

Experiment design for data-driven modeling, analysis and control

DISC Summer School 2025

Henk van Waarde

Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence

Jan C. Willems Center for Systems and Control

University of Groningen

Main question: how to **generate** informative data?

Main question: how to **generate** informative data?

Motivation: without experiment design methods,

- 1 there are **no guarantees** that collected data are informative

Main question: how to **generate** informative data?

Motivation: without experiment design methods,

- 1 there are **no guarantees** that collected data are informative
- 2 trial-and-error leads to large data sets

Main question: how to **generate** informative data?

Motivation: without experiment design methods,

- 1 there are **no guarantees** that collected data are informative
- 2 trial-and-error leads to large data sets

These lectures: Experiment design for:

- trajectory parameterization
- system identification
- stabilization

Fundamental lemma

Universal inputs

Online experiment design

Experiment design for identification

Experiment design for stabilization

Conclusions

- The fundamental lemma was proven in (Willems et al., 2005).

A note on persistency of excitation

Jan C. Willems^a, Paolo Rapisarda^b, Ivan Markovsky^{a,*}, Bart L.M. De Moor^a

^a*ESAT, SCD/SISTA, K.U. Leuven, Kasteelpark Arenberg 10, B 3001 Leuven, Heverlee, Belgium*

^b*Department of Mathematics, University of Maastricht, 6200 MD Maastricht, The Netherlands*

Received 3 June 2004; accepted 7 September 2004

Available online 30 November 2004

Abstract

We prove that if a component of the response signal of a controllable linear time-invariant system is persistently exciting of sufficiently high order, then the windows of the signal span the full system behavior. This is then applied to obtain conditions

- The fundamental lemma was proven in (Willems et al., 2005).
- Applications:
 - 1 **System identification** via subspace methods (Van Overschee & De Moor, 1996), (Verhaegen & Verdult, 2007).

- The fundamental lemma was proven in (Willems et al., 2005).
- Applications:
 - 1 **System identification** via subspace methods (Van Overschee & De Moor, 1996), (Verhaegen & Verdult, 2007).
 - 2 **Direct data-driven control**. For instance,
 - ◊ trajectory simulation (Markovsky and Rapisarda, 2008),
 - ◊ stabilization (De Persis and Tesi, 2019), and
 - ◊ predictive control (Coulson et al., 2019), (Berberich et al., 2020).

- The fundamental lemma was proven in (Willems et al., 2005).
- Applications:
 - 1 **System identification** via subspace methods (Van Overschee & De Moor, 1996), (Verhaegen & Verdult, 2007).
 - 2 **Direct data-driven control**. For instance,
 - ◊ trajectory simulation (Markovsky and Rapisarda, 2008),
 - ◊ stabilization (De Persis and Tesi, 2019), and
 - ◊ predictive control (Coulson et al., 2019), (Berberich et al., 2020).
- Extensions:
 - ▶ multiple datasets (van Waarde et al., 2020),
 - ▶ parameter-varying systems (Verhoek et al., 2021)
 - ▶ descriptor systems (Schmitz et al., 2022)
 - ▶ robust version (Coulson et al., 2022)
 - ▶ stochastic systems (Pan et al., 2022)
 - ▶ switched systems (Petreczky and Bako, 2023)
 - ▶ continuous-time systems (Rapisarda et al., 2023)
 - ▶ frequency domain counterpart (Meijer et al., 2023)
 - ▶ 2D systems (Rapisarda and Zhang, 2024)
 - ▶ and several classes of nonlinear systems.

Consider the input-state-output system

$$\begin{aligned}x(t+1) &= Ax(t) + Bu(t) \\y(t) &= Cx(t) + Du(t),\end{aligned}\tag{*}$$

where $u(t) \in \mathbb{R}^m$, $x(t) \in \mathbb{R}^n$ and $y(t) \in \mathbb{R}^p$ for all $t \in \mathbb{Z}_+$.

Consider the input-state-output system

$$\begin{aligned} x(t+1) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) + Du(t), \end{aligned} \tag{*}$$

where $u(t) \in \mathbb{R}^m$, $x(t) \in \mathbb{R}^n$ and $y(t) \in \mathbb{R}^p$ for all $t \in \mathbb{Z}_+$.

Identify $(*)$ with the quadruple $(A, B, C, D) \in \mathcal{M}^{m,n,p}$, where

$$\mathcal{M}^{m,n,p} := \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{p \times n} \times \mathbb{R}^{p \times m}.$$

Consider the input-state-output system

$$\begin{aligned} x(t+1) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) + Du(t), \end{aligned} \tag{*}$$

where $u(t) \in \mathbb{R}^m$, $x(t) \in \mathbb{R}^n$ and $y(t) \in \mathbb{R}^p$ for all $t \in \mathbb{Z}_+$.

Identify $(*)$ with the quadruple $(A, B, C, D) \in \mathcal{M}^{m,n,p}$, where

$$\mathcal{M}^{m,n,p} := \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{p \times n} \times \mathbb{R}^{p \times m}.$$

We also define

$$\mathcal{M}_{\text{cont}}^{m,n,p} := \{(A, B, C, D) \in \mathcal{M}^{m,n,p} \mid (A, B) \text{ is controllable}\}.$$

Consider the input-state-output system

$$\begin{aligned} x(t+1) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) + Du(t), \end{aligned} \tag{*}$$

where $u(t) \in \mathbb{R}^m$, $x(t) \in \mathbb{R}^n$ and $y(t) \in \mathbb{R}^p$ for all $t \in \mathbb{Z}_+$.

Identify $(*)$ with the quadruple $(A, B, C, D) \in \mathcal{M}^{m,n,p}$, where

$$\mathcal{M}^{m,n,p} := \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{p \times n} \times \mathbb{R}^{p \times m}.$$

We also define

$$\mathcal{M}_{\text{cont}}^{m,n,p} := \{(A, B, C, D) \in \mathcal{M}^{m,n,p} \mid (A, B) \text{ is controllable}\}.$$

Definition: We define the (input-output) behavior of $(A, B, C, D) \in \mathcal{M}^{m,n,p}$ by

$$\begin{aligned} \mathfrak{B}(A, B, C, D) &:= \{(u, y) : \mathbb{Z}_+ \rightarrow \mathbb{R}^m \times \mathbb{R}^p \mid \exists x : \mathbb{Z}_+ \rightarrow \mathbb{R}^n \\ &\quad \text{such that } (*) \text{ holds for all } t \in \mathbb{Z}_+\}. \end{aligned}$$

Given $f : \mathbb{Z}_+ \rightarrow \mathbb{R}^q$ and a positive $k \in \mathbb{Z}_+$, we define

$$f_{[0, k-1]} := \begin{bmatrix} f(0) \\ f(1) \\ \vdots \\ f(k-1) \end{bmatrix}.$$

Given $f : \mathbb{Z}_+ \rightarrow \mathbb{R}^q$ and a positive $k \in \mathbb{Z}_+$, we define

$$f_{[0, k-1]} := \begin{bmatrix} f(0) \\ f(1) \\ \vdots \\ f(k-1) \end{bmatrix}.$$

Definition: Let $k, T \in \mathbb{Z}_+$ be positive with $k \leq T$. We define the **Hankel matrix**:

$$H_k(f_{[0, T-1]}) := \begin{bmatrix} f(0) & f(1) & \cdots & f(T-k) \\ f(1) & f(2) & \cdots & f(T-k+1) \\ \vdots & \vdots & & \vdots \\ f(k-1) & f(k) & \cdots & f(T-1) \end{bmatrix}.$$

Given $f : \mathbb{Z}_+ \rightarrow \mathbb{R}^q$ and a positive $k \in \mathbb{Z}_+$, we define

$$f_{[0, k-1]} := \begin{bmatrix} f(0) \\ f(1) \\ \vdots \\ f(k-1) \end{bmatrix}.$$

Definition: Let $k, T \in \mathbb{Z}_+$ be positive with $k \leq T$. We define the **Hankel matrix**:

$$H_k(f_{[0, T-1]}) := \begin{bmatrix} f(0) & f(1) & \cdots & f(T-k) \\ f(1) & f(2) & \cdots & f(T-k+1) \\ \vdots & \vdots & & \vdots \\ f(k-1) & f(k) & \cdots & f(T-1) \end{bmatrix}.$$

$f_{[0, T-1]}$ is **persistently exciting of order k** if $H_k(f_{[0, T-1]})$ has **full row rank**.

Given $f : \mathbb{Z}_+ \rightarrow \mathbb{R}^q$ and a positive $k \in \mathbb{Z}_+$, we define

$$f_{[0, k-1]} := \begin{bmatrix} f(0) \\ f(1) \\ \vdots \\ f(k-1) \end{bmatrix}.$$

Definition: Let $k, T \in \mathbb{Z}_+$ be positive with $k \leq T$. We define the **Hankel matrix**:

$$H_k(f_{[0, T-1]}) := \begin{bmatrix} f(0) & f(1) & \cdots & f(T-k) \\ f(1) & f(2) & \cdots & f(T-k+1) \\ \vdots & \vdots & & \vdots \\ f(k-1) & f(k) & \cdots & f(T-1) \end{bmatrix}.$$

$f_{[0, T-1]}$ is **persistently exciting of order k** if $H_k(f_{[0, T-1]})$ has **full row rank**.

Definition: We define the **k -restricted behavior** of $(A, B, C, D) \in \mathcal{M}^{m, n, p}$ by

$$\mathfrak{B}_k(A, B, C, D) := \left\{ \begin{bmatrix} u_{[0, k-1]} \\ y_{[0, k-1]} \end{bmatrix} \mid (u, y) \in \mathfrak{B}(A, B, C, D) \right\}.$$

Given $f : \mathbb{Z}_+ \rightarrow \mathbb{R}^q$ and a positive $k \in \mathbb{Z}_+$, we define

$$f_{[0, k-1]} := \begin{bmatrix} f(0) \\ f(1) \\ \vdots \\ f(k-1) \end{bmatrix}.$$

Definition: Let $k, T \in \mathbb{Z}_+$ be positive with $k \leq T$. We define the **Hankel matrix**:

$$H_k(f_{[0, T-1]}) := \begin{bmatrix} f(0) & f(1) & \cdots & f(T-k) \\ f(1) & f(2) & \cdots & f(T-k+1) \\ \vdots & \vdots & & \vdots \\ f(k-1) & f(k) & \cdots & f(T-1) \end{bmatrix}.$$

$f_{[0, T-1]}$ is **persistently exciting of order k** if $H_k(f_{[0, T-1]})$ has **full row rank**.

Definition: We define the **k -restricted behavior** of $(A, B, C, D) \in \mathcal{M}^{m, n, p}$ by

$$\mathfrak{B}_k(A, B, C, D) := \left\{ \begin{bmatrix} u_{[0, k-1]} \\ y_{[0, k-1]} \end{bmatrix} \mid (u, y) \in \mathfrak{B}(A, B, C, D) \right\}.$$

Moreover, we use the shorthand notation: $\mathfrak{B}_k(A, B) := \mathfrak{B}_k(A, B, I_n, 0)$.

Now, consider the **data**: $\begin{bmatrix} u_{[0, T-1]} \\ y_{[0, T-1]} \end{bmatrix} \in \mathfrak{B}_{[0, T-1]}(A, B, C, D)$.

Now, consider the **data**: $\begin{bmatrix} u_{[0,T-1]} \\ y_{[0,T-1]} \end{bmatrix} \in \mathfrak{B}_{[0,T-1]}(A, B, C, D)$.

Let $L \in [1, T]$. By **time-invariance**, each column of

$$\begin{bmatrix} H_L(u_{[0,T-1]}) \\ H_L(y_{[0,T-1]}) \end{bmatrix} = \begin{bmatrix} u(0) & u(1) & \cdots & u(T-L) \\ \vdots & \vdots & & \vdots \\ u(L-1) & u(L) & \cdots & u(T-1) \\ \hline y(0) & y(1) & \cdots & y(T-L) \\ \vdots & \vdots & & \vdots \\ y(L-1) & y(L) & \cdots & y(T-1) \end{bmatrix} \quad (\diamond)$$

is in the restricted behavior $\mathfrak{B}_{[0,L-1]}(A, B, C, D)$.

Now, consider the **data**: $\begin{bmatrix} u_{[0,T-1]} \\ y_{[0,T-1]} \end{bmatrix} \in \mathfrak{B}_{[0,T-1]}(A, B, C, D)$.

Let $L \in [1, T]$. By **time-invariance**, each column of

$$\begin{bmatrix} H_L(u_{[0,T-1]}) \\ H_L(y_{[0,T-1]}) \end{bmatrix} = \begin{bmatrix} u(0) & u(1) & \cdots & u(T-L) \\ \vdots & \vdots & & \vdots \\ u(L-1) & u(L) & \cdots & u(T-1) \\ \hline y(0) & y(1) & \cdots & y(T-L) \\ \vdots & \vdots & & \vdots \\ y(L-1) & y(L) & \cdots & y(T-1) \end{bmatrix} \quad (\diamond)$$

is in the restricted behavior $\mathfrak{B}_{[0,L-1]}(A, B, C, D)$.

Since $\mathfrak{B}_{[0,L-1]}(A, B, C, D)$ is a subspace, **all linear combinations of the columns of (\diamond)** are also in $\mathfrak{B}_{[0,L-1]}(A, B, C, D)$.

