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Motivation: without experiment design methods,
1 there are no guarantees that collected data are informative
2 trial-and-error leads to large data sets
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The fundamental lemma was proven in (Willems et al., 2005).

Applications:
1 System identification via subspace methods .
2 Direct data-driven control.

Extensions:
I multiple datasets (van Waarde et al., 2020),
I parameter-varying systems (Verhoek et al., 2021)
I descriptor systems (Schmitz et al., 2022)
I robust version (Coulson et al., 2022)
I stochastic systems (Pan et al., 2022)
I switched systems (Petreczky and Bako, 2023)
I continuous-time systems (Rapisarda et al., 2023)
I frequency domain counterpart (Meijer et al., 2023)
I 2D systems (Rapisarda and Zhang, 2024)
I and several classes of nonlinear systems.
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Consider the input-state-output system

x(t+ 1) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t),

(?)

where u(t) ∈ Rm, x(t) ∈ Rn and y(t) ∈ Rp for all t ∈ Z+.

Identify (?) with the quadruple (A,B,C,D) ∈Mm,n,p, where

Mm,n,p := Rn×n × Rn×m × Rp×n × Rp×m.

We also define

Mm,n,p
cont := {(A,B,C,D) ∈Mm,n,p | (A,B) is controllable}.

Definition: We define the (input-output) behavior of (A,B,C,D) ∈Mm,n,p by

B(A,B,C,D) := {(u, y) : Z+ → Rm × Rp | ∃x : Z+ → Rn

such that (?) holds for all t ∈ Z+}.
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Given f : Z+ → Rq and a positive k ∈ Z+, we define

f[0,k−1] :=


f(0)
f(1)
...

f(k − 1)

 .

Definition: Let k, T ∈ Z+ be positive with k 6 T . We define the Hankel matrix:

Hk(f[0,T−1]) :=


f(0) f(1) · · · f(T − k)
f(1) f(2) · · · f(T − k + 1)
...

...
...

f(k − 1) f(k) · · · f(T − 1)

 .
f[0,T−1] is persistently exciting of order k if Hk(f[0,T−1]) has full row rank.

Definition: We define the k-restricted behavior of (A,B,C,D) ∈Mm,n,p by

Bk(A,B,C,D) :=
{[
u[0,k−1]
y[0,k−1]

]
| (u, y) ∈ B(A,B,C,D)

}
.

Moreover, we use the shorthand notation: Bk(A,B) := Bk(A,B, In, 0).
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Now, consider the data:
[
u[0,T−1]
y[0,T−1]

]
∈ B[0,T−1](A,B,C,D).

Let L ∈ [1, T ]. By time-invariance, each column of

HL(u[0,T−1])

HL(y[0,T−1])

 =



u(0) u(1) · · · u(T − L)
...

...
...

u(L− 1) u(L) · · · u(T − 1)

y(0) y(1) · · · y(T − L)
...

...
...

y(L− 1) y(L) · · · y(T − 1)


(�)

is in the restricted behavior B[0,L−1](A,B,C,D).

Since B[0,L−1](A,B,C,D) is a subspace, all linear combinations of the
columns of (�) are also in B[0,L−1](A,B,C,D).
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In other words:

im
[
HL(u[0,T−1])
HL(y[0,T−1])

]
⊆B[0,L−1](A,B,C,D).

Important question: Under which conditions do we have

im
[
HL(u[0,T−1])
HL(y[0,T−1])

]
= B[0,L−1](A,B,C,D) ?

This would allow us to parameterize all length-L trajectories using data:[
ū[0,L−1]
ȳ[0,L−1]

]
∈ B[0,L−1](A,B,C,D)⇐⇒

[
ū[0,L−1]
ȳ[0,L−1]

]
=
[
HL(u[0,T−1])
HL(y[0,T−1])

]
g

for some g ∈ RT−L+1.
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Theorem (Willems et al., 2005): Assume that (A,B,C,D) ∈Mm,n,p
cont and

u[0,T−1] is persistently exciting of order n+ L. Then:

the rank condition
rank

[
H1(x[0,T−L])
HL(u[0,T−1])

]
= n+mL

holds for all x[0,T−L] such that
[
u[0,T−L]
x[0,T−L]

]
∈ BT−L+1(A,B).

