

Data-driven stabilization using prior knowledge on controllability and stabilizability

**O'Higgins Seminar on Optimization
4 December 2025**

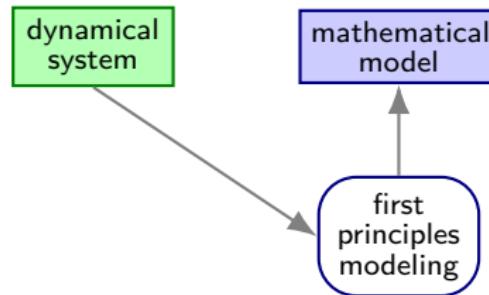
Henk van Waarde

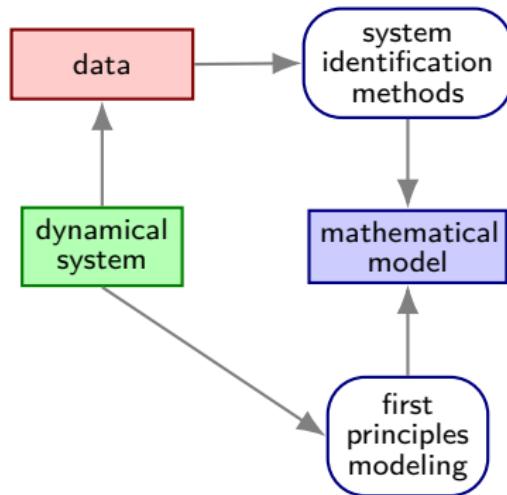
Systems, Control and Optimization Group

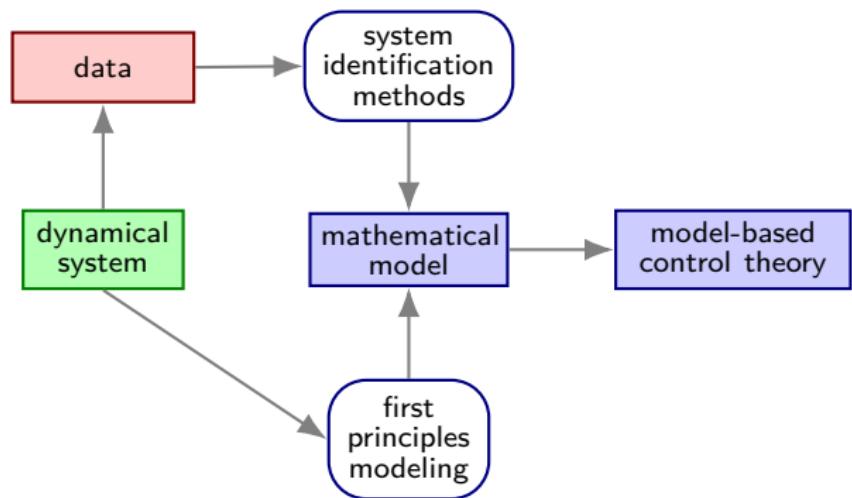
Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence

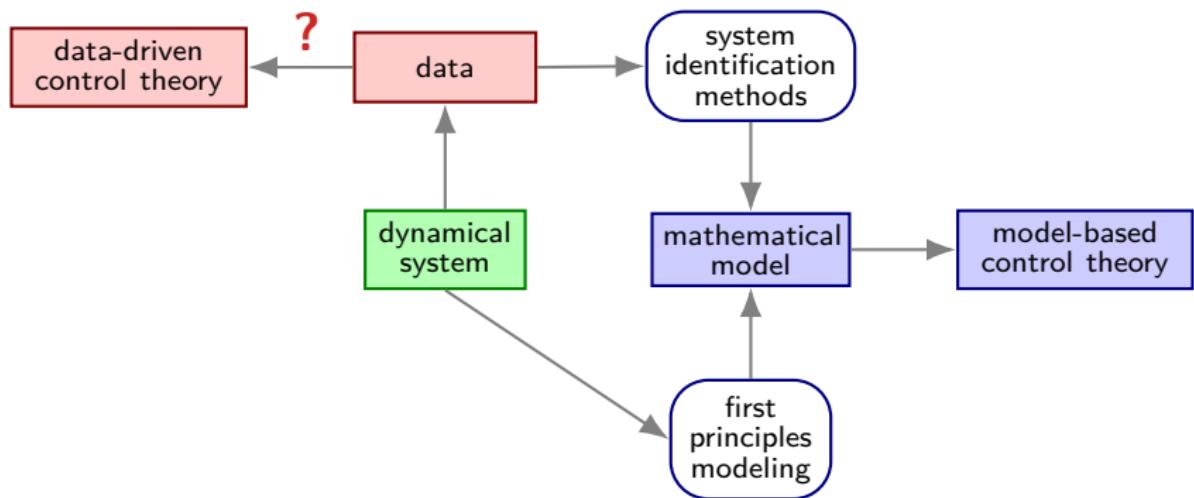
University of Groningen

dynamical
system









- 1 Data-driven control: Finding a controller **directly from data**.

- 1 Data-driven control: Finding a controller directly from data.
 - ▶ Less computations due to **bypassing system identification**.

1 Data-driven control: Finding a controller directly from data.

- ▶ Less computations due to bypassing system identification.
- ▶ Finding a feedback law when **identification is not feasible**.

- 1 Data-driven control: Finding a controller directly from data.
 - ▶ Less computations due to bypassing system identification.
 - ▶ Finding a feedback law when identification is not feasible.
- 2 Data-driven stabilization: Finding a stabilizing controller directly from data.