In other words:

$$\text{im} \begin{bmatrix} H_L(u_{[0,T-1]}) \\ H_L(y_{[0,T-1]}) \end{bmatrix} \subseteq \mathfrak{B}_{[0,L-1]}(A, B, C, D).$$

In other words:

$$\text{im} \begin{bmatrix} H_L(u_{[0,T-1]}) \\ H_L(y_{[0,T-1]}) \end{bmatrix} \subseteq \mathfrak{B}_{[0,L-1]}(A, B, C, D).$$

Important question: Under which conditions do we have

$$\text{im} \begin{bmatrix} H_L(u_{[0,T-1]}) \\ H_L(y_{[0,T-1]}) \end{bmatrix} = \mathfrak{B}_{[0,L-1]}(A, B, C, D) ?$$

In other words:

$$\text{im} \begin{bmatrix} H_L(u_{[0,T-1]}) \\ H_L(y_{[0,T-1]}) \end{bmatrix} \subseteq \mathfrak{B}_{[0,L-1]}(A, B, C, D).$$

Important question: Under which conditions do we have

$$\text{im} \begin{bmatrix} H_L(u_{[0,T-1]}) \\ H_L(y_{[0,T-1]}) \end{bmatrix} = \mathfrak{B}_{[0,L-1]}(A, B, C, D) ?$$

This would allow us to **parameterize** all length- L trajectories using **data**:

$$\begin{bmatrix} \bar{u}_{[0,L-1]} \\ \bar{y}_{[0,L-1]} \end{bmatrix} \in \mathfrak{B}_{[0,L-1]}(A, B, C, D) \iff \begin{bmatrix} \bar{u}_{[0,L-1]} \\ \bar{y}_{[0,L-1]} \end{bmatrix} = \begin{bmatrix} H_L(u_{[0,T-1]}) \\ H_L(y_{[0,T-1]}) \end{bmatrix} g$$

for some $g \in \mathbb{R}^{T-L+1}$.

Theorem (Willems et al., 2005): Assume that $(A, B, C, D) \in \mathcal{M}_{\text{cont}}^{m,n,p}$ and $u_{[0,T-1]}$ is **persistently exciting** of order $n + L$. Then:

- the rank condition

$$\text{rank} \begin{bmatrix} H_1(x_{[0,T-L]}) \\ H_L(u_{[0,T-1]}) \end{bmatrix} = n + mL$$

holds for all $x_{[0,T-L]}$ such that $\begin{bmatrix} u_{[0,T-L]} \\ x_{[0,T-L]} \end{bmatrix} \in \mathfrak{B}_{T-L+1}(A, B)$.

Theorem (Willems et al., 2005): Assume that $(A, B, C, D) \in \mathcal{M}_{\text{cont}}^{m, n, p}$ and $u_{[0, T-1]}$ is **persistently exciting** of order $n + L$. Then:

- we have that

$$\text{im} \begin{bmatrix} H_L(u_{[0, T-1]}) \\ H_L(y_{[0, T-1]}) \end{bmatrix} = \mathfrak{B}_{[0, L-1]}(A, B, C, D)$$

for all $y_{[0, T-1]}$ such that $\begin{bmatrix} u_{[0, T-1]} \\ y_{[0, T-1]} \end{bmatrix} \in \mathfrak{B}_T(A, B, C, D)$.

Theorem (Willems et al., 2005): Assume that $(A, B, C, D) \in \mathcal{M}_{\text{cont}}^{m,n,p}$ and $u_{[0,T-1]}$ is **persistently exciting** of order $n+L$. Then:

- we have that

$$\text{im} \begin{bmatrix} H_L(u_{[0,T-1]}) \\ H_L(y_{[0,T-1]}) \end{bmatrix} = \mathfrak{B}_{[0,L-1]}(A, B, C, D)$$

for all $y_{[0,T-1]}$ such that $\begin{bmatrix} u_{[0,T-1]} \\ y_{[0,T-1]} \end{bmatrix} \in \mathfrak{B}_T(A, B, C, D)$.

Remarks:

- PE of order $n+L$ requires $T \geq (m+1)(n+L) - 1$

Theorem (Willems et al., 2005): Assume that $(A, B, C, D) \in \mathcal{M}_{\text{cont}}^{m, n, p}$ and $u_{[0, T-1]}$ is **persistently exciting** of order $n + L$. Then:

- we have that

$$\text{im} \begin{bmatrix} H_L(u_{[0, T-1]}) \\ H_L(y_{[0, T-1]}) \end{bmatrix} = \mathfrak{B}_{[0, L-1]}(A, B, C, D)$$

for all $y_{[0, T-1]}$ such that $\begin{bmatrix} u_{[0, T-1]} \\ y_{[0, T-1]} \end{bmatrix} \in \mathfrak{B}_T(A, B, C, D)$.

Remarks:

- PE of order $n + L$ requires $T \geq (m + 1)(n + L) - 1$
- If only upper bound $N \geq n$ is given, use $u_{[0, T-1]}$ that is **PE of order $N + L$**

Theorem (Willems et al., 2005): Assume that $(A, B, C, D) \in \mathcal{M}_{\text{cont}}^{m,n,p}$ and $u_{[0,T-1]}$ is **persistently exciting** of order $n+L$. Then:

- we have that

$$\text{im} \begin{bmatrix} H_L(u_{[0,T-1]}) \\ H_L(y_{[0,T-1]}) \end{bmatrix} = \mathfrak{B}_{[0,L-1]}(A, B, C, D)$$

for all $y_{[0,T-1]}$ such that $\begin{bmatrix} u_{[0,T-1]} \\ y_{[0,T-1]} \end{bmatrix} \in \mathfrak{B}_T(A, B, C, D)$.

Remarks:

- PE of order $n+L$ requires $T \geq (m+1)(n+L) - 1$
- If only upper bound $N \geq n$ is given, use $u_{[0,T-1]}$ that is **PE of order $N+L$**
- If $L > \ell(C, A)$ where $\ell(C, A)$ is the smallest integer such that

$$\text{rank} [C^\top \quad (CA)^\top \quad \cdots \quad (CA^{\ell-1})^\top] = \text{rank} [C^\top \quad (CA)^\top \quad \cdots \quad (CA^\ell)^\top]$$

(i.e., the **lag** of the system), then $\mathfrak{B}_{[0,L-1]}$ uniquely determines \mathfrak{B}

Fundamental lemma

Universal inputs

Online experiment design

Experiment design for identification

Experiment design for stabilization

Conclusions

A New Perspective on Willems' Fundamental Lemma: Universality of Persistently Exciting Inputs

Amir Shakouri, Henk J. van Waarde, M. Kanat Camlibel

Abstract— In this letter, we provide new insight into Willems et al.'s fundamental lemma by studying the concept of universal inputs. An input is called *universal* if, when applied to *any* con-

The persistency of excitation condition imposes a lower bound on the required number of data samples. As shown for the first time in [30], for a *single* controllable system, one can

A New Perspective on Willems' Fundamental Lemma: Universality of Persistently Exciting Inputs

Amir Shakouri, Henk J. van Waarde, M. Kanat Camlibel

Abstract— In this letter, we provide new insight into Willems et al.'s fundamental lemma by studying the concept of universal inputs. An input is called *universal* if, when applied to *any* con-

The persistency of excitation condition imposes a lower bound on the required number of data samples. As shown for the first time in [30], for a *single* controllable system, one can

Question: To what extent is the PE condition **necessary** to parameterize all length- L trajectories?

A New Perspective on Willems' Fundamental Lemma: Universality of Persistently Exciting Inputs

Amir Shakouri, Henk J. van Waarde, M. Kanat Camlibel

Abstract— In this letter, we provide new insight into Willems et al.'s fundamental lemma by studying the concept of universal inputs. An input is called *universal* if, when applied to *any* con-

The persistency of excitation condition imposes a lower bound on the required number of data samples. As shown for the first time in [30], for a *single* controllable system, one can

Question: To what extent is the PE condition **necessary** to parameterize all length- L trajectories?

Example: Consider $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$, and $D = 0$.

A New Perspective on Willems' Fundamental Lemma: Universality of Persistently Exciting Inputs

Amir Shakouri, Henk J. van Waarde, M. Kanat Camlibel

Abstract— In this letter, we provide new insight into Willems et al.'s fundamental lemma by studying the concept of universal inputs. An input is called *universal* if, when applied to *any* con-

The persistency of excitation condition imposes a lower bound on the required number of data samples. As shown for the first time in [30], for a *single* controllable system, one can

Question: To what extent is the PE condition **necessary** to parameterize all length- L trajectories?

Example: Consider $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$, and $D = 0$.

Let $L = 1$ and $u(0) = 1$, and $u(1) = u(2) = 0$ (**not PE of order $3 = n + L$**).

A New Perspective on Willems' Fundamental Lemma: Universality of Persistently Exciting Inputs

Amir Shakouri, Henk J. van Waarde, M. Kanat Camlibel

Abstract— In this letter, we provide new insight into Willems et al.'s fundamental lemma by studying the concept of universal inputs. An input is called *universal* if, when applied to *any* con-

The persistency of excitation condition imposes a lower bound on the required number of data samples. As shown for the first time in [30], for a *single* controllable system, one can

Question: To what extent is the PE condition **necessary** to parameterize all length- L trajectories?

Example: Consider $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$, and $D = 0$.

Let $L = 1$ and $u(0) = 1$, and $u(1) = u(2) = 0$ (**not PE of order $3 = n + L$**). We have

$$\begin{bmatrix} H_1(u_{[0,2]}) \\ H_1(y_{[0,2]}) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ x_1(0) & x_2(0) & 1 \end{bmatrix},$$

which has rank 2 for all $x(0) \in \mathbb{R}^2$.

A New Perspective on Willems' Fundamental Lemma: Universality of Persistently Exciting Inputs

Amir Shakouri, Henk J. van Waarde, M. Kanat Camlibel

Abstract— In this letter, we provide new insight into Willems et al.'s fundamental lemma by studying the concept of universal inputs. An input is called *universal* if, when applied to *any* con-

The persistency of excitation condition imposes a lower bound on the required number of data samples. As shown for the first time in [30], for a *single* controllable system, one can

Question: To what extent is the PE condition **necessary** to parameterize all length- L trajectories?

Example: Consider $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$, and $D = 0$.

Let $L = 1$ and $u(0) = 1$, and $u(1) = u(2) = 0$ (**not PE of order $3 = n + L$**). We have

$$\begin{bmatrix} H_1(u_{[0,2]}) \\ H_1(y_{[0,2]}) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ x_1(0) & x_2(0) & 1 \end{bmatrix},$$

which has rank 2 for all $x(0) \in \mathbb{R}^2$. Thus, $\mathfrak{B}_1(A, B, C, D) = \text{im} \begin{bmatrix} H_1(u_{[0,2]}) \\ H_1(y_{[0,2]}) \end{bmatrix}$.

Conclusion: For a **single** system, persistency of excitation is **not necessary**.

Conclusion: For a **single** system, persistency of excitation is **not necessary**.

But PE inputs are **universal** because they guarantee sufficiently rich data for **all** controllable systems...

Conclusion: For a **single** system, persistency of excitation is **not necessary**.

But PE inputs are **universal** because they guarantee sufficiently rich data for **all** controllable systems...

Definition: An input $u_{[0, T-1]}$ is called **universal** for determining the L -restricted behavior if

$$\mathfrak{B}_L(A, B, C, D) = \text{im} \begin{bmatrix} H_L(u_{[0, T-1]}) \\ H_L(y_{[0, T-1]}) \end{bmatrix}$$

for all $(A, B, C, D) \in \mathcal{M}_{\text{cont}}^{m, n, p}$ and all $y_{[0, T-1]}$ satisfying

$$\begin{bmatrix} u_{[0, T-1]} \\ y_{[0, T-1]} \end{bmatrix} \in \mathfrak{B}_T(A, B, C, D).$$

Conclusion: For a **single** system, persistency of excitation is **not necessary**.

But PE inputs are **universal** because they guarantee sufficiently rich data for **all** controllable systems...

Definition: An input $u_{[0, T-1]}$ is called **universal** for determining the L -restricted behavior if

$$\mathfrak{B}_L(A, B, C, D) = \text{im} \begin{bmatrix} H_L(u_{[0, T-1]}) \\ H_L(y_{[0, T-1]}) \end{bmatrix}$$

for all $(A, B, C, D) \in \mathcal{M}_{\text{cont}}^{m, n, p}$ and all $y_{[0, T-1]}$ satisfying

$$\begin{bmatrix} u_{[0, T-1]} \\ y_{[0, T-1]} \end{bmatrix} \in \mathfrak{B}_T(A, B, C, D).$$

Observation and question:

- 1 If $u_{[0, T-1]}$ is PE of order $n + L$ then it is universal.

Conclusion: For a **single** system, persistency of excitation is **not necessary**.

But PE inputs are **universal** because they guarantee sufficiently rich data for **all** controllable systems...

Definition: An input $u_{[0, T-1]}$ is called **universal** for determining the L -restricted behavior if

$$\mathfrak{B}_L(A, B, C, D) = \text{im} \begin{bmatrix} H_L(u_{[0, T-1]}) \\ H_L(y_{[0, T-1]}) \end{bmatrix}$$

for all $(A, B, C, D) \in \mathcal{M}_{\text{cont}}^{m, n, p}$ and all $y_{[0, T-1]}$ satisfying

$$\begin{bmatrix} u_{[0, T-1]} \\ y_{[0, T-1]} \end{bmatrix} \in \mathfrak{B}_T(A, B, C, D).$$

Observation and question:

- 1 If $u_{[0, T-1]}$ is PE of order $n + L$ then it is universal.
- 2 But are there other universal inputs?

A New Perspective on Willems' Fundamental Lemma: Universality of Persistently Exciting Inputs

Amir Shakouri, Henk J. van Waarde, M. Kanat Camlibel

Abstract— In this letter, we provide new insight into Willems et al.'s fundamental lemma by studying the concept of universal inputs. An input is called *universal* if, when applied to *any* con-

The persistency of excitation condition imposes a lower bound on the required number of data samples. As shown for the first time in [30], for a *single* controllable system, one can

A New Perspective on Willems' Fundamental Lemma: Universality of Persistently Exciting Inputs

Amir Shakouri, Henk J. van Waarde, M. Kanat Camlibel

Abstract— In this letter, we provide new insight into Willems et al.'s fundamental lemma by studying the concept of universal inputs. An input is called *universal* if, when applied to *any* con-

The persistency of excitation condition imposes a lower bound on the required number of data samples. As shown for the first time in [30], for a *single* controllable system, one can

Theorem: The input $u_{[0, T-1]}$ is universal for determining the L -restricted behavior **if and only if** it is persistently exciting of order $n + L$.