Remarks:
PE of order n+ L requires T > (m+ 1)(n+ L)− 1
If only upper bound N > n is given, use u[0,T−1] that is PE of order N + L

If L > `(C,A) where `(C,A) is the smallest integer such that

rank
[
C> (CA)> · · · (CA`−1)>

]
=rank

[
C> (CA)> · · · (CA`)>

]
(i.e., the lag of the system), then B[0,L−1] uniquely determines B
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Question: To what extent is the PE condition necessary to parameterize all
length-L trajectories?

Example: Consider A =
[
0 1
0 0

]
, B =

[
0
1

]
, C =

[
1 0

]
, and D = 0.

Let L = 1 and u(0) = 1, and u(1) = u(2) = 0 (not PE of order 3 = n+ L).
We have [

H1(u[0,2])
H1(y[0,2])

]
=
[

1 0 0
x1(0) x2(0) 1

]
,

which has rank 2 for all x(0) ∈ R2. Thus, B1(A,B,C,D) = im
[
H1(u[0,2])
H1(y[0,2])

]
.
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Conclusion: For a single system, persistency of excitation is not necessary.

But PE inputs are universal because they guarantee sufficiently rich data for all
controllable systems...

Definition: An input u[0,T−1] is called universal for determining the L-restricted
behavior if

BL(A,B,C,D) = im
[
HL(u[0,T−1])
HL(y[0,T−1])

]
for all (A,B,C,D) ∈Mm,n,p

cont and all y[0,T−1] satisfying[
u[0,T−1]
y[0,T−1]

]
∈ BT (A,B,C,D).

Observation and question:
1 If u[0,T−1] is PE of order n+ L then it is universal.
2 But are there other universal inputs?
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Theorem: The input u[0,T−1] is universal for determining the L-restricted
behavior if and only if it is persistently exciting of order n+ L.

Comments:
The “if” part follows from Willems et al.’s fundamental lemma.
For the “only if” part, given an input that is not PE, we show how to find

1 a controllable system and
2 an initial state

such that the data do not parameterize the L-restricted behavior.
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Idea of the proof (“only if”):
1 Suppose that u[0,T−1] is not PE of order n+ L.
2 Let η ∈ kerHn+L(u[0,T−1])> be a nonzero vector.
3 Partition η> =

[
η>0 · · · η>n+L−1

]
, where η0, . . . , ηn+L−1 ∈ Rm.

4 Take A ∈ Rn×n and ζ ∈ Rn such that
I (A, ζ) is controllable, and
I if λ is an eigenvalue of A then

∑n+L−1
i=0 λiηi 6= 0.

5 Define En+L−1 := 0 and Ei−1 := AEi + ζη>i for i ∈ [−1, n+ L− 1].
6 Construct B := E−1 and x(0) := −

∑n+L−2
i=0 Eiu(i). Then (A,B) is

controllable.
7 It can be shown that [

w> v>
] [H1(x[0,T−L])
HL(u[0,T−1])

]
= 0

for some nonzero w ∈ Rn and v ∈ RmL.
8 Define C ∈ Rp×n such that its first row is w>, and D := 0.

9 Finally, it can be shown that BL(A,B,C,D) 6= im
[
HL(u[0,T−1])
HL(y[0,T−1])

]
.
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Conclusion: Universal inputs are precisely the persistently exciting ones.

Next (natural) question: Can we improve over PE if we care about only the
restricted behavior of the true data-generating system?

Not so obvious, because that system is not known beforehand...
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Let’s first talk about what is known and unknown.

Definition: Mm,n,p
min := {(A,B,C,D) ∈Mm,n,p

cont | (C,A) is observable}.