- 1 Data-driven control: Finding a controller directly from data.
 - ▶ Less computations due to bypassing system identification.
 - ▶ Finding a feedback law when identification is not feasible.
- 2 Data-driven stabilization: Finding a stabilizing controller directly from data.
 - ▶ Using data generated by **persistently exciting input** (De Persis and Tesi, 2020)¹.

¹C. De Persis, P. Tesi, "Formulas for data-driven control: Stabilization, optimality, and robustness," *IEEE Transactions on Automatic Control*, vol. 65, no. 3, pp. 909–924, 2020.

- 1 Data-driven control: Finding a controller directly from data.
 - ▶ Less computations due to bypassing system identification.
 - ▶ Finding a feedback law when identification is not feasible.
- 2 Data-driven stabilization: Finding a stabilizing controller directly from data.
 - ▶ Using data generated by persistently exciting input (De Persis and Tesi, 2020).
 - ▶ **Necessary and sufficient conditions** on the data (van Waarde et al., 2020)².

²H. J. van Waarde, J. Eising, H. L. Trentelman, M. K. Camlibel, "Data informativity: A new perspective on data-driven analysis and control," *IEEE Transactions on Automatic Control*, vol. 65, no. 11, pp. 4753–4768, 2020.

- 1 Data-driven control: Finding a controller directly from data.
 - ▶ Less computations due to bypassing system identification.
 - ▶ Finding a feedback law when identification is not feasible.
- 2 Data-driven stabilization: Finding a stabilizing controller directly from data.
 - ▶ Using data generated by persistently exciting input (De Persis and Tesi, 2020).
 - ▶ Necessary and sufficient conditions on the data (van Waarde et al., 2020).
- 3 Prior knowledge in data-driven control:

- 1 Data-driven control: Finding a controller directly from data.
 - ▶ Less computations due to bypassing system identification.
 - ▶ Finding a feedback law when identification is not feasible.
- 2 Data-driven stabilization: Finding a stabilizing controller directly from data.
 - ▶ Using data generated by persistently exciting input (De Persis and Tesi, 2020).
 - ▶ Necessary and sufficient conditions on the data (van Waarde et al., 2020).
- 3 Prior knowledge in data-driven control:
 - ▶ Known bounds on the system parameters (Berberich et al., 2020)³.

³J. Berberich, C. W. Scherer, F. Allgöwer, "Combining prior knowledge and data for robust controller design," *IEEE Transactions on Automatic Control*, vol. 68, no. 8, pp. 4618–4633, 2022.

- 1 Data-driven control: Finding a controller directly from data.
 - ▶ Less computations due to bypassing system identification.
 - ▶ Finding a feedback law when identification is not feasible.
- 2 Data-driven stabilization: Finding a stabilizing controller directly from data.
 - ▶ Using data generated by persistently exciting input (De Persis and Tesi, 2020).
 - ▶ Necessary and sufficient conditions on the data (van Waarde et al., 2020).
- 3 Prior knowledge in data-driven control:
 - ▶ Known bounds on the system parameters (Berberich et al., 2020).
 - ▶ Some of the parameters are **exactly known** (Huang et al., 2025)⁴.

⁴H. Huang, M. K. Camlibel, R. Carloni, H. J. van Waarde, "Data-driven stabilization of polynomial systems using density functions," *arXiv preprint*, 2025.

- 1 Data-driven control: Finding a controller directly from data.
 - ▶ Less computations due to bypassing system identification.
 - ▶ Finding a feedback law when identification is not feasible.
- 2 Data-driven stabilization: Finding a stabilizing controller directly from data.
 - ▶ Using data generated by persistently exciting input (De Persis and Tesi, 2020).
 - ▶ Necessary and sufficient conditions on the data (van Waarde et al., 2020).
- 3 Prior knowledge in data-driven control:
 - ▶ Known bounds on the system parameters (Berberich et al., 2020).
 - ▶ Some of the parameters are exactly known (Huang et al., 2025).
- 4 Prior knowledge in **system identification**:

- 1 Data-driven control: Finding a controller directly from data.
 - ▶ Less computations due to bypassing system identification.
 - ▶ Finding a feedback law when identification is not feasible.
- 2 Data-driven stabilization: Finding a stabilizing controller directly from data.
 - ▶ Using data generated by persistently exciting input (De Persis and Tesi, 2020).
 - ▶ Necessary and sufficient conditions on the data (van Waarde et al., 2020).
- 3 Prior knowledge in data-driven control:
 - ▶ Known bounds on the system parameters (Berberich et al., 2020).
 - ▶ Some of the parameters are exactly known (Huang et al., 2025).
- 4 Prior knowledge in **system identification**:
 - ▶ Stability (van Gestel et al., 2002, Lacy & Bernstein, 2003)
 - ▶ Eigenvalue constraints (Miller & De Callafon, 2013)
 - ▶ Positivity (De Santis & Farina, 2002)
 - ▶ Passivity (Goethals et al., 2003, Shali & van Waarde, 2024)