A New Perspective on Willems' Fundamental Lemma: Universality of Persistently Exciting Inputs

Amir Shakouri, Henk J. van Waarde, M. Kanat Camlibel

Abstract— In this letter, we provide new insight into Willems et al.'s fundamental lemma by studying the concept of universal inputs. An input is called *universal* if, when applied to *any* con-

The persistency of excitation condition imposes a lower bound on the required number of data samples. As shown for the first time in [30], for a *single* controllable system, one can

Theorem: The input $u_{[0, T-1]}$ is universal for determining the L -restricted behavior **if and only if** it is persistently exciting of order $n + L$.

Comments:

- The “if” part follows from Willems et al.’s fundamental lemma.

A New Perspective on Willems' Fundamental Lemma: Universality of Persistently Exciting Inputs

Amir Shakouri, Henk J. van Waarde, M. Kanat Camlibel

Abstract— In this letter, we provide new insight into Willems et al.'s fundamental lemma by studying the concept of universal inputs. An input is called *universal* if, when applied to *any* con-

The persistency of excitation condition imposes a lower bound on the required number of data samples. As shown for the first time in [30], for a *single* controllable system, one can

Theorem: The input $u_{[0, T-1]}$ is universal for determining the L -restricted behavior **if and only if** it is persistently exciting of order $n + L$.

Comments:

- The “if” part follows from Willems et al.’s fundamental lemma.
- For the “only if” part, given an input that is **not** PE, we show how to find
 - 1 a **controllable system** and
 - 2 an **initial state**

such that the data **do not** parameterize the L -restricted behavior.

Idea of the proof (“only if”):

- 1 Suppose that $u_{[0,T-1]}$ is not PE of order $n+L$.
- 2 Let $\eta \in \ker H_{n+L}(u_{[0,T-1]})^\top$ be a nonzero vector.
- 3 Partition $\eta^\top = [\eta_0^\top \cdots \eta_{n+L-1}^\top]$, where $\eta_0, \dots, \eta_{n+L-1} \in \mathbb{R}^m$.
- 4 Take $A \in \mathbb{R}^{n \times n}$ and $\zeta \in \mathbb{R}^n$ such that
 - ▶ (A, ζ) is controllable, and
 - ▶ if λ is an eigenvalue of A then $\sum_{i=0}^{n+L-1} \lambda^i \eta_i \neq 0$.
- 5 Define $E_{n+L-1} := 0$ and $E_{i-1} := AE_i + \zeta \eta_i^\top$ for $i \in [-1, n+L-1]$.
- 6 Construct $B := E_{-1}$ and $x(0) := -\sum_{i=0}^{n+L-2} E_i u(i)$. Then (A, B) is controllable.
- 7 It can be shown that

$$\begin{bmatrix} w^\top & v^\top \end{bmatrix} \begin{bmatrix} H_1(x_{[0,T-L]}) \\ H_L(u_{[0,T-1]}) \end{bmatrix} = 0$$

for some nonzero $w \in \mathbb{R}^n$ and $v \in \mathbb{R}^{mL}$.

- 8 Define $C \in \mathbb{R}^{p \times n}$ such that its first row is w^\top , and $D := 0$.
- 9 Finally, it can be shown that $\mathfrak{B}_L(A, B, C, D) \neq \text{im} \begin{bmatrix} H_L(u_{[0,T-1]}) \\ H_L(y_{[0,T-1]}) \end{bmatrix}$.

Conclusion: Universal inputs are **precisely** the persistently exciting ones.

Conclusion: Universal inputs are **precisely** the persistently exciting ones.

Next (natural) question: Can we improve over PE if we care about only the restricted behavior of the **true data-generating system**?

Conclusion: Universal inputs are **precisely** the persistently exciting ones.

Next (natural) question: Can we improve over PE if we care about only the restricted behavior of the **true data-generating system**?

Not so obvious, because that system is **not known beforehand**...

Fundamental lemma

Universal inputs

Online experiment design

Experiment design for identification

Experiment design for stabilization

Conclusions

Let's first talk about what is **known** and **unknown**.

Let's first talk about what is **known** and **unknown**.

Definition: $\mathcal{M}_{\text{min}}^{m,n,p} := \{(A, B, C, D) \in \mathcal{M}_{\text{cont}}^{m,n,p} \mid (C, A) \text{ is observable}\}.$

Let's first talk about what is **known** and **unknown**.

Definition: $\mathcal{M}_{\min}^{m,n,p} := \{(A, B, C, D) \in \mathcal{M}_{\text{cont}}^{m,n,p} \mid (C, A) \text{ is observable}\}.$

The (data-generating) **unknown true system** satisfies:

$$(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}}) \in \mathcal{M}_{\min}^{m, n_{\text{true}}, p},$$

for some (**unknown**) state-space dimension n_{true} .

Let's first talk about what is **known** and **unknown**.

Definition: $\mathcal{M}_{\min}^{m,n,p} := \{(A, B, C, D) \in \mathcal{M}_{\text{cont}}^{m,n,p} \mid (C, A) \text{ is observable}\}.$

The (data-generating) **unknown true system** satisfies:

$$(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}}) \in \mathcal{M}_{\min}^{m, n_{\text{true}}, p},$$

for some (**unknown**) state-space dimension n_{true} .

Let ℓ_{true} denote the **lag** of $(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}})$.

Let's first talk about what is **known** and **unknown**.

Definition: $\mathcal{M}_{\min}^{m,n,p} := \{(A, B, C, D) \in \mathcal{M}_{\text{cont}}^{m,n,p} \mid (C, A) \text{ is observable}\}.$

The (data-generating) **unknown true system** satisfies:

$$(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}}) \in \mathcal{M}_{\min}^{m, n_{\text{true}}, p},$$

for some (**unknown**) state-space dimension n_{true} .

Let ℓ_{true} denote the **lag** of $(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}})$. Given: $L > \ell_{\text{true}}$.

Let's first talk about what is **known** and **unknown**.

Definition: $\mathcal{M}_{\min}^{m,n,p} := \{(A, B, C, D) \in \mathcal{M}_{\text{cont}}^{m,n,p} \mid (C, A) \text{ is observable}\}.$

The (data-generating) **unknown true system** satisfies:

$$(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}}) \in \mathcal{M}_{\min}^{m, n_{\text{true}}, p},$$

for some (**unknown**) state-space dimension n_{true} .

Let ℓ_{true} denote the **lag** of $(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}})$. Given: $L > \ell_{\text{true}}$.

Problem: How to design $u_{[0, T-1]}$ such that, for a fixed **unknown** $x(0)$,

$$\text{im} \begin{bmatrix} H_L(u_{[0, T-1]}) \\ H_L(y_{[0, T-1]}) \end{bmatrix} = \mathfrak{B}_L(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}}),$$

where $y_{[0, T-1]}$ is the output of the **true system** resulting from $u_{[0, T-1]}$ and $x(0)$?

A partial answer (using fundamental lemma):

- 1 Since $L > \ell_{\text{true}}$ and $(C_{\text{true}}, A_{\text{true}})$ is observable, $n_{\text{true}} \leq (L - 1)p =: N$

A partial answer (using fundamental lemma):

- 1 Since $L > \ell_{\text{true}}$ and $(C_{\text{true}}, A_{\text{true}})$ is observable, $n_{\text{true}} \leq (L-1)p =: N$
- 2 Now choose $u_{[0, T-1]}$ persistently exciting of order $N + L$

A partial answer (using fundamental lemma):

- 1 Since $L > \ell_{\text{true}}$ and $(C_{\text{true}}, A_{\text{true}})$ is observable, $n_{\text{true}} \leq (L-1)p =: N$
- 2 Now choose $u_{[0, T-1]}$ persistently exciting of order $N + L$
- 3 Then $u_{[0, T-1]}$ is also persistently exciting of order $n_{\text{true}} + L$

A partial answer (using fundamental lemma):

- 1 Since $L > \ell_{\text{true}}$ and $(C_{\text{true}}, A_{\text{true}})$ is observable, $n_{\text{true}} \leq (L-1)p =: N$
- 2 Now choose $u_{[0,T-1]}$ persistently exciting of order $N+L$
- 3 Then $u_{[0,T-1]}$ is also persistently exciting of order $n_{\text{true}} + L$
- 4 By the fundamental lemma,

$$\text{im} \begin{bmatrix} H_L(u_{[0,T-1]}) \\ H_L(y_{[0,T-1]}) \end{bmatrix} = \mathfrak{B}_L(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}}).$$

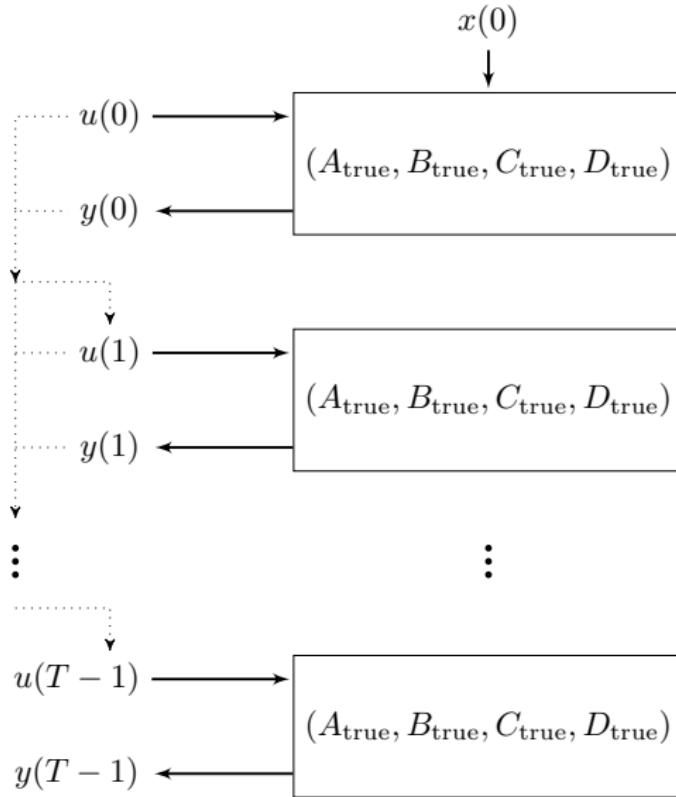
A partial answer (using fundamental lemma):

- 1 Since $L > \ell_{\text{true}}$ and $(C_{\text{true}}, A_{\text{true}})$ is observable, $n_{\text{true}} \leq (L-1)p =: N$
- 2 Now choose $u_{[0,T-1]}$ persistently exciting of order $N+L$
- 3 Then $u_{[0,T-1]}$ is also persistently exciting of order $n_{\text{true}} + L$
- 4 By the fundamental lemma,

$$\text{im} \begin{bmatrix} H_L(u_{[0,T-1]}) \\ H_L(y_{[0,T-1]}) \end{bmatrix} = \mathfrak{B}_L(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}}).$$

Remarks:

- This requires $T \geq (m+1)(N+L) - 1$ samples
- However, as PE inputs are **universal** this may be **overkill**...



Beyond Persistent Excitation: Online Experiment Design for Data-Driven Modeling and Control

Henk J. van Waarde[✉]

Abstract—This letter presents a new experiment design method for data-driven modeling and control. The idea is to select inputs *online* (using past input/output data), leading to desirable rank properties of data Hankel matrices. In

rank property is important, since it guarantees that *all* trajectories of the system can be parameterized in terms of the measured trajectory. Essentially, the Hankel matrix of measured inputs and outputs serves as a non-parametric model of

Beyond Persistent Excitation: Online Experiment Design for Data-Driven Modeling and Control

Henk J. van Waarde[✉]

Abstract—This letter presents a new experiment design method for data-driven modeling and control. The idea is to select inputs *online* (using past input/output data), leading to desirable rank properties of data Hankel matrices. In

rank property is important, since it guarantees that *all* trajectories of the system can be parameterized in terms of the measured trajectory. Essentially, the Hankel matrix of measured inputs and outputs serves as a non-parametric model of

Theorem: Define $T := n_{\text{true}} + (m + 1)L - 1$. Let $u_{[0, L-1]}$ be nonzero. For all $t \in [L, T - 1]$ there exists an $(m - 1)$ -dimensional affine set $\mathcal{A}^t \subseteq \mathbb{R}^m$ such that

$$\text{rank} \begin{bmatrix} H_L(u_{[0, t]}) \\ H_{L-1}(y_{[0, t-1]}) \end{bmatrix} = \text{rank} \begin{bmatrix} H_L(u_{[0, t-1]}) \\ H_{L-1}(y_{[0, t-2]}) \end{bmatrix} + 1$$

whenever $u(t) \notin \mathcal{A}^t$.

Beyond Persistent Excitation: Online Experiment Design for Data-Driven Modeling and Control

Henk J. van Waarde[✉]

Abstract—This letter presents a new experiment design method for data-driven modeling and control. The idea is to select inputs *online* (using past input/output data), leading to desirable rank properties of data Hankel matrices. In

rank property is important, since it guarantees that *all* trajectories of the system can be parameterized in terms of the measured trajectory. Essentially, the Hankel matrix of measured inputs and outputs serves as a non-parametric model of

Theorem: Define $T := n_{\text{true}} + (m + 1)L - 1$. Let $u_{[0, L-1]}$ be nonzero. For all $t \in [L, T - 1]$ there exists an $(m - 1)$ -dimensional affine set $\mathcal{A}^t \subseteq \mathbb{R}^m$ such that

$$\text{rank} \begin{bmatrix} H_L(u_{[0, t]}) \\ H_{L-1}(y_{[0, t-1]}) \end{bmatrix} = \text{rank} \begin{bmatrix} H_L(u_{[0, t-1]}) \\ H_{L-1}(y_{[0, t-2]}) \end{bmatrix} + 1$$

whenever $u(t) \notin \mathcal{A}^t$.

