when applied to any con- he firgt time in [301. for a sinele controllable svstem. one can

Theorem: The input upy r_1) is universal for determining the L-restricted
behavior if and only if it is persistently exciting of order n + L.

Comments:
m The “if" part follows from Willems et al's fundamental lemma.

m For the “only if” part, given an input that is not PE, we show how to find

1 a controllable system and
2 an

such that the data do not parameterize the L-restricted behavior.
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Idea of the proof (“only if”):

1 Suppose that ujg 1] is not PE of order n + L.

2 Let € ker Hyyr,(upo,r—1)) " be a nonzero vector.

3 Partitionn” = [nJ -+ m,_y], whereng,...,gnyr—1 € R™.
4 Take A € R"*"™ and ¢ € R™ such that

> (A, () is controllable, and
> if X\ is an eigenvalue of A then Z?’joLfl A, # 0.
5 Define E,,; 11 :=0and E;_1 := AE; + Cn;'— forie[-1,n+ L —1].
6 Construct B := E_; and . Then (A, B) is
controllable.

7 It can be shown that
Hy(xjo1_1))
T T 1T, r-1))| _
S {HL(U[O,T—H)]
for some nonzero w € R™ and v € R™L,

g Define C' € RP*™ such that its first row is w ', and D := 0.

. , y . [Hr(up T—1])]
9 Finally, it can be shown that B,(A, B,C, D im ' )
Y i )7 [HL(Z/[O,T—l])
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Conclusion: Universal inputs are precisely the persistently exciting ones.

Next (natural) question: Can we improve over PE if we care about only the
restricted behavior of the true data-generating system?

Not so obvious, because that system is not known beforehand...
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Let’s first talk about what is known and unknown.

Definition: M™™? .= {(A, B,C,D) € M? | (C, A) is 1.

cont

The (data-generating) unknown true system satisfies:

M, Ntrue,P
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min ’

for some (unknown) state-space dimension 7.
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Let’s first talk about what is known and unknown.

Definition: M™™? .= {(A, B,C,D) € M? | (C, A) is b

The (data-generating) unknown true system satisfies:

M, Ntrue,P
(Atruea Btruea Ctruev Dtrue) S M . e 9

min

for some (unknown) state-space dimension 7.

Let /i denote the lag of (Atrue, Btrues Ctrue, Dirue)- Given: L > lie.

Problem: How to design ujy r_1) such that, for a fixed unknown z(0),

m |:HL(U[O,T—1])

HL (y[O,T—l]):| - %L(Atruea Btruea Otru67 Dtrue)7

where yjo 71 is the output of the true system resulting from ujo 7_1) and x(0)?
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A partial answer (using fundamental lemma):
1 Since L > lyye and (Cirue, Atrue) is observable, e < (L —1)p =2 N
2 Now choose ujg 1) persistently exciting of order N + L
3 Then upy r_qj is also persistently exciting of order 7., + L

4 By the fundamental lemma,

. [Hp(up Tl]):|
1m ’ =5 ArueaBrueucrueaDrue .
|:HL(y[0,T—1]) L( ‘ ‘ ' ' )

18/41

Remarks:
m This requires T' > (m + 1)(N + L) — 1 samples

m However, as PE inputs are universal this may be overkill...



Online experiment design = E 19/41

x(0)

(Atrue> Btrue7 Ctrue: Dtrue)

(Atruen Btruea Ctruea Dtrue)

see <«

(Atrue> Btrue7 Ctrue: Dtrue)
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Abstract—This letter a new il design rank property is important, since it guarantees that all tra-
method for data-driven modeling and control. The idea is jectories of the system can be parameterized in terms of the
to select inputs online (using past input/output data), lead- ‘meaqured trajectory. Essentially, the Hankel matrix of mea-
ing to desirable rank properties of data Hankel Matrices. I et innuts and cntants <erves as a non-narametric. model of

Theorem: Define 7" := nuc + (m + 1)L — 1. Let upy,,—1) be nonzero. For all
t € [L, T — 1] there exists an (m — 1)-dimensional affine set A" C R™ such that

Hi,(ujo,4) ] { Hy (ujo,t—1)) ]
rank ’ = rank ’ +1
l:HL—l(y[O,tl]) Hi—1(y0,t-2))

whenever u(t) ¢ A'.