- 1 Data-driven control: Finding a controller directly from data.
 - ▶ Less computations due to bypassing system identification.
 - ▶ Finding a feedback law when identification is not feasible.
- 2 Data-driven stabilization: Finding a stabilizing controller directly from data.
 - ▶ Using data generated by persistently exciting input (De Persis and Tesi, 2020).
 - ▶ Necessary and sufficient conditions on the data (van Waarde et al., 2020).
- 3 Prior knowledge in data-driven control:
 - ▶ Known bounds on the system parameters (Berberich et al., 2020).
 - ▶ Some of the parameters are exactly known (Huang et al., 2025).
- 4 Prior knowledge in **system identification**:
 - ▶ Stability (van Gestel et al., 2002, Lacy & Bernstein, 2003)
 - ▶ Eigenvalue constraints (Miller & De Callafon, 2013)
 - ▶ Positivity (De Santis & Farina, 2002)
 - ▶ Passivity (Goethals et al., 2003, Shali & van Waarde, 2024)

This talk: data-driven stabilization using prior knowledge on

- controllability
- stabilizability

Background on data-driven stabilization

Problem formulation

Controllability as prior knowledge

Stabilizability as prior knowledge

Experiment design

Conclusions

Consider the discrete-time system

$$x(t+1) = A_{\text{true}}x(t) + B_{\text{true}}u(t),$$

referred to as the **true system**, where $x(t) \in \mathbb{R}^n$ and $u(t) \in \mathbb{R}^m$.

Consider the discrete-time system

$$x(t+1) = A_{\text{true}}x(t) + B_{\text{true}}u(t),$$

referred to as the **true system**, where $x(t) \in \mathbb{R}^n$ and $u(t) \in \mathbb{R}^m$.

The system matrices $(A_{\text{true}}, B_{\text{true}}) \in \mathcal{M} := \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}$ are **unknown**.

Consider the discrete-time system

$$x(t+1) = A_{\text{true}}x(t) + B_{\text{true}}u(t),$$

referred to as the **true system**, where $x(t) \in \mathbb{R}^n$ and $u(t) \in \mathbb{R}^m$.

The system matrices $(A_{\text{true}}, B_{\text{true}}) \in \mathcal{M} := \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}$ are **unknown**.

We have access to **input-state data** of the form

$$\mathcal{D} := \left(\begin{bmatrix} u(0) & u(1) & \cdots & u(T-1) \end{bmatrix}, \begin{bmatrix} x(0) & x(1) & \cdots & x(T) \end{bmatrix} \right).$$

Consider the discrete-time system

$$x(t+1) = A_{\text{true}}x(t) + B_{\text{true}}u(t),$$

referred to as the **true system**, where $x(t) \in \mathbb{R}^n$ and $u(t) \in \mathbb{R}^m$.

The system matrices $(A_{\text{true}}, B_{\text{true}}) \in \mathcal{M} := \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}$ are **unknown**.

We have access to **input-state data** of the form

$$\mathcal{D} := \left(\begin{bmatrix} u(0) & u(1) & \cdots & u(T-1) \end{bmatrix}, \begin{bmatrix} x(0) & x(1) & \cdots & x(T) \end{bmatrix} \right).$$

Overall goal: Given the data \mathcal{D} , find a state feedback controller $u(t) = Kx(t)$ such that

$$x(t+1) = (A_{\text{true}} + B_{\text{true}}K)x(t)$$

is **asymptotically stable**.

Consider the discrete-time system

$$x(t+1) = A_{\text{true}}x(t) + B_{\text{true}}u(t),$$

referred to as the **true system**, where $x(t) \in \mathbb{R}^n$ and $u(t) \in \mathbb{R}^m$.

The system matrices $(A_{\text{true}}, B_{\text{true}}) \in \mathcal{M} := \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}$ are **unknown**.

We have access to **input-state data** of the form

$$\mathcal{D} := \left(\begin{bmatrix} u(0) & u(1) & \cdots & u(T-1) \end{bmatrix}, \begin{bmatrix} x(0) & x(1) & \cdots & x(T) \end{bmatrix} \right).$$

Overall goal: Given the data \mathcal{D} , find a state feedback controller $u(t) = Kx(t)$ such that

$$x(t+1) = (A_{\text{true}} + B_{\text{true}}K)x(t)$$

is **asymptotically stable**.

Equivalently: Given \mathcal{D} , find $K \in \mathbb{R}^{m \times n}$ such that $A_{\text{true}} + B_{\text{true}}K$ is **Schur**.

We define the **data matrices**

$$X_- := [x(0) \quad x(1) \quad \cdots \quad x(T-1)]$$

$$U_- := [u(0) \quad u(1) \quad \cdots \quad u(T-1)]$$

$$X_+ := [x(1) \quad x(2) \quad \cdots \quad x(T)].$$

We define the **data matrices**

$$\begin{aligned}X_- &:= [x(0) \quad x(1) \quad \cdots \quad x(T-1)] \\U_- &:= [u(0) \quad u(1) \quad \cdots \quad u(T-1)] \\X_+ &:= [x(1) \quad x(2) \quad \cdots \quad x(T)].\end{aligned}$$

The true system satisfies

$$X_+ = A_{\text{true}} X_- + B_{\text{true}} U_-.$$

We define the **data matrices**

$$\begin{aligned}X_- &:= [x(0) \quad x(1) \quad \cdots \quad x(T-1)] \\U_- &:= [u(0) \quad u(1) \quad \cdots \quad u(T-1)] \\X_+ &:= [x(1) \quad x(2) \quad \cdots \quad x(T)].\end{aligned}$$

The true system satisfies

$$X_+ = A_{\text{true}} X_- + B_{\text{true}} U_-.$$

We define the set of all **data-consistent systems** as

$$\Sigma_{\mathcal{D}} := \{(A, B) \in \mathcal{M} \mid X_+ = AX_- + BU_-\}.$$

We define the **data matrices**

$$\begin{aligned}X_- &:= [x(0) \quad x(1) \quad \cdots \quad x(T-1)] \\U_- &:= [u(0) \quad u(1) \quad \cdots \quad u(T-1)] \\X_+ &:= [x(1) \quad x(2) \quad \cdots \quad x(T)].\end{aligned}$$

The true system satisfies

$$X_+ = A_{\text{true}} X_- + B_{\text{true}} U_-.$$

We define the set of all **data-consistent systems** as

$$\Sigma_{\mathcal{D}} := \{(A, B) \in \mathcal{M} \mid X_+ = AX_- + BU_-\}.$$

Data-driven stabilization problem: Given the data \mathcal{D} , find $K \in \mathbb{R}^{m \times n}$ such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}}$.