Interpretation: We can increase the rank of the Hankel matrix **at every time step!**

Theorem: Define $T := n_{\text{true}} + (m + 1)L - 1$. Let $u_{[0, L-1]}$ be nonzero. For all $t \in [L, T - 1]$ there exists an $(m - 1)$ -dimensional affine set $\mathcal{A}^t \subseteq \mathbb{R}^m$ such that

$$\text{rank} \begin{bmatrix} H_L(u_{[0, t]}) \\ H_{L-1}(y_{[0, t-1]}) \end{bmatrix} = \text{rank} \begin{bmatrix} H_L(u_{[0, t-1]}) \\ H_{L-1}(y_{[0, t-2]}) \end{bmatrix} + 1$$

whenever $u(t) \notin \mathcal{A}^t$.

Theorem: Define $T := n_{\text{true}} + (m + 1)L - 1$. Let $u_{[0, L-1]}$ be nonzero. For all $t \in [L, T - 1]$ there exists an $(m - 1)$ -dimensional affine set $\mathcal{A}^t \subseteq \mathbb{R}^m$ such that

$$\text{rank} \begin{bmatrix} H_L(u_{[0, t]}) \\ H_{L-1}(y_{[0, t-1]}) \end{bmatrix} = \text{rank} \begin{bmatrix} H_L(u_{[0, t-1]}) \\ H_{L-1}(y_{[0, t-2]}) \end{bmatrix} + 1$$

whenever $u(t) \notin \mathcal{A}^t$.

Corollary: If $u(t) \notin \mathcal{A}^t$ for all $t \in [L, T - 1]$ then

$$\text{rank} \begin{bmatrix} H_L(u_{[0, T-1]}) \\ H_{L-1}(y_{[0, T-1]}) \end{bmatrix} = \text{rank} \begin{bmatrix} H_L(u_{[0, T-1]}) \\ H_L(y_{[0, T-1]}) \end{bmatrix} = n_{\text{true}} + mL.$$

This implies that $\text{im} \begin{bmatrix} H_L(u_{[0, T-1]}) \\ H_L(y_{[0, T-1]}) \end{bmatrix} = \mathfrak{B}_L(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}})$.

Theorem: Define $T := n_{\text{true}} + (m + 1)L - 1$. Let $u_{[0, L-1]}$ be nonzero. For all $t \in [L, T - 1]$ there exists an $(m - 1)$ -dimensional affine set $\mathcal{A}^t \subseteq \mathbb{R}^m$ such that

$$\text{rank} \begin{bmatrix} H_L(u_{[0, t]}) \\ H_{L-1}(y_{[0, t-1]}) \end{bmatrix} = \text{rank} \begin{bmatrix} H_L(u_{[0, t-1]}) \\ H_{L-1}(y_{[0, t-2]}) \end{bmatrix} + 1$$

whenever $u(t) \notin \mathcal{A}^t$.

Corollary: If $u(t) \notin \mathcal{A}^t$ for all $t \in [L, T - 1]$ then

$$\text{rank} \begin{bmatrix} H_L(u_{[0, T-1]}) \\ H_{L-1}(y_{[0, T-1]}) \end{bmatrix} = \text{rank} \begin{bmatrix} H_L(u_{[0, T-1]}) \\ H_L(y_{[0, T-1]}) \end{bmatrix} = n_{\text{true}} + mL.$$

This implies that $\text{im} \begin{bmatrix} H_L(u_{[0, T-1]}) \\ H_L(y_{[0, T-1]}) \end{bmatrix} = \mathfrak{B}_L(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}})$.

Note: T is **not known** before the experiment.

Theorem: Define $T := n_{\text{true}} + (m + 1)L - 1$. Let $u_{[0, L-1]}$ be nonzero. For all $t \in [L, T - 1]$ there exists an $(m - 1)$ -dimensional affine set $\mathcal{A}^t \subseteq \mathbb{R}^m$ such that

$$\text{rank} \begin{bmatrix} H_L(u_{[0, t]}) \\ H_{L-1}(y_{[0, t-1]}) \end{bmatrix} = \text{rank} \begin{bmatrix} H_L(u_{[0, t-1]}) \\ H_{L-1}(y_{[0, t-2]}) \end{bmatrix} + 1$$

whenever $u(t) \notin \mathcal{A}^t$.

Corollary: If $u(t) \notin \mathcal{A}^t$ for all $t \in [L, T - 1]$ then

$$\text{rank} \begin{bmatrix} H_L(u_{[0, T-1]}) \\ H_{L-1}(y_{[0, T-1]}) \end{bmatrix} = \text{rank} \begin{bmatrix} H_L(u_{[0, T-1]}) \\ H_L(y_{[0, T-1]}) \end{bmatrix} = n_{\text{true}} + mL.$$

This implies that $\text{im} \begin{bmatrix} H_L(u_{[0, T-1]}) \\ H_L(y_{[0, T-1]}) \end{bmatrix} = \mathfrak{B}_L(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}})$.

Note: T is **not known** before the experiment. It is found **online** because it equals the smallest t for which

$$\text{rank} \begin{bmatrix} H_L(u_{[0, t]}) \\ H_{L-1}(y_{[0, t-1]}) \end{bmatrix} = \text{rank} \begin{bmatrix} H_L(u_{[0, t-1]}) \\ H_{L-1}(y_{[0, t-2]}) \end{bmatrix}$$

for all $u(t) \in \mathbb{R}^m$.

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Define $L = 3$, $u_{[0,2]} = [1 \ 0 \ 0]^\top \neq 0$, and measure $H_1(y_{[0,2]}) = \begin{bmatrix} -1 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$;

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Define $L = 3$, $u_{[0,2]} = [1 \ 0 \ 0]^\top \neq 0$, and measure $H_1(y_{[0,2]}) = \begin{bmatrix} -1 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$;

$$\text{rank} \begin{bmatrix} H_3(u_{[0,2]}) \\ \hline H_2(y_{[0,1]}) \end{bmatrix} = \text{rank} \begin{bmatrix} 1 \\ 0 \\ 0 \\ \hline -1 \\ 2 \\ 0 \\ 0 \end{bmatrix} = 1$$

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Define $u_{[0,2]} = [1 \ 0 \ 0]^\top \neq 0$, and design the rest of the inputs **online**

$$\text{rank} \begin{bmatrix} H_3(u_{[0,3]}) \\ \hline H_2(y_{[0,2]}) \end{bmatrix} = \text{rank} \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & u(3) \\ \hline -1 & 0 \\ 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} = 2 \text{ for } u(3) = 1$$

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Define $u_{[0,2]} = [1 \ 0 \ 0]^\top \neq 0$, and design the rest of the inputs **online**

$$\text{rank} \begin{bmatrix} H_3(u_{[0,3]}) \\ \hline H_2(y_{[0,2]}) \end{bmatrix} = \text{rank} \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & u(3) \\ \hline -1 & 0 \\ 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} = 2 \text{ for } u(3) = 1$$

$$\text{Measure } y(3) = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Define $u_{[0,2]} = [1 \ 0 \ 0]^\top \neq 0$ and design the rest of the inputs **online**

$$\text{rank} \begin{bmatrix} H_3(u_{[0,4]}) \\ \hline H_2(y_{[0,3]}) \end{bmatrix} = \text{rank} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & u(4) \\ \hline -1 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix} = 3 \text{ for any } u(4)$$

Take $u(4) = 0$

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Define $u_{[0,2]} = [1 \ 0 \ 0]^\top \neq 0$ and design the rest of the inputs **online**

$$\text{rank} \begin{bmatrix} H_3(u_{[0,5]}) \\ \hline H_2(y_{[0,4]}) \end{bmatrix} = \text{rank} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & u(5) \\ \hline -1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 \end{bmatrix} = 4 \text{ for any } u(5)$$

Take $u(5) = 0$

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Define $u_{[0,2]} = [1 \ 0 \ 0]^\top \neq 0$ and design the rest of the inputs **online**

$$\text{rank} \begin{bmatrix} H_3(u_{[0,6]}) \\ \hline H_2(y_{[0,5]}) \end{bmatrix} = \text{rank} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & \textcolor{red}{u(6)} \\ \hline -1 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 1 & 1 \end{bmatrix} = 5 \text{ for any } u(6)$$

So we take $u(6) = 0$.

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Define $u_{[0,2]} = [1 \ 0 \ 0]^\top \neq 0$ and design the rest of the inputs **online**

$$\text{rank} \begin{bmatrix} H_3(u_{[0,7]}) \\ H_2(y_{[0,6]}) \end{bmatrix} = \text{rank} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & \textcolor{red}{u(7)} \\ \hline -1 & 0 & 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 1 & 1 & 2 \end{bmatrix} = 5 \neq 6 \text{ for any } u(7)$$

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Define $u_{[0,2]} = [1 \ 0 \ 0]^\top \neq 0$ and design the rest of the inputs **online**

$$\text{rank} \begin{bmatrix} H_3(u_{[0,7]}) \\ H_2(y_{[0,6]}) \end{bmatrix} = \text{rank} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & u(7) \\ \hline -1 & 0 & 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 1 & 1 & 2 \end{bmatrix} = 5 \neq 6 \text{ for any } u(7)$$

So we do not apply $u(7)$ and **stop the procedure**.

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Define $u_{[0,2]} = [1 \ 0 \ 0]^\top \neq 0$ and design the rest of the inputs [online](#)

It follows that

$$\text{rank} \begin{bmatrix} H_3(u_{[0,6]}) \\ \hline H_3(y_{[0,6]}) \end{bmatrix} = \text{rank} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \hline -1 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 2 & 1 & 1 & 2 \end{bmatrix} = 5 = n_{\text{true}} + mL.$$

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Define $u_{[0,2]} = [1 \ 0 \ 0]^\top \neq 0$ and design the rest of the inputs [online](#)

It follows that

$$\text{rank} \begin{bmatrix} H_3(u_{[0,6]}) \\ \hline H_3(y_{[0,6]}) \end{bmatrix} = \text{rank} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \hline -1 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 2 & 1 & 1 & 2 \end{bmatrix} = 5 = n_{\text{true}} + mL.$$

$$\text{Hence, } \text{im} \begin{bmatrix} H_3(u_{[0,6]}) \\ H_3(y_{[0,6]}) \end{bmatrix} = \mathfrak{B}_L(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}}).$$

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Define $u_{[0,2]} = [1 \ 0 \ 0]^\top \neq 0$ and design the rest of the inputs [online](#)

It follows that

$$\text{rank} \begin{bmatrix} H_3(u_{[0,6]}) \\ \hline H_3(y_{[0,6]}) \end{bmatrix} = \text{rank} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \hline -1 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 2 & 1 & 1 & 2 \end{bmatrix} = 5 = n_{\text{true}} + mL.$$

Hence, $\text{im} \begin{bmatrix} H_3(u_{[0,6]}) \\ H_3(y_{[0,6]}) \end{bmatrix} = \mathfrak{B}_L(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}})$.

of samples: $T = 7$ instead of $T \geq 13$ required for PE of order $7 = 4 + 3$.

- Persistently exciting inputs of order $n + L$ are **universal**

- Persistently exciting inputs of order $n + L$ are **universal**
- They enable the determination of the restricted behavior

$$\mathfrak{B}_L(A, B, C, D)$$

when applied to **any** $(A, B, C, D) \in \mathcal{M}_{\text{cont}}^{m, n, p}$.

- Persistently exciting inputs of order $n + L$ are **universal**
- They enable the determination of the restricted behavior

$$\mathfrak{B}_L(A, B, C, D)$$

when applied to **any** $(A, B, C, D) \in \mathcal{M}_{\text{cont}}^{m, n, p}$.

- Universality and persistency of excitation of order $n + L$ are **equivalent**

- Persistently exciting inputs of order $n + L$ are **universal**
- They enable the determination of the restricted behavior

$$\mathfrak{B}_L(A, B, C, D)$$

when applied to **any** $(A, B, C, D) \in \mathcal{M}_{\text{cont}}^{m, n, p}$.

- Universality and persistency of excitation of order $n + L$ are **equivalent**
- PE of order $n + L$ requires $T \geq (m + 1)(n + L) - 1$ samples.

- Persistently exciting inputs of order $n + L$ are **universal**
- They enable the determination of the restricted behavior

$$\mathfrak{B}_L(A, B, C, D)$$

when applied to **any** $(A, B, C, D) \in \mathcal{M}_{\text{cont}}^{m, n, p}$.

- Universality and persistency of excitation of order $n + L$ are **equivalent**
- PE of order $n + L$ requires $T \geq (m + 1)(n + L) - 1$ samples.

- **Online** experiment design tailors $u_{[0, T-1]}$ to the **data-generating system**

- Persistently exciting inputs of order $n + L$ are **universal**
- They enable the determination of the restricted behavior

$$\mathfrak{B}_L(A, B, C, D)$$

when applied to **any** $(A, B, C, D) \in \mathcal{M}_{\text{cont}}^{m, n, p}$.

- Universality and persistency of excitation of order $n + L$ are **equivalent**
- PE of order $n + L$ requires $T \geq (m + 1)(n + L) - 1$ samples.

- **Online** experiment design tailors $u_{[0, T-1]}$ to the **data-generating system**
- Such inputs are **not universal**

- Persistently exciting inputs of order $n + L$ are **universal**
- They enable the determination of the restricted behavior

$$\mathfrak{B}_L(A, B, C, D)$$

when applied to **any** $(A, B, C, D) \in \mathcal{M}_{\text{cont}}^{m, n, p}$.