Interpretation: We can increase the rank of the Hankel matrix at every time step!
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Theorem: Define T':= nye + (m + 1)L — 1. Let U[0,L—1] be nonzero. For all
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Theorem: Define T':= nye + (m + 1)L — 1. Let U[0,L—1] be nonzero. For all
t € [L,T — 1] there exists an (m — 1)-dimensional affine set A" C R™ such that

Hy (ugo,4) ] { Hy(upo,i-1)) ]
k ’ = k ' 1
rat |:HL1(y[O,t—1]) o Hr1(yj0,0—2)) +

whenever u(t) & A’

Corollary: If u(t) ¢ A" for all t € [L,T — 1] then

Hiy,(ujo,r—1)) } {HL(U[O T—1]):|
k ’ = k ’ = ru L
ran |:HL1(y[0,T—1]) an Hy(yo.r-1)) Mirue 1

o . [Hp(up Tl])]
This implies that im ’ =B, (Atrue, Birue, Cirues Dirue)-
P [HL(y[O,Tl]) LA ‘ ‘ brus)

Note: T is not known before the experiment. It is found online because it equals
the smallest ¢ for which

Hi (upo,4) ] [ Hy(ujo,i-1)) }
k 4) | = rank :
ran |:HL—1(y[O,t—1]) ran Hp—1(yjo,e-2))

for all u(t) € R™.
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True system and initial state:

Atrue = |:

0 1

1

1

:| ) Btrue = |:

0
1

:| ) Ctrue = |:

1 0
0 1

:| ) Dtrue: |:

0
2

| <0

Define L = 3, ujg o) = [1 0 0]T # 0, and measure Hy(yjo2)) = [

2
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True system and initial state:
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Define L = 3, ujg o) = [1 0 0]T # 0, and measure Hy(yjo2)) = [

2 0 ol
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:| ) Btrue = |:
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1:| ) C’true = |:

1 0
0 1

:| ) Dtrue |:

0
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Measure y(3) = B]
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0 0

=2 foru(3) =1
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True system and initial state:

0 1 0 1 0 0
Atrue = |:1 1:| s Btrue = |:1:| 3 C’true = |:0 1:| 5 Dtrue = |:2:| 5 1‘(0)

Define up o = [1 0 O}T #£ 0 and design the rest of the inputs online

1 0 0
0 0 1
He (| 0 1 u(4)
rank 3([04]) =rank | 7779 g | =3 for any u(4)
Ha(yp0.3) 2 0 0
0 0 O
L0 0 2 |

Take u(4) =0



Example = z

True system and initial state:

0 1 0 1 0 0
Atrue = |:1 1:| s Btrue = |:1:| 3 C’true = |:0 1:| 5 Dtrue = |:2:| 5 1‘(0)

Define up o = [1 0 O}T #£ 0 and design the rest of the inputs online

1 00 1
001 0
H3(ujo,5]) 0.10u0
rank | -2 =rank | 2775790 | =4 for any u(5)
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L0 02 1 |

Take u(5) =0
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True system and initial state:

0 1 0 1 0 0
Atrue = |:1 1:| s Btrue = |:1:| 5 C’true = |:0 1:| 5 Dtrue = |:2:| ) 1‘(0) =

Define up o = [1 0 O}T #£ 0 and design the rest of the inputs online

1001 0
0010 0
H(up,g) 0 100 uE) .
rank |-t =rank | 77000 0 | =5 forany u(6)
Ha(yp0.5) 2002 1
0000 1
0021 1 |

So we take u(6) = 0.
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True system and initial state:

0 1 0 1 0 0 —1
Atrue = |:1 1:| s Btrue = |:1:| 5 C’true = |:0 1:| 5 Dtrue = |:2:| 5 1‘(0) = |:

Define up o = [1 0 O}T #£ 0 and design the rest of the inputs online

10010 0
00100 0
H(up,7)) 01000 u)
rank |[----------2-- =rank [ 770000 1 =5+ 6 for any u(7)
Ha(ypo.01 20021 1
00001 1
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True system and initial state:
0 1 0 1 0 0 —1
Atrue = |:1 1:| s Btrue = |:1:| 5 Ctrue = |:0 1:| 5 Dtrue = |:2:| 5 1‘(0) = |: 0 :|

