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Consider the discrete-time system
(E(t + 1) = Atruex(t) + Btrueu(t)u

referred to as the true system, where z(¢) € R” and u(t) € R™.

The system matrices (Atrue, Birue) € M = R™ ™ x R ™ are unknown.

We have access to input-state data of the form

D= ([u(()) w(l) - w(T— 1)] , [x(()) x(1) - x(T)]) .

Overall goal: Given the data D, find a state feedback controller u(t) = Kx(t)
such that

CC(t + ].) = (Atruc + BtrucK)x(t)

is asymptotically stable.

Equivalently: Given D, find K € R™*" such that A¢;ue + Birue K is Schur.
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The true system satisfies

X+ = AtrueXf + BirueU-—.

We define the set of all data-consistent systems as

Spi={(A,B)e M| X, = AX_ + BU_}.

Data-driven stabilization problem: Given the data D, find K € R™*" such

that A+ BK is Schur for all (4, B) € Xp.
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-1

1

The controller K :=U_X! = —f] stabilizes all systems in

= 15+a 0.5a 14+a
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Definition: We say the data D are informative for stabilization if there exists a
K € R™*" such that A+ BK is Schur for all (4, B) € £p.

Proposition (vW et al., 2020): D are informative for stabilization if and only if
rank X_ = n and there exists a right inverse X' such that X+X1 is Schur.
In this case, K := U_X_ is a stabilizing feedback gain for all systems in Xp.

Remark: If the data are informative, a suitable X' may be computed as follows:
m Find © € RT*" solving the linear matrix inequality (LMI):

AT X e X,0
X_@—@ X_ and |:@TXI X,@ > O

m Set X :=O(Xx_0)".

m Finally, K =U_X'" =U_O(X_0)"L.

Remark: There are alternative LMIs" where size of variables is independent of 7.

1vW and Camlibel, “A Matrix Finsler's Lemma with Applications to Data-Driven Control", in IEEE CDC, 2021.
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K € R™*" such that A+ BK is Schur for all (4,B) € ¥p N Zpk.

Definition: The data D are called ¥ -informative for stabilization if there exists
K € R™*" such that A+ BK is Schur for all (4, B) € ¥p N Xpk.

This talk: Y k-informativity for 3, = Ycone and Xk = Ygial,, where
Teont := {(4,B) € M | (A, B) is controllable}
Ystab = {(A, B) € M | (A, B) is stabilizable}.

Recall: The pair (4, B) € M is called
m controllable if R(A,B) :=im[B AB --- A" 'B] equals R™.
m stabilizable if there exists F' € R™*™ such that A + BF is Schur.

Note: This is challenging because ¥p N Xk is not convex!
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Example: Consider the data

1 2 4 2
U_:[l 2 —1], X_:{O 0 O}’ and X+_{0 0
We have
1 « 1
s ((E ) IEEELS
Since rank X_ =1 # 2, D are not informative for stabilization.

However, we have

zpmzstab:{dé ;]H) la €R, |B|<1}.

It is evident that K = [—1 O] stabilizes all systems in Xp N Ygpab-

Therefore, D are X4.,—informative for stabilization.
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We focus on two types of prior knowledge:

Epk = Econt and Epk = Estab~

Problem: Find necessary and sufficient conditions under which the data D are
(i) Xeont—informative for stabilization;

(ii) Xstap—informative for stabilization.
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Theorem: Suppose that (Atyue, Btrue) € Lcont- 1hen, the following statements
are equivalent:

(a) D are X¢ont—informative for stabilization.
(b) D are informative for stabilization.

Moreover, if K is such that A+ BK is Schur for all (A, B) € ¥p N Xeont, then
A+ BK is Schur for all (A, B) € ¥p.

Interpretation: Prior knowledge on controllability does not help!

Remark: The theorem is based on the following two lemmas:

Lemma 1: Let (M, N) € Xcont and (My, Ng) € M. Then, the pair
(M + aMy, N + aNy) is controllable for all but at most n? values of o € R.

Lemma 2: Let ¢ € R, F C R be a finite set, and M, N € R"*" be such that
M + 6N is Schur for all § € [e,00)\F. Then, M + 0N is Schur for all § € R.
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Theorem (necessary conditions): Suppose that (A¢rue; Birue) € Zstab and D
are Ygiap—informative for stabilization. Then the following statements hold:

(a) imX, CimX_.