- Universality and persistency of excitation of order $n + L$ are **equivalent**
- PE of order $n + L$ requires $T \geq (m + 1)(n + L) - 1$ samples.

- **Online** experiment design tailors $u_{[0, T-1]}$ to the **data-generating system**
- Such inputs are **not universal**
- The online approach only requires $T = n_{\text{true}} + (m + 1)L - 1$ samples.

Fundamental lemma

Universal inputs

Online experiment design

Experiment design for identification

Experiment design for stabilization

Conclusions

Recall: We have seen two methods that guarantee

$$\text{im} \begin{bmatrix} H_L(u_{[0,T-1]}) \\ H_L(y_{[0,T-1]}) \end{bmatrix} = \mathfrak{B}_L(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}}).$$

Recall: We have seen two methods that guarantee

$$\text{im} \begin{bmatrix} H_L(u_{[0,T-1]}) \\ H_L(y_{[0,T-1]}) \end{bmatrix} = \mathfrak{B}_L(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}}).$$

Next question: how to choose inputs such that we can find

$$\mathfrak{B}(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}})$$

i.e., **identify** the system from data?

Recall: We have seen two methods that guarantee

$$\text{im} \begin{bmatrix} H_L(u_{[0,T-1]}) \\ H_L(y_{[0,T-1]}) \end{bmatrix} = \mathfrak{B}_L(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}}).$$

Next question: how to choose inputs such that we can find

$$\mathfrak{B}(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}})$$

i.e., **identify** the system from data?

Possible solution:

- 1 Find $\mathfrak{B}_L(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}})$ with $L > \ell_{\text{true}}$

Recall: We have seen two methods that guarantee

$$\text{im} \begin{bmatrix} H_L(u_{[0,T-1]}) \\ H_L(y_{[0,T-1]}) \end{bmatrix} = \mathfrak{B}_L(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}}).$$

Next question: how to choose inputs such that we can find

$$\mathfrak{B}(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}})$$

i.e., **identify** the system from data?

Possible solution:

- 1 Find $\mathfrak{B}_L(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}})$ with $L > \ell_{\text{true}}$
- 2 Obtain¹ $\mathfrak{B}(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}})$ from this restricted behavior.

¹Markovsky *et al.*, Algorithms for deterministic balanced subspace identification, Automatica, 2005.

Recall: We have seen two methods that guarantee

$$\text{im} \begin{bmatrix} H_L(u_{[0,T-1]}) \\ H_L(y_{[0,T-1]}) \end{bmatrix} = \mathfrak{B}_L(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}}).$$

Next question: how to choose inputs such that we can find

$$\mathfrak{B}(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}})$$

i.e., **identify** the system from data?

Possible solution:

- 1 Find $\mathfrak{B}_L(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}})$ with $L > \ell_{\text{true}}$
- 2 Obtain¹ $\mathfrak{B}(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}})$ from this restricted behavior.

This requires $T = n_{\text{true}} + (m + 1)L - 1$ samples.

¹Markovsky *et al.*, Algorithms for deterministic balanced subspace identification, Automatica, 2005.

Recall: We have seen two methods that guarantee

$$\text{im} \begin{bmatrix} H_L(u_{[0,T-1]}) \\ H_L(y_{[0,T-1]}) \end{bmatrix} = \mathfrak{B}_L(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}}).$$

Next question: how to choose inputs such that we can find

$$\mathfrak{B}(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}})$$

i.e., **identify** the system from data?

Possible solution:

- 1 Find $\mathfrak{B}_L(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}})$ with $L > \ell_{\text{true}}$
- 2 Obtain¹ $\mathfrak{B}(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}})$ from this restricted behavior.

This requires $T = n_{\text{true}} + (m + 1)L - 1$ samples.

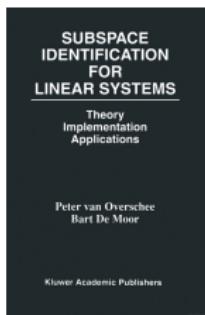
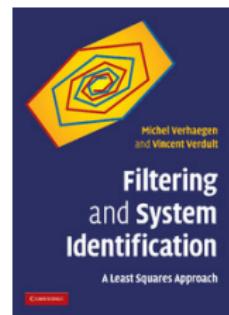
Question: Is this **sample-efficient** or is there a better approach?

¹Markovsky *et al.*, Algorithms for deterministic balanced subspace identification, Automatica, 2005.

To answer that question, we need conditions on given data $(u_{[0,T-1]}, y_{[0,T-1]})$ that **enable system identification**.

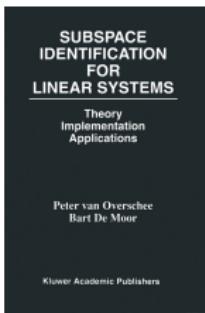
To answer that question, we need conditions on given data $(u_{[0,T-1]}, y_{[0,T-1]})$ that **enable system identification**.

Sufficient conditions:



To answer that question, we need conditions on given data $(u_{[0,T-1]}, y_{[0,T-1]})$ that **enable system identification**.

Sufficient conditions:



Necessary and sufficient conditions:

Beyond the fundamental lemma:
from finite time series to linear system

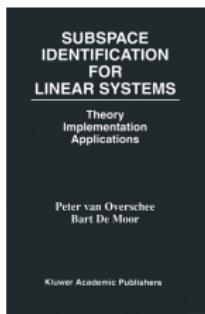
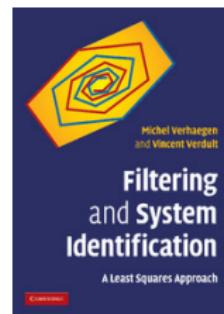
M. Kanat Camlibel¹ and Paolo Rapisarda²

¹Bernoulli Institute, University of Groningen

²School of Electronics and Computer Science, University of Southampton

To answer that question, we need conditions on given data $(u_{[0,T-1]}, y_{[0,T-1]})$ that **enable system identification**.

Sufficient conditions:



Necessary and sufficient conditions:

Beyond the fundamental lemma:
from finite time series to linear system

M. Kanat Camlibel¹ and Paolo Rapisarda²

¹Bernoulli Institute, University of Groningen

²School of Electronics and Computer Science, University of Southampton

We will now review these conditions...

Prior knowledge: $\ell_{\text{true}} < L$, $n_{\text{true}} \leq N$ and

$$(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}}) \in \mathcal{M}_{\min}^{m, n_{\text{true}}, p}.$$

Prior knowledge: $\ell_{\text{true}} < L$, $n_{\text{true}} \leq N$ and

$$(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}}) \in \mathcal{M}_{\min}^{m, n_{\text{true}}, p}.$$

Observations:

- 1 If only L is given, choose $N := (L - 1)p$.
- 2 If only N is given, choose $L := N + 1$.

Prior knowledge: $\ell_{\text{true}} < L$, $n_{\text{true}} \leq N$ and

$$(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}}) \in \mathcal{M}_{\min}^{m, n_{\text{true}}, p}.$$

Observations:

- 1 If only L is given, choose $N := (L - 1)p$.
- 2 If only N is given, choose $L := N + 1$.

Definition: The data $(u_{[0, T-1]}, y_{[0, T-1]})$ are **informative for SysId** if

$$\begin{bmatrix} u_{[0, T-1]} \\ y_{[0, T-1]} \end{bmatrix} \in \mathfrak{B}_T(A, B, C, D) \quad (\triangle)$$

for some $(A, B, C, D) \in \mathcal{M}_{\min}^{m, n, p}$ with $\ell(C, A) < L$ and $n \leq N$ implies

$$\mathfrak{B}(A, B, C, D) = \mathfrak{B}(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}}).$$

Prior knowledge: $\ell_{\text{true}} < L$, $n_{\text{true}} \leq N$ and

$$(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}}) \in \mathcal{M}_{\min}^{m, n_{\text{true}}, p}.$$

Observations:

- 1 If only L is given, choose $N := (L - 1)p$.
- 2 If only N is given, choose $L := N + 1$.

Definition: The data $(u_{[0, T-1]}, y_{[0, T-1]})$ are **informative for SysId** if

$$\begin{bmatrix} u_{[0, T-1]} \\ y_{[0, T-1]} \end{bmatrix} \in \mathfrak{B}_T(A, B, C, D) \quad (\triangle)$$

for some $(A, B, C, D) \in \mathcal{M}_{\min}^{m, n, p}$ with $\ell(C, A) < L$ and $n \leq N$ implies

$$\mathfrak{B}(A, B, C, D) = \mathfrak{B}(A_{\text{true}}, B_{\text{true}}, C_{\text{true}}, D_{\text{true}}).$$

Two important integers:

ℓ_{\min}

n_{\min}

minimum lag of all data-consistent systems

minimum state dimension of all data-consistent systems

Fact: $\ell_{\text{true}} < L_d := N - n_{\min} + \ell_{\min} + 1$ data-guided bound on lag
 $L_a := \min(L, L_d)$ actual upper bound

Fact: $\ell_{\text{true}} < L_d := N - n_{\min} + \ell_{\min} + 1$ data-guided bound on lag
 $L_a := \min(L, L_d)$ actual upper bound

Theorem (Camlibel and Rapisarda, 2024): The data $(u_{[0,T-1]}, y_{[0,T-1]})$ are informative for SysId **if and only if**

$$T \geq n_{\min} + (m + 1)L_a - 1 \quad \text{and} \quad \text{rank} \begin{bmatrix} H_{L_a}(u_{[0,T-1]}) \\ H_{L_a}(y_{[0,T-1]}) \end{bmatrix} = n_{\min} + mL_a.$$

Fact: $\ell_{\text{true}} < L_d := N - n_{\min} + \ell_{\min} + 1$ data-guided bound on lag
 $L_a := \min(L, L_d)$ actual upper bound

Theorem (Camlibel and Rapisarda, 2024): The data $(u_{[0,T-1]}, y_{[0,T-1]})$ are informative for SysId **if and only if**

$$T \geq n_{\min} + (m + 1)L_a - 1 \quad \text{and} \quad \text{rank} \begin{bmatrix} H_{L_a}(u_{[0,T-1]}) \\ H_{L_a}(y_{[0,T-1]}) \end{bmatrix} = n_{\min} + mL_a.$$

Moreover, if these conditions are satisfied, then $\ell_{\text{true}} = \ell_{\min}$ and $n_{\text{true}} = n_{\min}$.

Fact: $\ell_{\text{true}} < L_d := N - n_{\min} + \ell_{\min} + 1$ data-guided bound on lag
 $L_a := \min(L, L_d)$ actual upper bound

Theorem (Camlibel and Rapisarda, 2024): The data $(u_{[0,T-1]}, y_{[0,T-1]})$ are informative for SysId **if and only if**

$$T \geq n_{\min} + (m + 1)L_a - 1 \quad \text{and} \quad \text{rank} \begin{bmatrix} H_{L_a}(u_{[0,T-1]}) \\ H_{L_a}(y_{[0,T-1]}) \end{bmatrix} = n_{\min} + mL_a.$$

Moreover, if these conditions are satisfied, then $\ell_{\text{true}} = \ell_{\min}$ and $n_{\text{true}} = n_{\min}$.

Observation: The **shortest** possible informative data length is

$$T := n_{\text{true}} + (m + 1)L - 1 \quad \text{where} \quad L := \min(L, N - n_{\text{true}} + \ell_{\text{true}} + 1)$$

Fact: $\ell_{\text{true}} < L_d := N - n_{\min} + \ell_{\min} + 1$ data-guided bound on lag
 $L_a := \min(L, L_d)$ actual upper bound

Theorem (Camlibel and Rapisarda, 2024): The data $(u_{[0,T-1]}, y_{[0,T-1]})$ are informative for SysId **if and only if**

$$T \geq n_{\min} + (m + 1)L_a - 1 \quad \text{and} \quad \text{rank} \begin{bmatrix} H_{L_a}(u_{[0,T-1]}) \\ H_{L_a}(y_{[0,T-1]}) \end{bmatrix} = n_{\min} + mL_a.$$

Moreover, if these conditions are satisfied, then $\ell_{\text{true}} = \ell_{\min}$ and $n_{\text{true}} = n_{\min}$.

Observation: The **shortest** possible informative data length is

$$T := n_{\text{true}} + (m + 1)L - 1 \quad \text{where} \quad L := \min(L, N - n_{\text{true}} + \ell_{\text{true}} + 1)$$

Question: Is it possible to **generate** informative data $(u_{[0,T-1]}, y_{[0,T-1]})$, i.e,

$$\text{rank} \begin{bmatrix} H_L(u_{[0,T-1]}) \\ H_L(y_{[0,T-1]}) \end{bmatrix} = n_{\text{true}} + mL$$

without knowing ℓ_{true} and n_{true} in advance?