}T

Define ujg o) = [1 0 0] =0 and design the rest of the inputs online

1 0010 O
00100 O
L) 01000 ()
rank | ----------0-- =rank | 77 0000 1 =5+ 6 for any u(7)
Ha(ypo.q 2 0021 1
00001 1
00211 2 |

So we do not apply u(7) and stop the procedure.
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True system and initial state:
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Atrue = |:1 1:| ) Btrue = |:1:| ) C"crue = |:O 1:| ) Dtrue = |:2:| ) {17(0) = |:
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N = == =0




Example = z 22/41

True system and initial state:

0 1 0 1 0 0 -1
Atrue = |:1 1:| ) Btrue = |:1:| ) C’true = |:O 1:| ) Dtrue = |:2:| ) .’17(0) = |: 0 :|

}T

Define ujg o) = [1 0 0| 0 and design the rest of the inputs online

It follows that

O O =
= o O
O = O
O O =
o OO

=5= Ntrue + mkL.

OO O OO
— OoNO OO
=== o NN O
N = == =0

. [H3(ujo,6))
H ) ’ =B AruaBruacruaDru .
ence, im {H:s(y[o,fs] L(Atrue, Birues Corues Dirue)
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True system and initial state:

0 1 0 1 0 0 -1
Atrue = |:1 1:| ) Btrue = |:1:| ) C"crue = |:O 1:| ) Dtrue = |:2:| ) {17(0) = |: 0 :|

}T

Define ujg o) = [1 0 0| 0 and design the rest of the inputs online

It follows that

O O =
= o O
O = O
O O =
o OO

=5= Ntrue + mkL.

OO O OO
— OoNO OO
=== o NN O
N = == =0

. [ H3(upo 6])]
Hence, ’ =B AruaBruacruaDru -
1m |:H3(y[0,6]) L( true true true t e)

# of samples: T = 7 instead of T' > 13 required for PE of order 7 = 4 + 3.
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Persistently exciting inputs of order n 4+ L are universal

They enable the determination of the restricted behavior
B1(A,B,C,D)

when applied to any (4, B,C,D) € MZw?.
Universality and persistency of excitation of order n + L are equivalent
m PE of order n+ L requires T > (m + 1)(n + L) — 1 samples.

Online experiment design tailors ujg r_1) to the data-generating system

Such inputs are not universal

m The online approach only requires T' = ngye + (m + 1)L — 1 samples.
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Next question: how to choose inputs such that we can find
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i.e., identify the system from data?

Possible solution:
1 Find %L(Atruea Birye, Ctruethrue) with L > lirye
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Recall: We have seen two methods that guarantee

im {HL(U[O,T—l])

=Br(A rueaB rueacrumD rue).
HL(y[o,Tu)} L(Ae ‘ ‘ true)

25/41

Next question: how to choose inputs such that we can find

%(Atruea Btru67 Ctrue7 Dtrue)

i.e., identify the system from data?

Possible solution:
1 Find %L(Atruea Birye, Ctruethrue) with L > lirye

2 Obtain® B(Atrues Birues Ctrues Dirue) from this restricted behavior.

This requires T' = ngrue + (m + 1)L — 1 samples.

Question: Is this sample-efficient or is there a better approach?

1Markov5ky et al., Algorithms for deterministic balanced subspace identification, Automatica, 2005.
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To answer that question, we need conditions on given data (U[O,T—l]vy[O,T—l])

that enable system identification.

Sufficient conditions: SUBSPACE

IDENTIFICATION

FOR
LINEAR SYSTEMS

Theory
Implementation
Applications

Filtering
and System
Identification

ALeast squares Approach

Necessary and sufficient conditions:

Beyond the fundamental lemma:

from finite time series to linear system

M. Kanat Camlibel' and Paolo Rapisarda®

"Bernoulli Institute, University of Groningen

2School of Blectronics and Computer Science, University of Southampton

We will now review these conditions...
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Prior knowledge: /i, < L, nirue < N and

M, Ntrue,P
(Atrucy Btrum Ctrum Dtruc) S M o,

min

Observations:
1 If only L is given, choose N := (L — 1)p.
2 If only NV is given, choose L := N + 1.