Definition: We say the data \mathcal{D} are **informative for stabilization** if there exists a $K \in \mathbb{R}^{m \times n}$ such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}}$.

Definition: We say the data \mathcal{D} are **informative for stabilization** if there exists a $K \in \mathbb{R}^{m \times n}$ such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}}$.

Proposition (vW et al., 2020): \mathcal{D} are informative for stabilization **if and only if** $\text{rank } X_- = n$ and there exists a right inverse X_-^\dagger such that $X_+ X_-^\dagger$ is Schur.

Definition: We say the data \mathcal{D} are **informative for stabilization** if there exists a $K \in \mathbb{R}^{m \times n}$ such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}}$.

Proposition (vW et al., 2020): \mathcal{D} are informative for stabilization **if and only if** $\text{rank } X_- = n$ and there exists a right inverse X_-^\dagger such that $X_+ X_-^\dagger$ is Schur. In this case, $K := U_- X_-^\dagger$ is a **stabilizing feedback gain** for all systems in $\Sigma_{\mathcal{D}}$.

Definition: We say the data \mathcal{D} are **informative for stabilization** if there exists a $K \in \mathbb{R}^{m \times n}$ such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}}$.

Proposition (vW et al., 2020): \mathcal{D} are informative for stabilization **if and only if** $\text{rank } X_- = n$ and there exists a right inverse X_-^\dagger such that $X_+ X_-^\dagger$ is Schur. In this case, $K := U_- X_-^\dagger$ is a **stabilizing feedback gain** for all systems in $\Sigma_{\mathcal{D}}$.

Example: Consider the data $X = \begin{bmatrix} 1 & 0.5 & -0.25 \\ 0 & 1 & 1 \end{bmatrix}$ and $U_- = \begin{bmatrix} -1 & -1 \end{bmatrix}$.

Definition: We say the data \mathcal{D} are **informative for stabilization** if there exists a $K \in \mathbb{R}^{m \times n}$ such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}}$.

Proposition (vW et al., 2020): \mathcal{D} are informative for stabilization **if and only if** $\text{rank } X_- = n$ and there exists a right inverse X_-^\dagger such that $X_+ X_-^\dagger$ is Schur. In this case, $K := U_- X_-^\dagger$ is a **stabilizing feedback gain** for all systems in $\Sigma_{\mathcal{D}}$.

Example: Consider the data $X = \begin{bmatrix} 1 & 0.5 & -0.25 \\ 0 & 1 & 1 \end{bmatrix}$ and $U_- = \begin{bmatrix} -1 & -1 \end{bmatrix}$.
Thus, $X_- = \begin{bmatrix} 1 & 0.5 \\ 0 & 1 \end{bmatrix}$ and $X_+ = \begin{bmatrix} 0.5 & -0.25 \\ 1 & 1 \end{bmatrix}$.

Definition: We say the data \mathcal{D} are **informative for stabilization** if there exists a $K \in \mathbb{R}^{m \times n}$ such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}}$.

Proposition (vW et al., 2020): \mathcal{D} are informative for stabilization **if and only if** $\text{rank } X_- = n$ and there exists a right inverse X_-^\dagger such that $X_+ X_-^\dagger$ is Schur. In this case, $K := U_- X_-^\dagger$ is a **stabilizing feedback gain** for all systems in $\Sigma_{\mathcal{D}}$.

Example: Consider the data $X = \begin{bmatrix} 1 & 0.5 & -0.25 \\ 0 & 1 & 1 \end{bmatrix}$ and $U_- = \begin{bmatrix} -1 & -1 \end{bmatrix}$.

Thus, $X_- = \begin{bmatrix} 1 & 0.5 \\ 0 & 1 \end{bmatrix}$ and $X_+ = \begin{bmatrix} 0.5 & -0.25 \\ 1 & 1 \end{bmatrix}$.

The matrix $X_+ X_-^\dagger = X_+ X_-^{-1} = \begin{bmatrix} 0.5 & -0.5 \\ 1 & 0.5 \end{bmatrix}$ is **Schur** (eigenvalues $\frac{1}{2}(1 \pm \sqrt{2}i)$).

Definition: We say the data \mathcal{D} are **informative for stabilization** if there exists a $K \in \mathbb{R}^{m \times n}$ such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}}$.

Proposition (vW et al., 2020): \mathcal{D} are informative for stabilization **if and only if** $\text{rank } X_- = n$ and there exists a right inverse X_-^\dagger such that $X_+ X_-^\dagger$ is Schur. In this case, $K := U_- X_-^\dagger$ is a **stabilizing feedback gain** for all systems in $\Sigma_{\mathcal{D}}$.