Contents lists available at [ScienceDirect](#)

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

The shortest experiment for linear system identification

M.K. Camlibel ^a, H.J. van Waarde ^a, ^{a,1}, P. Rapisarda ^b

^a *Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands*

^b *School of Electronics and Computer Science, University of Southampton, United Kingdom*

Contents lists available at [ScienceDirect](#)

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

The shortest experiment for linear system identification

M.K. Camlibel ^a, H.J. van Waarde ^a, ^{a,1}, P. Rapisarda ^b^a *Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands*^b *School of Electronics and Computer Science, University of Southampton, United Kingdom*

For the data $(u_{[0,\textcolor{blue}{t}-1]}, y_{[0,\textcolor{blue}{t}-1]})$, define

$$H_{\mathbf{k}}^{\textcolor{blue}{t}} := \begin{bmatrix} H_{\mathbf{k}}(u_{[0,\textcolor{blue}{t}-1]}) \\ \hline H_{\mathbf{k}}(y_{[0,\textcolor{blue}{t}-1]}) \end{bmatrix}, \quad G_{\mathbf{k}}^{\textcolor{blue}{t}} := \begin{bmatrix} H_{\mathbf{k}}(u_{[0,\textcolor{blue}{t}-1]}) \\ \hline H_{\mathbf{k}-1}(y_{[0,\textcolor{blue}{t}-2]}) \end{bmatrix},$$

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

The shortest experiment for linear system identification

M.K. Camlibel ^a, H.J. van Waarde ^a*,¹, P. Rapisarda ^b^a Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands^b School of Electronics and Computer Science, University of Southampton, United Kingdom

For the data $(u_{[0,\textcolor{blue}{t}-1]}, y_{[0,\textcolor{blue}{t}-1]})$, define

$$H_{\mathbf{k}}^{\textcolor{blue}{t}} := \begin{bmatrix} H_{\mathbf{k}}(u_{[0,\textcolor{blue}{t}-1]}) \\ H_{\mathbf{k}}(y_{[0,\textcolor{blue}{t}-1]}) \end{bmatrix}, \quad G_{\mathbf{k}}^{\textcolor{blue}{t}} := \begin{bmatrix} H_{\mathbf{k}}(u_{[0,\textcolor{blue}{t}-1]}) \\ H_{\mathbf{k}-1}(y_{[0,\textcolor{blue}{t}-2]}) \end{bmatrix},$$
$$\ell_{\min}^{\textcolor{blue}{t}}, \quad n_{\min}^{\textcolor{blue}{t}}, \quad L_d^{\textcolor{blue}{t}}, \quad \text{and} \quad L_a^{\textcolor{blue}{t}} := \min(L, L_d).$$

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

The shortest experiment for linear system identification

M.K. Camlibel ^a, H.J. van Waarde ^a, ^{a,1}, P. Rapisarda ^b^a Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands^b School of Electronics and Computer Science, University of Southampton, United KingdomFor the data $(u_{[0,\textcolor{blue}{t}-1]}, y_{[0,\textcolor{blue}{t}-1]})$, define

$$H_{\mathbf{k}}^{\textcolor{blue}{t}} := \begin{bmatrix} H_{\mathbf{k}}(u_{[0,\textcolor{blue}{t}-1]}) \\ \hline \cdots \\ H_{\mathbf{k}}(y_{[0,\textcolor{blue}{t}-1]}) \end{bmatrix}, \quad G_{\mathbf{k}}^{\textcolor{blue}{t}} := \begin{bmatrix} H_{\mathbf{k}}(u_{[0,\textcolor{blue}{t}-1]}) \\ \hline \cdots \\ H_{\mathbf{k}-1}(y_{[0,\textcolor{blue}{t}-2]}) \end{bmatrix},$$

$$\ell_{\min}^{\textcolor{blue}{t}}, \quad n_{\min}^{\textcolor{blue}{t}}, \quad L_d^{\textcolor{blue}{t}}, \quad \text{and} \quad L_a^{\textcolor{blue}{t}} := \min(L, L_d).$$

Main idea: start with $k = 1$ and iterate between the following steps:

- increase the rank of $G_{\mathbf{k}}^{\textcolor{blue}{t}}$ until no progress can be made

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

The shortest experiment for linear system identification

M.K. Camlibel ^a, H.J. van Waarde ^a, ^{a,1}, P. Rapisarda ^b^a Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands^b School of Electronics and Computer Science, University of Southampton, United Kingdom

For the data $(u_{[0,\textcolor{blue}{t}-1]}, y_{[0,\textcolor{blue}{t}-1]})$, define

$$H_{\mathbf{k}}^{\textcolor{blue}{t}} := \begin{bmatrix} H_{\mathbf{k}}(u_{[0,\textcolor{blue}{t}-1]}) \\ \hline H_{\mathbf{k}}(y_{[0,\textcolor{blue}{t}-1]}) \end{bmatrix}, \quad G_{\mathbf{k}}^{\textcolor{blue}{t}} := \begin{bmatrix} H_{\mathbf{k}}(u_{[0,\textcolor{blue}{t}-1]}) \\ \hline H_{\mathbf{k}-1}(y_{[0,\textcolor{blue}{t}-2]}) \end{bmatrix},$$

$$\ell_{\min}^{\textcolor{blue}{t}}, \quad n_{\min}^{\textcolor{blue}{t}}, \quad L_d^{\textcolor{blue}{t}}, \quad \text{and} \quad L_a^{\textcolor{blue}{t}} := \min(L, L_d).$$

Main idea: start with $k = 1$ and iterate between the following steps:

- increase the rank of $G_{\mathbf{k}}^{\textcolor{blue}{t}}$ until no progress can be made
- increase the depth \mathbf{k} by one

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

The shortest experiment for linear system identification

M.K. Camlibel ^a, H.J. van Waarde ^a ^{,1}, P. Rapisarda ^b^a Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands^b School of Electronics and Computer Science, University of Southampton, United KingdomFor the data $(u_{[0,\textcolor{blue}{t}-1]}, y_{[0,\textcolor{blue}{t}-1]})$, define

$$H_{\mathbf{k}}^{\textcolor{blue}{t}} := \begin{bmatrix} H_{\mathbf{k}}(u_{[0,\textcolor{blue}{t}-1]}) \\ \hline H_{\mathbf{k}}(y_{[0,\textcolor{blue}{t}-1]}) \end{bmatrix}, \quad G_{\mathbf{k}}^{\textcolor{blue}{t}} := \begin{bmatrix} H_{\mathbf{k}}(u_{[0,\textcolor{blue}{t}-1]}) \\ \hline H_{\mathbf{k}-1}(y_{[0,\textcolor{blue}{t}-2]}) \end{bmatrix},$$

$$\ell_{\min}^{\textcolor{blue}{t}}, \quad n_{\min}^{\textcolor{blue}{t}}, \quad L_d^{\textcolor{blue}{t}}, \quad \text{and} \quad L_a^{\textcolor{blue}{t}} := \min(L, L_d).$$

Main idea: start with $k = 1$ and iterate between the following steps:

- increase the rank of $G_{\mathbf{k}}^{\textcolor{blue}{t}}$ until no progress can be made
- increase the depth \mathbf{k} by one

Important question: when to stop?

Lemma: We have that

$$\text{rank } \mathbf{G}_k^t \leq m + \text{rank } \mathbf{H}_{k-1}^t$$

Lemma: We have that

$$\text{rank } \mathbf{G}_k^t \leq m + \text{rank } \mathbf{H}_{k-1}^t$$

Lemma: If

$$\text{rank } \mathbf{G}_k^t < m + \text{rank } \mathbf{H}_{k-1}^t,$$

then there exists an $m - 1$ dimensional affine set $\mathcal{A}^t \subseteq \mathbb{R}^m$ such that

$$\text{rank } \mathbf{G}_k^{t+1} = \text{rank } \mathbf{G}_k^t + 1 \quad \text{whenever} \quad u(t) \notin \mathcal{A}^t.$$

Lemma: We have that

$$\text{rank } \mathbf{G}_k^t \leq m + \text{rank } \mathbf{H}_{k-1}^t$$

Lemma: If

$$\text{rank } \mathbf{G}_k^t < m + \text{rank } \mathbf{H}_{k-1}^t,$$

then there exists an $m - 1$ dimensional affine set $\mathcal{A}^t \subseteq \mathbb{R}^m$ such that

$$\text{rank } \mathbf{G}_k^{t+1} = \text{rank } \mathbf{G}_k^t + 1 \quad \text{whenever} \quad u(t) \notin \mathcal{A}^t.$$

Theorem: Suppose that $(u_{[0,t-1]}, y_{[0,t-1]})$ is such that

- \mathbf{H}_k^t has full column rank, and
- $\text{rank } \mathbf{G}_k^t = m + \text{rank } \mathbf{H}_{k-1}^t$.

Then, $k = L_a^t$ implies that

- 1 $k = L$,
- 2 $t = T$, and
- 3 $(u_{[0,T-1]}, y_{[0,T-1]})$ are informative for SysId.

```

1: procedure ONLINEEXPERIMENT( $L, N$ )
2:   choose  $u_{[0,m-1]}$  nonsingular
3:   measure outputs  $y_{[0,m-1]}$ 
4:    $t \leftarrow m, k \leftarrow 1$ 
5:   while  $k \neq L_a^t$  do ▷ stopping criterion
6:      $k \leftarrow k + 1$ 
7:     if  $t = k - 1$  then
8:       choose  $u(t)$  arbitrarily ▷  $G_k^t$  has (full) rank 1
9:       measure output  $y(t)$ 
10:       $t \leftarrow t + 1$ 
11:    end if
12:    while rank  $G_k^t < m + \text{rank } H_{k-1}^t$  do
13:      choose  $u(t) \notin \mathcal{A}^t$ 
14:      measure output  $y(t)$  ▷ rank  $G_k^{t+1} = \text{rank } G_k^t + 1$ 
15:       $t \leftarrow t + 1$ 
16:    end while
17:  end while
18:  return  $(u_{[0,t-1]}, y_{[0,t-1]})$  ▷  $(k, t) = (L, T)$  and data are informative
19: end procedure

```

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take $N = 2$ and $L = 3$.

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take $N = 2$ and $L = 3$.

$u(0) = 1 \implies y(0) = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$. Let $t = 1$ and $k = 1$.

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take $N = 2$ and $L = 3$.

$u(0) = 1 \implies y(0) = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$. Let $t = 1$ and $k = 1$.

$n_{\min}^1 = 0, \ell_{\min}^1 = 0 \implies L_a^1 = \min(L, N - n_{\min}^1 + \ell_{\min}^1 + 1) = 3$

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take $N = 2$ and $L = 3$.

$u(0) = 1 \implies y(0) = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$. Let $t = 1$ and $k = 1$.

$n_{\min}^1 = 0, \ell_{\min}^1 = 0 \implies L_a^1 = \min(L, N - n_{\min}^1 + \ell_{\min}^1 + 1) = 3 \implies k \neq L_a^1$

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take $N = 2$ and $L = 3$.

$$u(0) = 1 \implies y(0) = \begin{bmatrix} -1 \\ 2 \end{bmatrix}. \text{ Let } t = 1 \text{ and } k = 1.$$

$$n_{\min}^1 = 0, \ell_{\min}^1 = 0 \implies L_a^1 = \min(L, N - n_{\min}^1 + \ell_{\min}^1 + 1) = 3 \implies k \neq L_a^1$$

$$\text{Set } k = 2. \text{ Since } t = k - 1, \text{ let } u(1) = 0 \text{ (arbitrary)} \implies y(1) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take $N = 2$ and $L = 3$.

$$u(0) = 1 \implies y(0) = \begin{bmatrix} -1 \\ 2 \end{bmatrix}. \text{ Let } t = 1 \text{ and } k = 1.$$

$$n_{\min}^1 = 0, \quad \ell_{\min}^1 = 0 \implies L_a^1 = \min(L, N - n_{\min}^1 + \ell_{\min}^1 + 1) = 3 \implies k \neq L_a^1$$

$$\text{Set } k = 2. \text{ Since } t = k - 1, \text{ let } u(1) = 0 \text{ (arbitrary)} \implies y(1) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Now increase rank:

$$G_2^3 = \begin{bmatrix} 1 & 0 \\ 0 & u(2) \\ -1 & 0 \\ 2 & 0 \end{bmatrix}$$

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take $N = 2$ and $L = 3$.

$$u(0) = 1 \implies y(0) = \begin{bmatrix} -1 \\ 2 \end{bmatrix}. \text{ Let } t = 1 \text{ and } k = 1.$$

$$n_{\min}^1 = 0, \ell_{\min}^1 = 0 \implies L_a^1 = \min(L, N - n_{\min}^1 + \ell_{\min}^1 + 1) = 3 \implies k \neq L_a^1$$

$$\text{Set } k = 2. \text{ Since } t = k - 1, \text{ let } u(1) = 0 \text{ (arbitrary)} \implies y(1) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Now **increase rank**:

$$G_2^3 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 2 & 0 \end{bmatrix}$$

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take $N = 2$ and $L = 3$.

$$u(0) = 1 \implies y(0) = \begin{bmatrix} -1 \\ 2 \end{bmatrix}. \text{ Let } t = 1 \text{ and } k = 1.$$

$$n_{\min}^1 = 0, \ell_{\min}^1 = 0 \implies L_a^1 = \min(L, N - n_{\min}^1 + \ell_{\min}^1 + 1) = 3 \implies k \neq L_a^1$$

$$\text{Set } k = 2. \text{ Since } t = k - 1, \text{ let } u(1) = 0 \text{ (arbitrary)} \implies y(1) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Now **increase rank**:

$$G_2^4 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & u(3) \\ -1 & 0 & 0 \\ 2 & 0 & 2 \end{bmatrix}$$

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take $N = 2$ and $L = 3$.

$$u(0) = 1 \implies y(0) = \begin{bmatrix} -1 \\ 2 \end{bmatrix}. \text{ Let } t = 1 \text{ and } k = 1.$$

$$n_{\min}^1 = 0, \ell_{\min}^1 = 0 \implies L_a^1 = \min(L, N - n_{\min}^1 + \ell_{\min}^1 + 1) = 3 \implies k \neq L_a^1$$

$$\text{Set } k = 2. \text{ Since } t = k - 1, \text{ let } u(1) = 0 \text{ (arbitrary)} \implies y(1) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Now **increase rank**:

$$G_2^4 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \\ 2 & 0 & 2 \end{bmatrix}$$

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take $N = 2$ and $L = 3$.