Definition: The data (u[o7—1),y[o,r—1)) are informative for Sysld if
[“[OvT”] € Br(A, B,C, D) (L)
Ylo,7-1)

for some (A, B,C, D) € M2"" with ¢(C,A) < L and n < N implies

%(Aw B7 C7 D) - %(Atrum Btrue7 Ctrue7 Dtrue)~

Two important integers:

Lnin minimum lag of all data-consistent systems

Nmin minimum state dimension of all data-consistent systems
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Fact: lirve < La := N — nmin + fmin + 1 data-guided bound on lag

L, :=min(L, Lq) actual upper bound

Theorem (Camlibel and Rapisarda, 2024): The data (ujo,7—1],¥[0,7—1]) are
informative for Sysld if and only if

T 2 Nin + (m + 1)Ly —1 and rank [H' (U[O’T”)} = Nin + MLa.
L (y[o,T—l])

Moreover, if these conditions are satisfied, then /i, .. = (inin and M¢rue = Nanin.

Observation: The shortest possible informative data length is

T :=ngue + (m+1)L—1 where L:=min(L, N — ngrue + Lirue + 1)
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Fact: lirve < La := N — nmin + fmin + 1 data-guided bound on lag

L, :=min(L, Lg) actual upper bound

Theorem (Camlibel and Rapisarda, 2024): The data (ujo,7—1],¥[0,7—1]) are
informative for Sysld if and only if

T 2 Nin + (m + 1)Ly —1 and rank [H' (U[O’T”)} = Nin + MLa.
L (y[o,T—l])

Moreover, if these conditions are satisfied, then /i, .. = (inin and M¢rue = Nanin.

Observation: The shortest possible informative data length is

T :=ngue + (m+1)L—1 where L:=min(L, N — ngrue + Lirue + 1)

Question: Is it possible to generate informative data (up,7—1}, Yjo,7—1). i-€,

rank [HL(U[O,TH)

= Ngrue + ML
HL(y[O,T—l]):| ‘

without knowing /i, and 7. in advance?



Informativity for identification = e 29/41

Contents lists available at ScienceDirect

Systems & Control Letters
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M.K. Camlibel, H.J. van Waarde *®+*1, P, Rapisarda®

# Bernoulli Institute for Mathematics, Gomputer Science and Artificial Intelligence, University of Groningen, The Netherlands
® School of Electronics and Computer Science, University of Southampton, United Kingdom
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Contents lists available at ScienceDirect

Systems & Control Letters

journal www.elsevier.
1))
The shortest experiment for linear system identification |
M.K. Camlibel?, H.J. van Waarde *®-%!, P. Rapisarda®
 Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands
" School of Electronics and Computer Science, University of Southampton, United Kingdom
For the data (u,t—1, ¥jo,+—1]), define
¢ Hi(ujo,t-1) . Hy(up,t-1)
Hk = | s Gk = | ,
Hy(y0,6-1) Hy1(yj0,4—-2))

Ik nt LY, and L!:=min(L,LY).

min»
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M.K. Camlibel?, H.J. van Waarde *®-%!, P. Rapisarda®

*Bemoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands
" School of Electronics and Computer Science, University of Southampton, United Kingdom

For the data (upo,t—1, Yjo,+—1]), define

Hk(y[o,t—l})

Hy1(yj0,4—-2))

Ik nt LY, and L!:=min(L,LY).

min» min»

Main idea: start with £ = 1 and iterate between the following steps:
m increase the rank of G, until no progress can be made



Informativity for identification

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

The shortest experiment for linear system identification
M.K. Camlibel?, H.J. van Waarde *®-%!, P. Rapisarda®

*Bemoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands
" School of Electronics and Computer Science, University of Southampton, United Kingdom

For the data (upo,t—1, Yjo,+—1]), define

Hk(y[o,t—l})

Hy1(yj0,4—-2))

Ik nt LY, and L!:=min(L,LY).

min» min»

Main idea: start with £ = 1 and iterate between the following steps:
m increase the rank of G, until no progress can be made

m increase the depth k by one



Informativity for identification

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

The shortest experiment for linear system identification
M.K. Camlibel?, H.J. van Waarde *®-%!, P. Rapisarda®

*Bemoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands
" School of Electronics and Computer Science, University of Southampton, United Kingdom

For the data (upo,t—1, Yjo,+—1]), define

Hk(y[o,t—l})