Example: Consider the data $X = \begin{bmatrix} 1 & 0.5 & -0.25 \\ 0 & 1 & 1 \end{bmatrix}$ and $U_- = \begin{bmatrix} -1 & -1 \end{bmatrix}$.

Thus, $X_- = \begin{bmatrix} 1 & 0.5 \\ 0 & 1 \end{bmatrix}$ and $X_+ = \begin{bmatrix} 0.5 & -0.25 \\ 1 & 1 \end{bmatrix}$.

The matrix $X_+ X_-^\dagger = X_+ X_-^{-1} = \begin{bmatrix} 0.5 & -0.5 \\ 1 & 0.5 \end{bmatrix}$ is **Schur** (eigenvalues $\frac{1}{2}(1 \pm \sqrt{2}i)$).

The controller $K := U_- X_-^\dagger = \begin{bmatrix} -1 & -\frac{1}{2} \end{bmatrix}$ stabilizes all systems in

$$\Sigma_{\mathcal{D}} = \left\{ \left(\begin{bmatrix} 1.5 + a & 0.5a \\ 1 + b & 0.5 + 0.5b \end{bmatrix}, \begin{bmatrix} 1 + a \\ b \end{bmatrix} \right) \mid a, b \in \mathbb{R} \right\}.$$

Definition: We say the data \mathcal{D} are **informative for stabilization** if there exists a $K \in \mathbb{R}^{m \times n}$ such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}}$.

Proposition (vW et al., 2020): \mathcal{D} are informative for stabilization **if and only if** $\text{rank } X_- = n$ and there exists a right inverse X_-^\dagger such that $X_+ X_-^\dagger$ is Schur. In this case, $K := U_- X_-^\dagger$ is a **stabilizing feedback gain** for all systems in $\Sigma_{\mathcal{D}}$.

Remark: If the data are informative, a suitable X_-^\dagger may be computed as follows:

- Find $\Theta \in \mathbb{R}^{T \times n}$ solving the **linear matrix inequality** (LMI):

$$X_- \Theta = \Theta^\top X_-^\top \quad \text{and} \quad \begin{bmatrix} X_- \Theta & X_+ \Theta \\ \Theta^\top X_+^\top & X_- \Theta \end{bmatrix} > 0.$$

Definition: We say the data \mathcal{D} are **informative for stabilization** if there exists a $K \in \mathbb{R}^{m \times n}$ such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}}$.

Proposition (vW et al., 2020): \mathcal{D} are informative for stabilization **if and only if** $\text{rank } X_- = n$ and there exists a right inverse X_-^\dagger such that $X_+ X_-^\dagger$ is Schur. In this case, $K := U_- X_-^\dagger$ is a **stabilizing feedback gain** for all systems in $\Sigma_{\mathcal{D}}$.

Remark: If the data are informative, a suitable X_-^\dagger may be computed as follows:

- Find $\Theta \in \mathbb{R}^{T \times n}$ solving the **linear matrix inequality** (LMI):

$$X_- \Theta = \Theta^\top X_-^\top \quad \text{and} \quad \begin{bmatrix} X_- \Theta & X_+ \Theta \\ \Theta^\top X_+^\top & X_- \Theta \end{bmatrix} > 0.$$

- Set $X_-^\dagger := \Theta (X_- \Theta)^{-1}$.

Definition: We say the data \mathcal{D} are **informative for stabilization** if there exists a $K \in \mathbb{R}^{m \times n}$ such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}}$.

Proposition (vW et al., 2020): \mathcal{D} are informative for stabilization **if and only if** $\text{rank } X_- = n$ and there exists a right inverse X_-^\dagger such that $X_+ X_-^\dagger$ is Schur. In this case, $K := U_- X_-^\dagger$ is a **stabilizing feedback gain** for all systems in $\Sigma_{\mathcal{D}}$.

Remark: If the data are informative, a suitable X_-^\dagger may be computed as follows:

- Find $\Theta \in \mathbb{R}^{T \times n}$ solving the **linear matrix inequality** (LMI):

$$X_- \Theta = \Theta^\top X_-^\top \quad \text{and} \quad \begin{bmatrix} X_- \Theta & X_+ \Theta \\ \Theta^\top X_+^\top & X_- \Theta \end{bmatrix} > 0.$$

- Set $X_-^\dagger := \Theta (X_- \Theta)^{-1}$.
- Finally, $K = U_- X_-^\dagger = U_- \Theta (X_- \Theta)^{-1}$.

Definition: We say the data \mathcal{D} are **informative for stabilization** if there exists a $K \in \mathbb{R}^{m \times n}$ such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}}$.

Proposition (vW et al., 2020): \mathcal{D} are informative for stabilization **if and only if** $\text{rank } X_- = n$ and there exists a right inverse X_-^\dagger such that $X_+ X_-^\dagger$ is Schur. In this case, $K := U_- X_-^\dagger$ is a **stabilizing feedback gain** for all systems in $\Sigma_{\mathcal{D}}$.

Remark: If the data are informative, a suitable X_-^\dagger may be computed as follows:

- Find $\Theta \in \mathbb{R}^{T \times n}$ solving the **linear matrix inequality** (LMI):

$$X_- \Theta = \Theta^\top X_-^\top \quad \text{and} \quad \begin{bmatrix} X_- \Theta & X_+ \Theta \\ \Theta^\top X_+^\top & X_- \Theta \end{bmatrix} > 0.$$

- Set $X_-^\dagger := \Theta (X_- \Theta)^{-1}$.
- Finally, $K = U_- X_-^\dagger = U_- \Theta (X_- \Theta)^{-1}$.