(b) If rank X_ < n, then im F;_] =im X_ X R™. (= Biyue can be recovered)

Recall: If D are informative for stabilization (without prior knowledge), then

imX_ =R".

Theorem (necessary and sufficient conditions): Suppose that
(Atruea Btrue) € Xgtab- Then:
m If rank X_ = n, the following are equivalent:
(i) D are Xgiap—informative for stabilization.
(if) D are informative for stabilization.
m If rank X < n then D are ¥4 .p,—informative for stabilization if and only if
(1) imX, CimX_, and

(2) im [)U(_:| =im X_ x R™.
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12 4
U-=[1 2 1],X_{0 0 0}, and X+:{O o ol

1 0
imX_ =imX, =im B] Also, im[ _} =im |0 O =imX_ x R.
0 1

So the data D are Y ,,-informative for stabilization!

Discussion: The conditions for the case rank X_ < n are very important in
situations where (Agrue; Birue) € Zeont -
Indeed, in this case, when z(0) = 0,

rank X_ <n

for any sequence of inputs u(0), u(1),...,u(T —1).

Remark: In case rank X_ < n, there are also LMI methods® for constructing K|

2
Shakouri, vW, Baltussen, and Heemels, “Data-Driven Stabilization Using Prior Knowledge on Stabilizability and Controllability", submitted, 2025.
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We consider a (discretized) model of a three-tank system:

0.9429 0.0473 0.0012
Atrue = |0.0473  0.9524 0.0476 | ,

0 0 0.9512
9321 ‘ Tank 2 — Tank 1 ‘ le
0.0024 @ ‘ |
Birue = |0.0976 | . | - i |
0

1 Monte Carlo simulations with 1000 scenarios;
2 For each scenario,

> we simulate the system from ¢t = 0 to ¢t = 100;
> the input and initial condition ~ Poisson distribution with parameter A = 1.

3 We use the first T samples for each round of analysis; T' = 3,4, 5, 10, 100.
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0.0473 0.9524 0.0476 ,

0.9429 0.0473 0.0012
Atrue -
0 0 0.9512

0.0024 Tag; 2 Taﬁk S
Btrue = 10.0976| . | “ Basin ‘
0
Table: Informativity of randomly generated data.
Informative for Y pk—informative for stabilization
T system identification Dok = M Sk = Sstab
3 0% 8.1% 42%
4 62.4% 63.2% 99.4%
5 62.8% 63.2% 99.8%
10 63.2% 63.2% 100%

100 63.2% 63.2% 100%
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Remark: For certain Atue, Birue and z(0), Algorithm 1 even returns the

shortest experiments for stabilization!
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Take-away messages: For data-driven stabilization:

1 controllability as prior knowledge is not helpful

2 prior knowledge on stabilizability leads to weaker conditions

3 an online experiment design algorithm can generate informative data

Future work:

m other types of prior knowledge
m noisy data

Further reading:
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Data-Driven Stabilization Using Prior Knowledge on Stabilizability and
Controllability
Amir Shakouri, Henk J. van Waarde, Tren M.J.T. Baltussen, W.P.M.H. (Maurice) Heemels

Abstract—In this work, we study data-driven stabilization of data-driven predictive control using freq d in data has also
linear time-i mvananl systems using pnor knowledge of system-  peen studied in [11].
theoretic . . . .
To formalize this, we extend the concepl nl data Inlormatlvlty by The majority of papers on data-driven control work in the sem_ng
requiring the existence of a co ] s all systems }vl-{ere lhe‘parfxm‘elers of Lhe sys'('em are oemplelely l‘mkfm\‘vn, which

Experiment design using prior knowledge
on controllability and stabilizability

Amir Shakouri* Henk J. van Waarde ** M. Kanat Camlibel *

* Bernoulli Institute for Math tics, Comp Science and Artificial
Intelligence, University of Groningen, The Netherlands (e-mail:
a.shakouri@rug.nl, h.j.van.waarde@rug.nl,
m.k.camlibel@rug.nl).

Abstract: In this paper, we consider the problem of designing input signals for an unknown
linear time-invariant system in such a way that the resulting input-state data is suitable for
identification or stabilization. We will take into account prior knowledge on system-theoretic
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