Hy1(yj0,4—-2))

Ik nt LY, and L!:=min(L,LY).

min» min»

Main idea: start with £ = 1 and iterate between the following steps:
m increase the rank of G, until no progress can be made

m increase the depth k by one
Important question: when to stop?
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Lemma: We have that

rank Gt < m + rank Hf |
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Lemma: If
rank Gt < m +rank H} |

then there exists an m — 1 dimensional affine set A" C R™ such that

rank GL 7' = rank GL +1  whenever  w(t) ¢ A"

Theorem: Suppose that (ujo¢—1],¥[0,t—1]) is such that
m Hj} has full column rank, and

[ rankG}"c =m+ I"ankH,’;_1 .
Then, k = L implies that

1 k=1L,

2 t=1T, and

3 (ujo,r—1),Yjo,r—1)) are informative for Sysld.
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1. procedure ONLINEEXPERIMENT(L, N)

2: choose g ,,,—1) nonsingular

3 measure outputs v, ,,, 1]

4: t+m, k+1

5; while k # Lt do > stopping criterion
6 k< Ek+1

7 if t=Fk—1 then

8: choose u(t) arbitrarily > Gt has (full) rank 1
9: measure output y(t)
10: t—t+1
11: end if
12: while rank GZ < m + rank H};_l do
13: choose u(t) ¢ A’ > rank GET! = rank Gt + 1
14: measure output y(t)
15: t—t+1
16: end while
17: end while
18: return (wuj 1), Yjo.t—1]) > (k,t) = (L, T) and data are informative

19: end procedure
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True system and initial state:
0 1 0 1 0 0 -1
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True system and initial state:
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True system and initial state:

0 1 0 1
Atrue = |:1 1:| ’ Btrue = |:1:| ) Ctrue = |:O

0
1:| ) Dtrue = |:

0
2

||

Hence, niue = 2 and Y0 = 1. We take N = 2 and L = 3.
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u(0) =1 = y(0) = { 9

]. Lett=1and k = 1.
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True system and initial state:
0 1 0 1 0 0 -1
Atrue - |:1 1:| 9 Btrue - |:1:| ) Ctrue - |:O 1:| ) Dtrue - |:2:| ) :17(0) - |: 0 :|

Hence, niue = 2 and Y0 = 1. We take N = 2 and L = 3.

-1

u(0) =1 = y(0) = { 9

]. Lett=1and k = 1.

nt., =0, ¢

min ‘min

=0 = Ll=min(L,N—-nl, +0 . +1)=3 = k#L!

Set k =2. Since t =k — 1, let u(1) = 0 (arbitrary) = y(1) = [O}
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Now increase rank: 1 01 0
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Example

True system and initial state:

0 1 0
Atrue = |:1 1:| ’ Btrue = |:1:| ) Ctrue = |:

1 0

:|7 Dtrue: |:

0
2

||

Hence, nirue = 2 and fipye = 1. We take N =2 and L = 3.

-1

u(0) =1 = y(0) = {2] Lett=1and k= 1.

"’1311111 - 0' (/"311111 =0 = L; = min(L7 N — n}llin + ('311111 + 1) =3 = k 7£ L;

Set k =2. Since t =k — 1, let u(1) = 0 (arbitrary) = y(1) = [O}

0

Now increase rank:

I
—
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True system and initial state:
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True system and initial state:

0 1 0 1 0 0 —1
Atrue = |:1 1:| s Btrue = |:1:| ; Ctrue = |:0 1:| ; Dtrue = |:2:| ; x(O) = |: 0 :l

Hence, ni0e = 2 and Ve = 1. We take N = 2 and L = 3.