$$u(0) = 1 \implies y(0) = \begin{bmatrix} -1 \\ 2 \end{bmatrix}. \text{ Let } t = 1 \text{ and } k = 1.$$

$$n_{\min}^1 = 0, \ell_{\min}^1 = 0 \implies L_a^1 = \min(L, N - n_{\min}^1 + \ell_{\min}^1 + 1) = 3 \implies k \neq L_a^1$$

$$\text{Set } k = 2. \text{ Since } t = k - 1, \text{ let } u(1) = 0 \text{ (arbitrary)} \implies y(1) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Now **increase rank**:

$$G_2^5 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & u(4) \\ -1 & 0 & 0 & 0 \\ 2 & 0 & 2 & 1 \end{bmatrix}$$

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take $N = 2$ and $L = 3$.

$$u(0) = 1 \implies y(0) = \begin{bmatrix} -1 \\ 2 \end{bmatrix}. \text{ Let } t = 1 \text{ and } k = 1.$$

$$n_{\min}^1 = 0, \ell_{\min}^1 = 0 \implies L_a^1 = \min(L, N - n_{\min}^1 + \ell_{\min}^1 + 1) = 3 \implies k \neq L_a^1$$

$$\text{Set } k = 2. \text{ Since } t = k - 1, \text{ let } u(1) = 0 \text{ (arbitrary)} \implies y(1) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Now **increase rank**:

$$G_2^5 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 2 & 0 & 2 & 1 \end{bmatrix}$$

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take $N = 2$ and $L = 3$.

$$\text{rank } H_1^5 = \text{rank} \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 \\ 2 & 0 & 2 & 1 & 1 \end{bmatrix} = 3 \implies \text{rank } G_2^5 = 1 + \text{rank } H_1^5$$

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take $N = 2$ and $L = 3$.

$$\text{rank } H_1^5 = \text{rank} \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 \\ 2 & 0 & 2 & 1 & 1 \end{bmatrix} = 3 \implies \text{rank } G_2^5 = 1 + \text{rank } H_1^5$$

$$\ell_{\min}^5 = 1 \text{ and } n_{\min}^5 = 2$$

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take $N = 2$ and $L = 3$.

$$\text{rank } H_1^5 = \text{rank} \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 \\ 2 & 0 & 2 & 1 & 1 \end{bmatrix} = 3 \implies \text{rank } G_2^5 = 1 + \text{rank } H_1^5$$

$$\ell_{\min}^5 = 1 \text{ and } n_{\min}^5 = 2 \implies L_a^5 = \min(3, 2 - 2 + 1 + 1) = 2$$

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take $N = 2$ and $L = 3$.

$$\text{rank } H_1^5 = \text{rank} \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 \\ 2 & 0 & 2 & 1 & 1 \end{bmatrix} = 3 \implies \text{rank } G_2^5 = 1 + \text{rank } H_1^5$$

$$\ell_{\min}^5 = 1 \text{ and } n_{\min}^5 = 2 \implies L_a^5 = \min(3, 2 - 2 + 1 + 1) = 2 \implies k = L_a^5.$$

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take $N = 2$ and $L = 3$.

$$\text{rank } H_1^5 = \text{rank} \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 \\ 2 & 0 & 2 & 1 & 1 \end{bmatrix} = 3 \implies \text{rank } G_2^5 = 1 + \text{rank } H_1^5$$

$$\ell_{\min}^5 = 1 \text{ and } n_{\min}^5 = 2 \implies L_a^5 = \min(3, 2 - 2 + 1 + 1) = 2 \implies k = L_a^5.$$

Conclusion: The data $(u_{[0,4]}, y_{[0,4]})$ are **informative for SysId**

True system and initial state:

$$A_{\text{true}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_{\text{true}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D_{\text{true}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \quad x(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Hence, $n_{\text{true}} = 2$ and $\ell_{\text{true}} = 1$. We take $N = 2$ and $L = 3$.

$$\text{rank } H_1^5 = \text{rank} \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 \\ 2 & 0 & 2 & 1 & 1 \end{bmatrix} = 3 \implies \text{rank } G_2^5 = 1 + \text{rank } H_1^5$$

$$\ell_{\min}^5 = 1 \text{ and } n_{\min}^5 = 2 \implies L_a^5 = \min(3, 2 - 2 + 1 + 1) = 2 \implies k = L_a^5.$$

Conclusion: The data $(u_{[0,4]}, y_{[0,4]})$ are **informative for SysId**

Reduction in # samples for identification: from $T = 7$ to $T = 5$

Conclusion: The shortest experiments for system identification require:

- 1 **Online design** of the inputs
- 2 **Online adaptation** of the **depth** of the Hankel matrix

Conclusion: The shortest experiments for system identification require:

- 1 **Online design** of the inputs
- 2 **Online adaptation** of the **depth** of the Hankel matrix

Online design using depth- L Hankel matrix is shortest only if

$$L \leq N - n_{\text{true}} + \ell_{\text{true}} + 1$$

Conclusion: The shortest experiments for system identification require:

- 1 **Online design** of the inputs
- 2 **Online adaptation** of the **depth** of the Hankel matrix

Online design using depth- L Hankel matrix is shortest only if

$$L \leq N - n_{\text{true}} + \ell_{\text{true}} + 1$$

Larger example: For a system with

$$m = 80, \quad p = 10, \quad \ell_{\text{true}} = 20, \quad n_{\text{true}} = 100,$$

and

$$L = 101, \quad N = 150,$$

- **fundamental lemma** (PE of order $N + L$) requires: $T = 20330$

Conclusion: The shortest experiments for system identification require:

- 1 **Online design** of the inputs
- 2 **Online adaptation** of the **depth** of the Hankel matrix

Online design using depth- L Hankel matrix is shortest only if

$$L \leq N - n_{\text{true}} + \ell_{\text{true}} + 1$$

Larger example: For a system with

$$m = 80, \quad p = 10, \quad \ell_{\text{true}} = 20, \quad n_{\text{true}} = 100,$$

and

$$L = 101, \quad N = 150,$$

- **fundamental lemma** (PE of order $N + L$) requires: $T = 20330$
- **online design** (fixed depth) requires: $T = 8280$

Conclusion: The shortest experiments for system identification require:

- 1 **Online design** of the inputs
- 2 **Online adaptation** of the **depth** of the Hankel matrix

Online design using depth- L Hankel matrix is shortest only if

$$L \leq N - n_{\text{true}} + \ell_{\text{true}} + 1$$

Larger example: For a system with

$$m = 80, \quad p = 10, \quad \ell_{\text{true}} = 20, \quad n_{\text{true}} = 100,$$

and

$$L = 101, \quad N = 150,$$

- **fundamental lemma** (PE of order $N + L$) requires: $T = 20330$
- **online design** (fixed depth) requires: $T = 8280$
- **the shortest experiment** requires: $T = 5850$

Fundamental lemma

Universal inputs

Online experiment design

Experiment design for identification

Experiment design for stabilization

Conclusions

Consider the **stabilizable** input-state system

$$x(t+1) = A_{\text{true}}x(t) + B_{\text{true}}u(t)$$

where $u(t) \in \mathbb{R}^m$ and $x(t) \in \mathbb{R}^n$ for all $t \in \mathbb{Z}_+$.

Consider the **stabilizable** input-state system

$$x(t+1) = A_{\text{true}}x(t) + B_{\text{true}}u(t)$$

where $u(t) \in \mathbb{R}^m$ and $x(t) \in \mathbb{R}^n$ for all $t \in \mathbb{Z}_+$.

We identify the system with the pair $(A_{\text{true}}, B_{\text{true}}) \in \mathcal{M}^{m,n}$, where

$$\mathcal{M}^{m,n} := \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}.$$

Consider the **stabilizable** input-state system

$$x(t+1) = A_{\text{true}}x(t) + B_{\text{true}}u(t)$$

where $u(t) \in \mathbb{R}^m$ and $x(t) \in \mathbb{R}^n$ for all $t \in \mathbb{Z}_+$.

We identify the system with the pair $(A_{\text{true}}, B_{\text{true}}) \in \mathcal{M}^{m,n}$, where

$$\mathcal{M}^{m,n} := \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}.$$

We also define $\mathcal{M}_{\text{stab}}^{m,n} := \{(A, B) \in \mathcal{M}^{m,n} \mid (A, B) \text{ is stabilizable}\}$.

Consider the **stabilizable** input-state system

$$x(t+1) = A_{\text{true}}x(t) + B_{\text{true}}u(t)$$

where $u(t) \in \mathbb{R}^m$ and $x(t) \in \mathbb{R}^n$ for all $t \in \mathbb{Z}_+$.

We identify the system with the pair $(A_{\text{true}}, B_{\text{true}}) \in \mathcal{M}^{m,n}$, where

$$\mathcal{M}^{m,n} := \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}.$$

We also define $\mathcal{M}_{\text{stab}}^{m,n} := \{(A, B) \in \mathcal{M}^{m,n} \mid (A, B) \text{ is stabilizable}\}$.

Note: $(A_{\text{true}}, B_{\text{true}}) \in \mathcal{M}_{\text{stab}}^{m,n}$.

Consider the **stabilizable** input-state system

$$x(t+1) = A_{\text{true}}x(t) + B_{\text{true}}u(t)$$

where $u(t) \in \mathbb{R}^m$ and $x(t) \in \mathbb{R}^n$ for all $t \in \mathbb{Z}_+$.

We identify the system with the pair $(A_{\text{true}}, B_{\text{true}}) \in \mathcal{M}^{m,n}$, where

$$\mathcal{M}^{m,n} := \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}.$$

We also define $\mathcal{M}_{\text{stab}}^{m,n} := \{(A, B) \in \mathcal{M}^{m,n} \mid (A, B) \text{ is stabilizable}\}$.

Note: $(A_{\text{true}}, B_{\text{true}}) \in \mathcal{M}_{\text{stab}}^{m,n}$.

Data: $\mathcal{D} = (u_{[0,T]}, x_{[0,T]})$ collected from $(A_{\text{true}}, B_{\text{true}})$.

Consider the **stabilizable** input-state system

$$x(t+1) = A_{\text{true}}x(t) + B_{\text{true}}u(t)$$

where $u(t) \in \mathbb{R}^m$ and $x(t) \in \mathbb{R}^n$ for all $t \in \mathbb{Z}_+$.

We identify the system with the pair $(A_{\text{true}}, B_{\text{true}}) \in \mathcal{M}^{m,n}$, where

$$\mathcal{M}^{m,n} := \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}.$$

We also define $\mathcal{M}_{\text{stab}}^{m,n} := \{(A, B) \in \mathcal{M}^{m,n} \mid (A, B) \text{ is stabilizable}\}$.

Note: $(A_{\text{true}}, B_{\text{true}}) \in \mathcal{M}_{\text{stab}}^{m,n}$.

Data: $\mathcal{D} = (u_{[0,T]}, x_{[0,T]})$ collected from $(A_{\text{true}}, B_{\text{true}})$.

Definition: The set $\Sigma_{\mathcal{D}}$ of all **data-consistent systems** is defined as

$$\Sigma_{\mathcal{D}} := \left\{ (A, B) \in \mathcal{M}^{m,n} \mid \begin{bmatrix} u_{[0,T]} \\ x_{[0,T]} \end{bmatrix} \in \mathfrak{B}_{T+1}(A, B) \right\}.$$

Aim: Use the data $\mathcal{D} = (u_{[0,T]}, x_{[0,T]})$ to find a stabilizing feedback gain $K \in \mathbb{R}^{m \times n}$ such that $A_{\text{true}} + B_{\text{true}}K$ is **Schur**.

Aim: Use the data $\mathcal{D} = (u_{[0,T]}, x_{[0,T]})$ to find a stabilizing feedback gain $K \in \mathbb{R}^{m \times n}$ such that $A_{\text{true}} + B_{\text{true}}K$ is **Schur**.

Definition: The data \mathcal{D} are **informative for stabilization** with respect to $\mathcal{M}_{\text{stab}}^{m,n}$ if there exists a matrix $K \in \mathbb{R}^{m \times n}$ such that

$$A + BK \text{ is Schur}$$

for all $(A, B) \in \Sigma_{\mathcal{D}} \cap \mathcal{M}_{\text{stab}}^{m,n}$.

Aim: Use the data $\mathcal{D} = (u_{[0,T]}, x_{[0,T]})$ to find a stabilizing feedback gain $K \in \mathbb{R}^{m \times n}$ such that $A_{\text{true}} + B_{\text{true}}K$ is Schur.

Definition: The data \mathcal{D} are informative for stabilization with respect to $\mathcal{M}_{\text{stab}}^{m,n}$ if there exists a matrix $K \in \mathbb{R}^{m \times n}$ such that

$$A + BK \text{ is Schur}$$

for all $(A, B) \in \Sigma_{\mathcal{D}} \cap \mathcal{M}_{\text{stab}}^{m,n}$.

Problem: Design the inputs $u_{[0,T]}$ such that $(u_{[0,T]}, x_{[0,T]})$ are informative for stabilization with respect to $\mathcal{M}_{\text{stab}}^{m,n}$ for all $x_{[0,T]}$ such that

$$\begin{bmatrix} u_{[0,T]} \\ x_{[0,T]} \end{bmatrix} \in \mathfrak{B}_{T+1}(A_{\text{true}}, B_{\text{true}}).$$

Aim: Use the data $\mathcal{D} = (u_{[0,T]}, x_{[0,T]})$ to find a stabilizing feedback gain $K \in \mathbb{R}^{m \times n}$ such that $A_{\text{true}} + B_{\text{true}}K$ is Schur.

Definition: The data \mathcal{D} are informative for stabilization with respect to $\mathcal{M}_{\text{stab}}^{m,n}$ if there exists a matrix $K \in \mathbb{R}^{m \times n}$ such that

$$A + BK \text{ is Schur}$$

for all $(A, B) \in \Sigma_{\mathcal{D}} \cap \mathcal{M}_{\text{stab}}^{m,n}$.