Remark: There are alternative LMIs¹ where size of variables is independent of T .

¹vW and Camlibel, "A Matrix Finsler's Lemma with Applications to Data-Driven Control", in IEEE CDC, 2021.

Background on data-driven stabilization

Problem formulation

Controllability as prior knowledge

Stabilizability as prior knowledge

Experiment design

Conclusions

Let $\Sigma_{\text{pk}} \subseteq \mathcal{M}$ be a set capturing our prior knowledge of the true system, i.e.,

$$(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{pk}}.$$

Let $\Sigma_{\text{pk}} \subseteq \mathcal{M}$ be a set capturing our prior knowledge of the true system, i.e.,

$$(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{pk}}.$$

Data-driven stabilization problem (with Σ_{pk}): Given \mathcal{D} and Σ_{pk} , find $K \in \mathbb{R}^{m \times n}$ such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}} \cap \Sigma_{\text{pk}}$.

Let $\Sigma_{\text{pk}} \subseteq \mathcal{M}$ be a set capturing our prior knowledge of the true system, i.e.,

$$(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{pk}}.$$

Data-driven stabilization problem (with Σ_{pk}): Given \mathcal{D} and Σ_{pk} , find $K \in \mathbb{R}^{m \times n}$ such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}} \cap \Sigma_{\text{pk}}$.

Definition: The data \mathcal{D} are called Σ_{pk} -informative for stabilization if there exists $K \in \mathbb{R}^{m \times n}$ such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}} \cap \Sigma_{\text{pk}}$.

Let $\Sigma_{\text{pk}} \subseteq \mathcal{M}$ be a set capturing our prior knowledge of the true system, i.e.,

$$(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{pk}}.$$

Data-driven stabilization problem (with Σ_{pk}): Given \mathcal{D} and Σ_{pk} , find $K \in \mathbb{R}^{m \times n}$ such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}} \cap \Sigma_{\text{pk}}$.

Definition: The data \mathcal{D} are called Σ_{pk} -informative for stabilization if there exists $K \in \mathbb{R}^{m \times n}$ such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}} \cap \Sigma_{\text{pk}}$.

This talk: Σ_{pk} -informativity for $\Sigma_{\text{pk}} = \Sigma_{\text{cont}}$ and $\Sigma_{\text{pk}} = \Sigma_{\text{stab}}$, where

$$\Sigma_{\text{cont}} := \{(A, B) \in \mathcal{M} \mid (A, B) \text{ is controllable}\}$$

$$\Sigma_{\text{stab}} := \{(A, B) \in \mathcal{M} \mid (A, B) \text{ is stabilizable}\}.$$

Let $\Sigma_{\text{pk}} \subseteq \mathcal{M}$ be a set capturing our prior knowledge of the true system, i.e.,

$$(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{pk}}.$$

Data-driven stabilization problem (with Σ_{pk}): Given \mathcal{D} and Σ_{pk} , find $K \in \mathbb{R}^{m \times n}$ such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}} \cap \Sigma_{\text{pk}}$.

Definition: The data \mathcal{D} are called Σ_{pk} -informative for stabilization if there exists $K \in \mathbb{R}^{m \times n}$ such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}} \cap \Sigma_{\text{pk}}$.

This talk: Σ_{pk} -informativity for $\Sigma_{\text{pk}} = \Sigma_{\text{cont}}$ and $\Sigma_{\text{pk}} = \Sigma_{\text{stab}}$, where

$$\Sigma_{\text{cont}} := \{(A, B) \in \mathcal{M} \mid (A, B) \text{ is controllable}\}$$

$$\Sigma_{\text{stab}} := \{(A, B) \in \mathcal{M} \mid (A, B) \text{ is stabilizable}\}.$$

Recall: The pair $(A, B) \in \mathcal{M}$ is called

- **controllable** if $\mathcal{R}(A, B) := \text{im} \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$ equals \mathbb{R}^n .
- **stabilizable** if there exists $F \in \mathbb{R}^{m \times n}$ such that $A + BF$ is Schur.

Let $\Sigma_{\text{pk}} \subseteq \mathcal{M}$ be a set capturing our prior knowledge of the true system, i.e.,

$$(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{pk}}.$$

Data-driven stabilization problem (with Σ_{pk}): Given \mathcal{D} and Σ_{pk} , find $K \in \mathbb{R}^{m \times n}$ such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}} \cap \Sigma_{\text{pk}}$.

Definition: The data \mathcal{D} are called Σ_{pk} -informative for stabilization if there exists $K \in \mathbb{R}^{m \times n}$ such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}} \cap \Sigma_{\text{pk}}$.

This talk: Σ_{pk} -informativity for $\Sigma_{\text{pk}} = \Sigma_{\text{cont}}$ and $\Sigma_{\text{pk}} = \Sigma_{\text{stab}}$, where

$$\Sigma_{\text{cont}} := \{(A, B) \in \mathcal{M} \mid (A, B) \text{ is controllable}\}$$

$$\Sigma_{\text{stab}} := \{(A, B) \in \mathcal{M} \mid (A, B) \text{ is stabilizable}\}.$$

Recall: The pair $(A, B) \in \mathcal{M}$ is called

- **controllable** if $\mathcal{R}(A, B) := \text{im} \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$ equals \mathbb{R}^n .
- **stabilizable** if there exists $F \in \mathbb{R}^{m \times n}$ such that $A + BF$ is Schur.