The (data-generating) unknown true system satisfies:

(Atrue, Btrue, Ctrue, Dtrue) ∈Mm,ntrue,p
min ,

for some (unknown) state-space dimension ntrue.

Let `true denote the lag of (Atrue, Btrue, Ctrue, Dtrue). Given: L > `true.

Problem: How to design u[0,T−1] such that, for a fixed unknown x(0),

im
[
HL(u[0,T−1])
HL(y[0,T−1])

]
= BL(Atrue, Btrue, Ctrue, Dtrue),

where y[0,T−1] is the output of the true system resulting from u[0,T−1] and x(0)?
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A partial answer (using fundamental lemma):
1 Since L > `true and (Ctrue, Atrue) is observable, ntrue 6 (L− 1)p =: N

2 Now choose u[0,T−1] persistently exciting of order N + L

3 Then u[0,T−1] is also persistently exciting of order ntrue + L

4 By the fundamental lemma,

im
[
HL(u[0,T−1])
HL(y[0,T−1])

]
= BL(Atrue, Btrue, Ctrue, Dtrue).

Remarks:
This requires T > (m+ 1)(N + L)− 1 samples
However, as PE inputs are universal this may be overkill...
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(Atrue, Btrue, Ctrue, Dtrue)

x(0)

u(0)

y(0)

(Atrue, Btrue, Ctrue, Dtrue)

u(1)

y(1)

(Atrue, Btrue, Ctrue, Dtrue)

u(T − 1)

y(T − 1)

... ...
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Theorem: Define T := ntrue + (m+ 1)L− 1. Let u[0,L−1] be nonzero. For all
t ∈ [L, T − 1] there exists an (m− 1)-dimensional affine set At ⊆ Rm such that

rank
[

HL(u[0,t])
HL−1(y[0,t−1])

]
= rank

[
HL(u[0,t−1])
HL−1(y[0,t−2])

]
+ 1

whenever u(t) 6∈ At.

Interpretation: We can increase the rank of the Hankel matrix at every time step!
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HL(u[0,T−1])
HL(y[0,T−1])

]
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This implies that im
[
HL(u[0,T−1])
HL(y[0,T−1])

]
= BL(Atrue, Btrue, Ctrue, Dtrue).

Note: T is not known before the experiment. It is found online because it equals
the smallest t for which
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the smallest t for which

rank
[

HL(u[0,t])
HL−1(y[0,t−1])

]
= rank

[
HL(u[0,t−1])
HL−1(y[0,t−2])

]
for all u(t) ∈ Rm.



Example 22/41

True system and initial state:

Atrue =
[
0 1
1 1

]
, Btrue =

[
0
1

]
, Ctrue =

[
1 0
0 1

]
, Dtrue =

[
0
2

]
, x(0) =

[
−1
0

]

Define L = 3, u[0,2] =
[
1 0 0

]> 6= 0, and measure H1(y[0,2]) =
[
−1 0 0
2 0 0

]
;

rank

H3(u[0,2])

H2(y[0,1])

 = rank



1
0
0
−1
2
0
0


= 1
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True system and initial state:
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0
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[
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]> 6= 0 and design the rest of the inputs online

rank

H3(u[0,5])

H2(y[0,4])

 = rank



1 0 0 1
0 0 1 0
0 1 0 u(5)
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
= 4 for any u(5)

Take u(5) = 0
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True system and initial state:
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[
0 1
1 1

]
, Btrue =

[
0
1

]
, Ctrue =

[
1 0
0 1

]
, Dtrue =

[
0
2

]
, x(0) =

[
−1
0

]

Define u[0,2] =
[
1 0 0

]> 6= 0 and design the rest of the inputs online

rank

H3(u[0,6])

H2(y[0,5])

 = rank



1 0 0 1 0
0 0 1 0 0
0 1 0 0 u(6)
−1 0 0 0 0
2 0 0 2 1
0 0 0 0 1
0 0 2 1 1


= 5 for any u(6)

So we take u(6) = 0.
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rank
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
= 5 6= 6 for any u(7)

So we do not apply u(7) and stop the procedure.
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[
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It follows that

rank

H3(u[0,6])

H3(y[0,6])

 = rank



1 0 0 1 0
0 0 1 0 0
0 1 0 0 0
−1 0 0 0 0
2 0 0 2 1
0 0 0 0 1
0 0 2 1 1
0 0 0 1 1
0 2 1 1 2


= 5 = ntrue +mL.