Problem: Design the inputs $u_{[0,T]}$ such that $(u_{[0,T]}, x_{[0,T]})$ are informative for stabilization with respect to $\mathcal{M}_{\text{stab}}^{m,n}$ for all $x_{[0,T]}$ such that

$$\begin{bmatrix} u_{[0,T]} \\ x_{[0,T]} \end{bmatrix} \in \mathfrak{B}_{T+1}(A_{\text{true}}, B_{\text{true}}).$$

Note: Willems' fundamental lemma **does not apply** (no controllability)...

Observation: In this setting it is in general **impossible** to identify the system.

Observation: In this setting it is in general **impossible** to identify the system.

Example: Suppose that A_{true} is Schur and $B_{\text{true}} = 0$. Let $x(0) = 0$.

Observation: In this setting it is in general **impossible** to identify the system.

Example: Suppose that A_{true} is Schur and $B_{\text{true}} = 0$. Let $x(0) = 0$.

Then for any input $u_{[0,T]}$, $\mathcal{D} = (u_{[0,T]}, \textcolor{brown}{x}_{[0,T]}) = (u_{[0,T]}, \mathbf{0})$.

Observation: In this setting it is in general **impossible** to identify the system.

Example: Suppose that A_{true} is Schur and $B_{\text{true}} = 0$. Let $x(0) = 0$.

Then for any input $u_{[0,T]}$, $\mathcal{D} = (u_{[0,T]}, \textcolor{brown}{x}_{[0,T]}) = (u_{[0,T]}, \textcolor{brown}{0})$.

Thus, $\Sigma_{\mathcal{D}} \cap \mathcal{M}_{\text{stab}}^{m,n} = \{(A, B) \in \mathcal{M}_{\text{stab}}^{m,n} \mid Bu(t) = 0 \ \forall t \in [0, T-1]\}$.

Observation: In this setting it is in general **impossible** to identify the system.

Example: Suppose that A_{true} is Schur and $B_{\text{true}} = 0$. Let $x(0) = 0$.

Then for any input $u_{[0,T]}$, $\mathcal{D} = (u_{[0,T]}, x_{[0,T]}) = (u_{[0,T]}, 0)$.

Thus, $\Sigma_{\mathcal{D}} \cap \mathcal{M}_{\text{stab}}^{m,n} = \{(A, B) \in \mathcal{M}_{\text{stab}}^{m,n} \mid Bu(t) = 0 \ \forall t \in [0, T-1]\}$.

Notation: Given data $(u_{[0,T]}, x_{[0,T]})$, we define $U_- := [u(0) \ \cdots \ u(T-1)]$, $X_- = [x(0) \ \cdots \ x(T-1)]$ and $X_+ = [x(1) \cdots \ x(T)]$.

Observation: In this setting it is in general **impossible** to identify the system.

Example: Suppose that A_{true} is Schur and $B_{\text{true}} = 0$. Let $x(0) = 0$.

Then for any input $u_{[0,T]}$, $\mathcal{D} = (u_{[0,T]}, x_{[0,T]}) = (u_{[0,T]}, 0)$.

Thus, $\Sigma_{\mathcal{D}} \cap \mathcal{M}_{\text{stab}}^{m,n} = \{(A, B) \in \mathcal{M}_{\text{stab}}^{m,n} \mid Bu(t) = 0 \ \forall t \in [0, T-1]\}$.

Notation: Given data $(u_{[0,T]}, x_{[0,T]})$, we define $U_- := [u(0) \ \cdots \ u(T-1)]$, $X_- = [x(0) \ \cdots \ x(T-1)]$ and $X_+ = [x(1) \cdots \ x(T)]$.

Theorem²: If $u_{[0,T-1]}$ is **persistently exciting** of order $n+1$ then

$$\text{im} \begin{bmatrix} X_- \\ U_- \end{bmatrix} = (\mathcal{R} + \mathcal{K}) \times \mathbb{R}^m,$$

where

$$\begin{aligned} \mathcal{R} &:= \text{im} [B_{\text{true}} \quad A_{\text{true}}B_{\text{true}} \quad \cdots \quad A_{\text{true}}^{n-1}B_{\text{true}}] \\ \mathcal{K} &:= \text{im} [x(0) \quad A_{\text{true}}x(0) \quad \cdots \quad A_{\text{true}}^{n-1}x(0)]. \end{aligned}$$

Theorem³ If $u_{[0,T-1]}$ is **persistently exciting of order $n+1$** then $(u_{[0,T]}, x_{[0,T]})$ are informative for stabilization with respect to $\mathcal{M}_{\text{stab}}^{m,n}$ for any $x_{[0,T]}$ such that

$$\begin{bmatrix} u_{[0,T]} \\ x_{[0,T]} \end{bmatrix} \in \mathfrak{B}_{T+1}(A_{\text{true}}, B_{\text{true}}).$$

Theorem³ If $u_{[0,T-1]}$ is **persistently exciting of order $n+1$** then $(u_{[0,T]}, x_{[0,T]})$ are informative for stabilization with respect to $\mathcal{M}_{\text{stab}}^{m,n}$ for any $x_{[0,T]}$ such that

$$\begin{bmatrix} u_{[0,T]} \\ x_{[0,T]} \end{bmatrix} \in \mathfrak{B}_{T+1}(A_{\text{true}}, B_{\text{true}}).$$

Moreover, a suitable feedback gain K is constructed as follows:

- 1 Let $r = \text{rank } X_-$.

³Shakouri, van Waarde, Baltussen and Heemels, *Data-driven stabilization with prior knowledge on controllability and stabilizability*, under prep., 2025.

Theorem³ If $u_{[0,T-1]}$ is **persistently exciting** of order $n+1$ then $(u_{[0,T]}, x_{[0,T]})$ are informative for stabilization with respect to $\mathcal{M}_{\text{stab}}^{m,n}$ for any $x_{[0,T]}$ such that

$$\begin{bmatrix} u_{[0,T]} \\ x_{[0,T]} \end{bmatrix} \in \mathfrak{B}_{T+1}(A_{\text{true}}, B_{\text{true}}).$$

Moreover, a suitable feedback gain K is constructed as follows:

- 1 Let $r = \text{rank } X_-$.
- 2 Write $SX_- = \begin{bmatrix} \hat{X}_- \\ 0 \end{bmatrix}$ where S is **nonsingular** and $\hat{X}_- \in \mathbb{R}^{r \times T}$ has rank r .

³Shakouri, van Waarde, Baltussen and Heemels, *Data-driven stabilization with prior knowledge on controllability and stabilizability*, under prep., 2025.

Theorem³ If $u_{[0,T-1]}$ is **persistently exciting** of order $n+1$ then $(u_{[0,T]}, x_{[0,T]})$ are informative for stabilization with respect to $\mathcal{M}_{\text{stab}}^{m,n}$ for any $x_{[0,T]}$ such that

$$\begin{bmatrix} u_{[0,T]} \\ x_{[0,T]} \end{bmatrix} \in \mathfrak{B}_{T+1}(A_{\text{true}}, B_{\text{true}}).$$

Moreover, a suitable feedback gain K is constructed as follows:

- 1 Let $r = \text{rank } X_-$.
- 2 Write $SX_- = \begin{bmatrix} \hat{X}_- \\ 0 \end{bmatrix}$ where S is **nonsingular** and $\hat{X}_- \in \mathbb{R}^{r \times T}$ has rank r .
- 3 Define $\hat{X}_+ := [I_r \quad 0] SX_+$.

Theorem³ If $u_{[0, T-1]}$ is **persistently exciting** of order $n+1$ then $(u_{[0, T]}, x_{[0, T]})$ are informative for stabilization with respect to $\mathcal{M}_{\text{stab}}^{m, n}$ for any $x_{[0, T]}$ such that

$$\begin{bmatrix} u_{[0, T]} \\ x_{[0, T]} \end{bmatrix} \in \mathfrak{B}_{T+1}(A_{\text{true}}, B_{\text{true}}).$$

Moreover, a suitable feedback gain K is constructed as follows:

- 1 Let $r = \text{rank } X_-$.
- 2 Write $SX_- = \begin{bmatrix} \hat{X}_- \\ 0 \end{bmatrix}$ where S is **nonsingular** and $\hat{X}_- \in \mathbb{R}^{r \times T}$ has rank r .
- 3 Define $\hat{X}_+ := [I_r \quad 0] SX_+$.
- 4 There exists $\Theta \in \mathbb{R}^{T \times r}$ solving the following **linear matrix inequality**:

$$\hat{X}_- \Theta = \Theta^\top \hat{X}_-^\top \quad \text{and} \quad \begin{bmatrix} \hat{X}_- \Theta & \hat{X}_+ \Theta \\ \Theta^\top \hat{X}_+^\top & \hat{X}_- \Theta \end{bmatrix} > 0.$$

Theorem³ If $u_{[0, T-1]}$ is **persistently exciting** of order $n+1$ then $(u_{[0, T]}, x_{[0, T]})$ are informative for stabilization with respect to $\mathcal{M}_{\text{stab}}^{m, n}$ for any $x_{[0, T]}$ such that

$$\begin{bmatrix} u_{[0, T]} \\ x_{[0, T]} \end{bmatrix} \in \mathfrak{B}_{T+1}(A_{\text{true}}, B_{\text{true}}).$$

Moreover, a suitable feedback gain K is constructed as follows:

- 1 Let $r = \text{rank } X_-$.
- 2 Write $SX_- = \begin{bmatrix} \hat{X}_- \\ 0 \end{bmatrix}$ where S is **nonsingular** and $\hat{X}_- \in \mathbb{R}^{r \times T}$ has rank r .
- 3 Define $\hat{X}_+ := [I_r \quad 0] SX_+$.
- 4 There exists $\Theta \in \mathbb{R}^{T \times r}$ solving the following **linear matrix inequality**:

$$\hat{X}_- \Theta = \Theta^\top \hat{X}_-^\top \quad \text{and} \quad \begin{bmatrix} \hat{X}_- \Theta & \hat{X}_+ \Theta \\ \Theta^\top \hat{X}_+^\top & \hat{X}_- \Theta \end{bmatrix} > 0.$$

- 5 Take $K = [K_1 \quad K_2] S$, where $K_1 = U_- \Theta (\hat{X}_- \Theta)^{-1}$ and K_2 is arbitrary.

³Shakouri, van Waarde, Baltussen and Heemels, *Data-driven stabilization with prior knowledge on controllability and stabilizability*, under prep., 2025.

Theorem³ If $u_{[0, T-1]}$ is **persistently exciting** of order $n+1$ then $(u_{[0, T]}, x_{[0, T]})$ are informative for stabilization with respect to $\mathcal{M}_{\text{stab}}^{m, n}$ for any $x_{[0, T]}$ such that

$$\begin{bmatrix} u_{[0, T]} \\ x_{[0, T]} \end{bmatrix} \in \mathfrak{B}_{T+1}(A_{\text{true}}, B_{\text{true}}).$$

Moreover, a suitable feedback gain K is constructed as follows:

- 1 Let $r = \text{rank } X_-$.
- 2 Write $SX_- = \begin{bmatrix} \hat{X}_- \\ 0 \end{bmatrix}$ where S is **nonsingular** and $\hat{X}_- \in \mathbb{R}^{r \times T}$ has rank r .
- 3 Define $\hat{X}_+ := [I_r \quad 0] SX_+$.
- 4 There exists $\Theta \in \mathbb{R}^{T \times r}$ solving the following **linear matrix inequality**:

$$\hat{X}_- \Theta = \Theta^\top \hat{X}_-^\top \quad \text{and} \quad \begin{bmatrix} \hat{X}_- \Theta & \hat{X}_+ \Theta \\ \Theta^\top \hat{X}_+^\top & \hat{X}_- \Theta \end{bmatrix} > 0.$$

- 5 Take $K = [K_1 \quad K_2] S$, where $K_1 = U_- \Theta (\hat{X}_- \Theta)^{-1}$ and K_2 is arbitrary. Then, $A + BK$ is **Schur** for all $(A, B) \in \Sigma_{\mathcal{D}} \cap \mathcal{M}_{\text{stab}}^{m, n}$.

³Shakouri, van Waarde, Baltussen and Heemels, *Data-driven stabilization with prior knowledge on controllability and stabilizability*, under prep., 2025.

Fundamental lemma

Universal inputs

Online experiment design

Experiment design for identification

Experiment design for stabilization

Conclusions

Take-away messages:

1 Persistently exciting inputs are **universal**

- ▶ allow parameterization of restricted behaviors of **all controllable systems**
- ▶ They are the **only** type of inputs with this property

Take-away messages:

- 1 Persistently exciting inputs are **universal**
 - ▶ allow parameterization of restricted behaviors of **all controllable systems**
 - ▶ They are the **only** type of inputs with this property
- 2 **Online** experiment design: parameterization of the **true** restricted behavior
 - ▶ input choice is guided by past input/output data
 - ▶ reduction in number of samples

Take-away messages:

- 1 Persistently exciting inputs are **universal**
 - ▶ allow parameterization of restricted behaviors of **all controllable systems**
 - ▶ They are the **only** type of inputs with this property
- 2 **Online** experiment design: parameterization of the **true** restricted behavior
 - ▶ input choice is guided by past input/output data
 - ▶ reduction in number of samples
- 3 Shortest experiments for **identification** require:
 - ▶ online input design
 - ▶ online adaptation of **Hankel matrix depth**

Take-away messages:

- 1 Persistently exciting inputs are **universal**
 - ▶ allow parameterization of restricted behaviors of **all controllable systems**
 - ▶ They are the **only** type of inputs with this property
- 2 **Online** experiment design: parameterization of the **true** restricted behavior
 - ▶ input choice is guided by past input/output data
 - ▶ reduction in number of samples
- 3 Shortest experiments for **identification** require:
 - ▶ online input design
 - ▶ online adaptation of **Hankel matrix depth**
- 4 Persistently exciting inputs enable **stabilization** of stabilizable systems

Thank you!