Note: This is challenging because $\Sigma_{\mathcal{D}} \cap \Sigma_{\text{pk}}$ is **not convex**!

Example: Consider the data

$$U_- = [1 \ 2 \ -1], \ X_- = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & 0 \end{bmatrix}, \ \text{and} \ X_+ = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 0 & 0 \end{bmatrix}.$$

Example: Consider the data

$$U_- = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}, \quad X_- = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & 0 \end{bmatrix}, \quad \text{and} \quad X_+ = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 0 & 0 \end{bmatrix}.$$

We have

$$\Sigma_{\mathcal{D}} = \left\{ \left(\begin{bmatrix} 1 & \alpha \\ 0 & \beta \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) \mid \alpha, \beta \in \mathbb{R} \right\}.$$

Example: Consider the data

$$U_- = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}, \quad X_- = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & 0 \end{bmatrix}, \quad \text{and} \quad X_+ = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 0 & 0 \end{bmatrix}.$$

We have

$$\Sigma_{\mathcal{D}} = \left\{ \left(\begin{bmatrix} 1 & \alpha \\ 0 & \beta \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) \mid \alpha, \beta \in \mathbb{R} \right\}.$$

Since $\text{rank } X_- = 1 \neq 2$, \mathcal{D} are not informative for stabilization.

Example: Consider the data

$$U_- = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}, \quad X_- = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & 0 \end{bmatrix}, \quad \text{and} \quad X_+ = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 0 & 0 \end{bmatrix}.$$

We have

$$\Sigma_{\mathcal{D}} = \left\{ \left(\begin{bmatrix} 1 & \alpha \\ 0 & \beta \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) \mid \alpha, \beta \in \mathbb{R} \right\}.$$

Since $\text{rank } X_- = 1 \neq 2$, \mathcal{D} are not informative for stabilization.

However, we have

$$\Sigma_{\mathcal{D}} \cap \Sigma_{\text{stab}} = \left\{ \left(\begin{bmatrix} 1 & \alpha \\ 0 & \beta \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) \mid \alpha \in \mathbb{R}, \quad |\beta| < 1 \right\}.$$

Example: Consider the data

$$U_- = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}, \quad X_- = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & 0 \end{bmatrix}, \quad \text{and} \quad X_+ = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 0 & 0 \end{bmatrix}.$$

We have

$$\Sigma_{\mathcal{D}} = \left\{ \left(\begin{bmatrix} 1 & \alpha \\ 0 & \beta \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) \mid \alpha, \beta \in \mathbb{R} \right\}.$$

Since $\text{rank } X_- = 1 \neq 2$, \mathcal{D} are not informative for stabilization.

However, we have

$$\Sigma_{\mathcal{D}} \cap \Sigma_{\text{stab}} = \left\{ \left(\begin{bmatrix} 1 & \alpha \\ 0 & \beta \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) \mid \alpha \in \mathbb{R}, \quad |\beta| < 1 \right\}.$$

It is evident that $K = [-1 \quad 0]$ stabilizes all systems in $\Sigma_{\mathcal{D}} \cap \Sigma_{\text{stab}}$.

Example: Consider the data

$$U_- = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}, \quad X_- = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & 0 \end{bmatrix}, \quad \text{and} \quad X_+ = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 0 & 0 \end{bmatrix}.$$

We have

$$\Sigma_{\mathcal{D}} = \left\{ \left(\begin{bmatrix} 1 & \alpha \\ 0 & \beta \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) \mid \alpha, \beta \in \mathbb{R} \right\}.$$

Since $\text{rank } X_- = 1 \neq 2$, \mathcal{D} are not informative for stabilization.

However, we have

$$\Sigma_{\mathcal{D}} \cap \Sigma_{\text{stab}} = \left\{ \left(\begin{bmatrix} 1 & \alpha \\ 0 & \beta \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) \mid \alpha \in \mathbb{R}, \quad |\beta| < 1 \right\}.$$

It is evident that $K = [-1 \quad 0]$ stabilizes all systems in $\Sigma_{\mathcal{D}} \cap \Sigma_{\text{stab}}$.

Therefore, \mathcal{D} are Σ_{stab} -informative for stabilization.

We focus on two types of prior knowledge:

$$\Sigma_{\text{pk}} = \Sigma_{\text{cont}} \quad \text{and} \quad \Sigma_{\text{pk}} = \Sigma_{\text{stab.}}$$

We focus on two types of **prior knowledge**:

$$\Sigma_{\text{pk}} = \Sigma_{\text{cont}} \quad \text{and} \quad \Sigma_{\text{pk}} = \Sigma_{\text{stab}}.$$

Problem: Find necessary and sufficient conditions under which the data \mathcal{D} are

- (i) Σ_{cont} -informative for stabilization;
- (ii) Σ_{stab} -informative for stabilization.

Background on data-driven stabilization

Problem formulation

Controllability as prior knowledge

Stabilizability as prior knowledge

Experiment design

Conclusions

Theorem: Suppose that $(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{cont}}$.

Theorem: Suppose that $(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{cont}}$. Then, the following statements are equivalent:

- (a) \mathcal{D} are Σ_{cont} -informative for stabilization.
- (b) \mathcal{D} are informative for stabilization.

Theorem: Suppose that $(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{cont}}$. Then, the following statements are equivalent:

- (a) \mathcal{D} are Σ_{cont} -informative for stabilization.
- (b) \mathcal{D} are informative for stabilization.