Hence, im
[
H3(u[0,6])
H3(y[0,6])

]
= BL(Atrue, Btrue, Ctrue, Dtrue).

# of samples: T = 7 instead of T > 13 required for PE of order 7 = 4 + 3.
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Persistently exciting inputs of order n+ L are universal

They enable the determination of the restricted behavior

BL(A,B,C,D)

when applied to any (A,B,C,D) ∈Mm,n,p
cont .

Universality and persistency of excitation of order n+ L are equivalent
PE of order n+ L requires T > (m+ 1)(n+ L)− 1 samples.

Online experiment design tailors u[0,T−1] to the data-generating system
Such inputs are not universal
The online approach only requires T = ntrue + (m+ 1)L− 1 samples.
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Experiment design for identification 25/41

Recall: We have seen two methods that guarantee

im
[
HL(u[0,T−1])
HL(y[0,T−1])

]
= BL(Atrue, Btrue, Ctrue, Dtrue).

Next question: how to choose inputs such that we can find

B(Atrue, Btrue, Ctrue, Dtrue)

i.e., identify the system from data?

Possible solution:
1 Find BL(Atrue, Btrue, Ctrue, Dtrue) with L > `true

2 Obtain1 B(Atrue, Btrue, Ctrue, Dtrue) from this restricted behavior.

This requires T = ntrue + (m+ 1)L− 1 samples.

Question: Is this sample-efficient or is there a better approach?

1Markovsky et al., Algorithms for deterministic balanced subspace identification, Automatica, 2005.
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To answer that question, we need conditions on given data (u[0,T−1], y[0,T−1])
that enable system identification.

Sufficient conditions:

Necessary and sufficient conditions:

We will now review these conditions...
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Experiment design for identification 27/41

Prior knowledge: `true < L, ntrue 6 N and

(Atrue, Btrue, Ctrue, Dtrue) ∈Mm,ntrue,p
min .

Observations:
1 If only L is given, choose N := (L− 1)p.
2 If only N is given, choose L := N + 1.

Definition: The data (u[0,T−1], y[0,T−1]) are informative for SysId if[
u[0,T−1]
y[0,T−1]

]
∈ BT (A,B,C,D) (4)

for some (A,B,C,D) ∈Mm,n,p
min with `(C,A) < L and n 6 N implies

B(A,B,C,D) = B(Atrue, Btrue, Ctrue, Dtrue).

Two important integers:
`min minimum lag of all data-consistent systems
nmin minimum state dimension of all data-consistent systems
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Informativity for identification 28/41

Fact: `true < Ld := N − nmin + `min + 1 data-guided bound on lag

La := min(L,Ld) actual upper bound

Theorem (Camlibel and Rapisarda, 2024): The data (u[0,T−1], y[0,T−1]) are
informative for SysId if and only if

T > nmin + (m+ 1)La − 1 and rank
[
HLa(u[0,T−1])
HLa(y[0,T−1])

]
= nmin +mLa.

Moreover, if these conditions are satisfied, then `true = `min and ntrue = nmin.