1 01 0 0
rankHir’:rank -1 0 0 0 1| =3 = rankG%:l—l—rankHif’
2 0 2 1 1

Goo=1landnd, =2 — LS=min(3,2—-2+1+1)=2 = k= L5

Conclusion: The data (ug 4}, Y[0,4)) are informative for Sysld

Reduction in # samples for identification: from T'=7to T =5



Experiment design for identification = £ 33/41

Conclusion: The shortest experiments for system identification require:
1 Online design of the inputs
2 Online adaptation of the depth of the Hankel matrix



Experiment design for identification = £ 33/41

Conclusion: The shortest experiments for system identification require:
1 Online design of the inputs
2 Online adaptation of the depth of the Hankel matrix

Online design using depth-L Hankel matrix is shortest only if

L < N — Ntrue + ftruc + 1



Experiment design for identification =

Conclusion: The shortest experiments for system identification require:

1 Online design of the inputs
2 Online adaptation of the depth of the Hankel matrix

33/41

Online design using depth-L Hankel matrix is shortest only if

L < N — Ntrue + (truc + 1

Larger example: For a system with
m =280, p=10, lyue =20, ngue = 100,

and L =101, N = 150,

m fundamental lemma (PE of order N + L) requires: T' = 20330



Experiment design for identification =

Conclusion: The shortest experiments for system identification require:

1 Online design of the inputs
2 Online adaptation of the depth of the Hankel matrix

33/41

Online design using depth-L Hankel matrix is shortest only if

L < N — Ntrue + (truc + 1

Larger example: For a system with
m =280, p=10, lyue =20, ngue = 100,

and L =101, N = 150,

m fundamental lemma (PE of order N + L) requires: T' = 20330
m online design (fixed depth) requires: T = 8280
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Conclusion: The shortest experiments for system identification require:

1 Online design of the inputs

2 Online adaptation of the depth of the Hankel matrix

33/41

Online design using depth-L Hankel matrix is shortest only if

L < N — Ntrue + (truc + 1

Larger example: For a system with
m =280, p=10, lyue =20, ngue = 100,

and L =101, N = 150,

m fundamental lemma (PE of order N + L) requires: T' = 20330
m online design (fixed depth) requires: T = 8280

B the shortest experiment requires: T' = 5850
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Experiment design for stabilization =

Consider the stabilizable input-state system
z(t+1) = Apruex(t) + Biruets(t)
where u(t) € R™ and z(t) € R" for all t € Z..

35/41

We identify the system with the pair (A e, Birue) € M™"™, where
M771,77. = Rnxn X Rnxm.
We also define M"[" := {(A, B) € M™"™ | (A, B) is stabilizable}.

Note: (Atrue, Birue) € ML

stab

Data: D = (u, 77, Z[o,7]) collected from (Atrue, Birue)-

Definition: The set Xp of all data-consistent systems is defined as

Yp = {(A,B) e M™™ | [“[O’T]} S ’BTH(A,B)}.

Zlo,1)



Experiment design for stabilization

Aim: Use the data D = (uo 77, Z|o,7]) to find a stabilizing feedback gain
K € R™*"™ such that Aipue + Birue K is Schur.
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(ufo,17, [0,7) to find a stabilizing feedback gain

if there exists a matrix K € R™*" such that

forall (A,B) € ¥pnN

stab

Definition: The data D are informative for stabilization with respect to M""
A+ BK is Schur

stab
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Experiment design for stabilization = S 36/41

Aim: Use the data D = (uo 77, Z|o,7]) to find a stabilizing feedback gain
K € R™*"™ such that Aipue + Birue K is Schur.

Definition: The data D are informative for stabilization with respect to M/
if there exists a matrix K € R™*"™ such that

A+ BK is Schur
for all (4,B) € ¥p N M~

stab

Problem: Design the inputs ujo.; T] such that (ujo, 1y, [,

7)) are informative for
stabilization with respect to M”"

o for all x[o,1) such that

[U[O,T}] € B 1(Aurues Berue)-
T, 1]

Note: Willems' fundamental lemma does not apply (no controllability)...
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Observation: In this setting it is in general impossible to identify the system.

Example: Suppose that Atyye is Schur and Byye = 0. Let 2(0) = 0.

Then for any input w71, D = (uo,77, ) = (ujo,17,0).

Thus, ¥p N MZ = {(A,B) e M0 | Bu(t) =0 ¥Vt € [0,T —1]}.
Notation: Given data (ujo,7), Z[o,7]), we define U_ := [u(0) --- w(T —1)],
X_=[z(0) -+ 2z(T'—1)]and Xy = [z(1)--- z(T)].

Theorem®: If ujg p_1; is persistently exciting of order n + 1 then

im E] — (R +K) xR™,

where )
. n—
R = 1m [Btrue AtrueBtrue e Atrue Btrue]

K :=1im [1’(0) Atruex(o) e Ag“;éx(())] .