Observation: The shortest possible informative data length is

T := ntrue + (m+ 1)L− 1 where L := min(L,N − ntrue + `true + 1)

Question: Is it possible to generate informative data (u[0,T−1], y[0,T−1]), i.e,

rank
[
HL(u[0,T−1])
HL(y[0,T−1])

]
= ntrue +mL

without knowing `true and ntrue in advance?
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Informativity for identification 29/41

For the data (u[0,t−1], y[0,t−1]), define

Ht
k :=

Hk(u[0,t−1])

Hk(y[0,t−1])

 , Gt
k :=

 Hk(u[0,t−1])

Hk−1(y[0,t−2])

 ,
`tmin, ntmin, Lt

d, and Lt
a := min(L,Lt

d).

Main idea: start with k = 1 and iterate between the following steps:
increase the rank of Gt

k until no progress can be made
increase the depth k by one

Important question: when to stop?
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Stopping criterion 30/41

Lemma: We have that

rankGt
k 666 m+ rankHt

k−1

Lemma: If
rankGt

k < m+ rankHt
k−1 ,

then there exists an m− 1 dimensional affine set At ⊆ Rm such that

rankGt+1
k = rankGt

k + 1 whenever u(t) 6∈ At.

Theorem: Suppose that (u[0,t−1], y[0,t−1]) is such that
Ht

k has full column rank, and
rankGt

k = m+ rankHt
k−1 .

Then, k = Lt
a implies that

1 k = L,
2 t = T , and
3 (u[0,T−1], y[0,T−1]) are informative for SysId.
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Algorithm for shortest experiment 31/41

1: procedure OnlineExperiment(L,N)
2: choose u[0,m−1] nonsingular
3: measure outputs y[0,m−1]
4: t← m, k ← 1
5: while k 6=Lt

a do . stopping criterion
6: k ← k + 1
7: if t = k − 1 then
8: choose u(t) arbitrarily . Gt

k has (full) rank 1
9: measure output y(t)
10: t← t+ 1
11: end if
12: while rankGt

k < m+ rankHt
k−1 do

13: choose u(t) 6∈ At . rankGt+1
k = rankGt

k + 1
14: measure output y(t)
15: t← t+ 1
16: end while
17: end while
18: return (u[0,t−1], y[0,t−1]) . (k, t) = (L,T ) and data are informative
19: end procedure



Example 32/41

True system and initial state:

Atrue =
[
0 1
1 1

]
, Btrue =

[
0
1

]
, Ctrue =

[
1 0
0 1

]
, Dtrue =

[
0
2

]
, x(0) =

[
−1
0

]

Hence, ntrue = 2 and `true = 1. We take N = 2 and L = 3.

u(0) = 1 =⇒ y(0) =
[
−1
2

]
. Let t = 1 and k = 1.

n1
min = 0, `1

min = 0 =⇒ L1
a = min(L,N − n1

min + `1
min + 1) = 3 =⇒ k 6= L1

a

Set k = 2. Since t = k − 1, let u(1) = 0 (arbitrary) =⇒ y(1) =
[
0
0

]
Now increase rank:

G3
2 =


1 0
0 u(2)
−1 0
2 0


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min = 1 and n5
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a = min(3, 2− 2 + 1 + 1) = 2 =⇒ k = L5

a.

Conclusion: The data (u[0,4], y[0,4]) are informative for SysId

Reduction in # samples for identification: from T = 7 to T = 5
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Conclusion: The shortest experiments for system identification require:
1 Online design of the inputs
2 Online adaptation of the depth of the Hankel matrix

Online design using depth-L Hankel matrix is shortest only if

L 6 N − ntrue + `true + 1

Larger example: For a system with
m = 80, p = 10, `true = 20, ntrue = 100,

and
L = 101, N = 150,

fundamental lemma (PE of order N + L) requires: T = 20330
online design (fixed depth) requires: T = 8280
the shortest experiment requires: T = 5850
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Experiment design for stabilization 35/41

Consider the stabilizable input-state system

x(t+ 1) = Atruex(t) +Btrueu(t)

where u(t) ∈ Rm and x(t) ∈ Rn for all t ∈ Z+.

We identify the system with the pair (Atrue, Btrue) ∈Mm,n, where

Mm,n := Rn×n × Rn×m.

We also defineMm,n
stab := {(A,B) ∈Mm,n | (A,B) is stabilizable}.

Note: (Atrue, Btrue) ∈Mm,n
stab .

Data: D = (u[0,T ], x[0,T ]) collected from (Atrue, Btrue).

Definition: The set ΣD of all data-consistent systems is defined as

ΣD :=
{

(A,B) ∈Mm,n |
[
u[0,T ]
x[0,T ]

]
∈ BT +1(A,B)

}
.
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Aim: Use the data D = (u[0,T ], x[0,T ]) to find a stabilizing feedback gain
K ∈ Rm×n such that Atrue +BtrueK is Schur.

Definition: The data D are informative for stabilization with respect toMm,n
stab

if there exists a matrix K ∈ Rm×n such that

A+BK is Schur

for all (A,B) ∈ ΣD ∩Mm,n
stab .

Problem: Design the inputs u[0,T ] such that (u[0,T ], x[0,T ]) are informative for
stabilization with respect toMm,n

stab for all x[0,T ] such that[
u[0,T ]
x[0,T ]

]
∈ BT +1(Atrue, Btrue).

Note: Willems’ fundamental lemma does not apply (no controllability)...
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Observation: In this setting it is in general impossible to identify the system.

Example: Suppose that Atrue is Schur and Btrue = 0. Let x(0) = 0.

Then for any input u[0,T ], D = (u[0,T ], x[0,T ]) = (u[0,T ], 0).

Thus, ΣD ∩Mm,n
stab = {(A,B) ∈Mm,n

stab | Bu(t) = 0 ∀ t ∈ [0, T − 1]}.

Notation: Given data (u[0,T ], x[0,T ]), we define U− :=
[
u(0) · · · u(T − 1)

]
,

X− =
[
x(0) · · · x(T − 1)

]
and X+ =

[
x(1) · · · x(T )

]
.

Theorem2: If u[0,T−1] is persistently exciting of order n+ 1 then

im
[
X−
U−

]
= (R+K)× Rm,

where
R := im

[
Btrue AtrueBtrue · · · An−1

trueBtrue
]

K := im
[
x(0) Atruex(0) · · · An−1

truex(0)
]
.

2Yu et al., On controllability and persistency of excitation in data-driven control: Extensions of Willems’ fundamental lemma, CDC, 2021.
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Theorem3 If u[0,T−1] is persistently exciting of order n+ 1 then (u[0,T ], x[0,T ])
are informative for stabilization with respect toMm,n

stab for any x[0,T ] such that[
u[0,T ]
x[0,T ]

]
∈ BT +1(Atrue, Btrue).

Moreover, a suitable feedback gain K is constructed as follows:
1 Let r = rankX−.

2 Write SX− =
[
X̂−
0

]
where S is nonsingular and X̂− ∈ Rr×T has rank r.

3 Define X̂+ :=
[
Ir 0

]
SX+.

4 There exists Θ ∈ RT×r solving the following linear matrix inequality:

X̂−Θ = Θ>X̂>− and
[
X̂−Θ X̂+Θ

Θ>X̂>+ X̂−Θ

]
> 0.

5 Take K =
[
K1 K2

]
S, where K1 = U−Θ(X̂−Θ)−1 and K2 is arbitrary.

Then, A+BK is Schur for all (A,B) ∈ ΣD ∩Mm,n
stab .

3Shakouri, van Waarde, Baltussen and Heemels, Data-driven stabilization with prior knowledge on controllability and stabilizability, under prep., 2025.
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Take-away messages:
1 Persistently exciting inputs are universal

I allow parameterization of restricted behaviors of all controllable systems
I They are the only type of inputs with this property

2 Online experiment design: parameterization of the true restricted behavior
I input choice is guided by past input/output data
I reduction in number of samples

3 Shortest experiments for identification require:
I online input design
I online adaptation of Hankel matrix depth

4 Persistently exciting inputs enable stabilization of stabilizable systems
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