2Yu et al., On controllability and persistency of excitation in data-driven control: Extensions of Willems’ fundamental lemma, CDC, 2021.
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Theorem® If uj _1) is persistently exciting of order n + 1 then (ujo 77, Zjo,7])
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Moreover, a suitable feedback gain K is constructed as follows:
1 Let r =rank X_.

A

2 Write SX_ = [)f)_] where S is nonsingular and X_ e R™7 has rank r.
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Theorem® If uj _1) is persistently exciting of order n + 1 then (ujo 77, Zjo,7])

are informative for stabilization with respect to M.} for any z(y 7 such that

[Z[Oﬂ] € Bri1(Atrue; Brrue)-
(0,77

Moreover, a suitable feedback gain K is constructed as follows:
1 Let r =rank X_.

[)f)_] where S is nonsingular and X_ e R™7 has rank r.

3 Define X := [I, 0] SX,.

2 Write SX_ =

Shakouri, van Waarde, Baltussen and Heemels, Data-driven stabilization with prior

dge on controllability and stabilizability, under prep., 2025.



Experiment design for stabilization = S 38/41

Theorem® If uj _1) is persistently exciting of order n + 1 then (ujo 77, Zjo,7])

are informative for stabilization with respect to M.} for any z(y 7 such that

u
|:x[O7T}:| € %T-i-l (Atrue; Btrue)-
(0,77
Moreover, a suitable feedback gain K is constructed as follows:
1 Let r =rank X_.

2 Write SX_ = [)f)_] where S is nonsingular and X_ e R™7 has rank r.

3 Define X := [I, 0] SX,.
4 There exists © € RT*" solving the following linear matrix inequality:
X_ e X.0

X_6=0"X" and NS
O=0Xan [@TXI X e

>0

SShakouri, van Waarde, Baltussen and Heemels, Data-driven stabilization with prior ledge on controllability and stabilizability, under prep., 2025.
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Theorem® If uj _1) is persistently exciting of order n + 1 then (ujo 77, Zjo,7])

are informative for stabilization with respect to M.} for any z(y 7 such that

[Z[Oﬂ] € Bri1(Atrue; Brrue)-
(0,77

Moreover, a suitable feedback gain K is constructed as follows:
1 Let r =rank X_.

2 Write SX_ = [)f)_] where S is nonsingular and X_ e R™7 has rank r.

3 Define X := [I, 0] SX,.
4 There exists © € RT*" solving the following linear matrix inequality:
X_ e X.0

X 0=0"X" and A , .
O=0"X_ an [@TXI X@}>O

5 Take K = [K] Kg] S, where K| = U_@(X'_G)*l and K, is arbitrary.

SShakouri, van Waarde, Baltussen and Heemels, Data-driven stabilization with prior ledge on controllability and stabilizability, under prep., 2025.
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Theorem® If uj _1) is persistently exciting of order n + 1 then (ujo 77, Zjo,7])

are informative for stabilization with respect to M.} for any z(y 7 such that

[Z[Oﬂ] € Bri1(Atrue; Brrue)-
(0,77

Moreover, a suitable feedback gain K is constructed as follows:
1 Let r =rank X_.

[)f)_] where S is nonsingular and X_ e R™7 has rank r.

3 Define X := [I, 0] SX,.

4 There exists © € RT*" solving the following linear matrix inequality:

2 Write SX_ =

. ; X_.e Xx,0
X_0=0"X" and N .
=0 X_ an [@TXI X@} >0
5 Take K = [K; K>|S, where K1 = U_O(X_ @)*1

and K is arbitrary.
Then, A+ BK is Schur for all (A, B) € ¥p N M}

stab

Shakouri, van Waarde, Baltussen and Heemels, Data-driven stal

bilization with prior dge on controllability and stabilizability, under prep., 2025.
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Take-away messages:
1 Persistently exciting inputs are universal

> allow parameterization of restricted behaviors of all controllable systems
» They are the only type of inputs with this property

2 Online experiment design: parameterization of the true restricted behavior

> input choice is guided by past input/output data
> reduction in number of samples
3 Shortest experiments for identification require:
> online input design
> online adaptation of Hankel matrix depth

4 Persistently exciting inputs enable stabilization of stabilizable systems



Thanks = z 41/41

Thank youl!
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