Moreover, if K is such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}} \cap \Sigma_{\text{cont}}$, then $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}}$.

Theorem: Suppose that $(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{cont}}$. Then, the following statements are equivalent:

- (a) \mathcal{D} are Σ_{cont} -informative for stabilization.
- (b) \mathcal{D} are informative for stabilization.

Moreover, if K is such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}} \cap \Sigma_{\text{cont}}$, then $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}}$.

Interpretation: Prior knowledge on controllability **does not help**!

Theorem: Suppose that $(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{cont}}$. Then, the following statements are equivalent:

- (a) \mathcal{D} are Σ_{cont} -informative for stabilization.
- (b) \mathcal{D} are informative for stabilization.

Moreover, if K is such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}} \cap \Sigma_{\text{cont}}$, then $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}}$.

Interpretation: Prior knowledge on controllability **does not help!**

Remark: The theorem is based on the following two lemmas:

Theorem: Suppose that $(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{cont}}$. Then, the following statements are equivalent:

- (a) \mathcal{D} are Σ_{cont} -informative for stabilization.
- (b) \mathcal{D} are informative for stabilization.

Moreover, if K is such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}} \cap \Sigma_{\text{cont}}$, then $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}}$.

Interpretation: Prior knowledge on controllability **does not help**!

Remark: The theorem is based on the following two lemmas:

Lemma 1: Let $(M, N) \in \Sigma_{\text{cont}}$ and $(M_0, N_0) \in \mathcal{M}$. Then, the pair $(M + \alpha M_0, N + \alpha N_0)$ is controllable for all but at most n^2 values of $\alpha \in \mathbb{R}$.

Theorem: Suppose that $(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{cont}}$. Then, the following statements are equivalent:

- (a) \mathcal{D} are Σ_{cont} -informative for stabilization.
- (b) \mathcal{D} are informative for stabilization.

Moreover, if K is such that $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}} \cap \Sigma_{\text{cont}}$, then $A + BK$ is Schur for all $(A, B) \in \Sigma_{\mathcal{D}}$.

Interpretation: Prior knowledge on controllability **does not help**!

Remark: The theorem is based on the following two lemmas:

Lemma 1: Let $(M, N) \in \Sigma_{\text{cont}}$ and $(M_0, N_0) \in \mathcal{M}$. Then, the pair $(M + \alpha M_0, N + \alpha N_0)$ is controllable for all but at most n^2 values of $\alpha \in \mathbb{R}$.

Lemma 2: Let $\varepsilon \in \mathbb{R}$, $\mathcal{F} \subset \mathbb{R}$ be a finite set, and $M, N \in \mathbb{R}^{n \times n}$ be such that $M + \delta N$ is Schur for all $\delta \in [\varepsilon, \infty) \setminus \mathcal{F}$. Then, $M + \delta N$ is Schur **for all** $\delta \in \mathbb{R}$.

Background on data-driven stabilization

Problem formulation

Controllability as prior knowledge

Stabilizability as prior knowledge

Experiment design

Conclusions

Theorem (necessary conditions): Suppose that $(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{stab}}$ and \mathcal{D} are Σ_{stab} -informative for stabilization.

Theorem (necessary conditions): Suppose that $(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{stab}}$ and \mathcal{D} are Σ_{stab} -informative for stabilization. Then the following statements hold:

- (a) $\text{im } X_+ \subseteq \text{im } X_-$.

Theorem (necessary conditions): Suppose that $(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{stab}}$ and \mathcal{D} are Σ_{stab} -informative for stabilization. Then the following statements hold:

- (a) $\text{im } X_+ \subseteq \text{im } X_-$.
- (b) If $\text{rank } X_- < n$, then $\text{im } \begin{bmatrix} X_- \\ U_- \end{bmatrix} = \text{im } X_- \times \mathbb{R}^m$.

Theorem (necessary conditions): Suppose that $(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{stab}}$ and \mathcal{D} are Σ_{stab} -informative for stabilization. Then the following statements hold:

- (a) $\text{im } X_+ \subseteq \text{im } X_-$.
- (b) If $\text{rank } X_- < n$, then $\text{im } \begin{bmatrix} X_- \\ U_- \end{bmatrix} = \text{im } X_- \times \mathbb{R}^m$. ($\Rightarrow B_{\text{true}}$ can be recovered)

Recall: If \mathcal{D} are informative for stabilization (without prior knowledge), then

$$\text{im } X_- = \mathbb{R}^n.$$

Theorem (necessary conditions): Suppose that $(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{stab}}$ and \mathcal{D} are Σ_{stab} -informative for stabilization. Then the following statements hold:

- (a) $\text{im } X_+ \subseteq \text{im } X_-$.
- (b) If $\text{rank } X_- < n$, then $\text{im } \begin{bmatrix} X_- \\ U_- \end{bmatrix} = \text{im } X_- \times \mathbb{R}^m$. ($\Rightarrow B_{\text{true}}$ can be recovered)

Recall: If \mathcal{D} are informative for stabilization (without prior knowledge), then

$$\text{im } X_- = \mathbb{R}^n.$$

Theorem (necessary and sufficient conditions): Suppose that $(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{stab}}$. Then:

Theorem (necessary conditions): Suppose that $(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{stab}}$ and \mathcal{D} are Σ_{stab} -informative for stabilization. Then the following statements hold:

- (a) $\text{im } X_+ \subseteq \text{im } X_-$.
- (b) If $\text{rank } X_- < n$, then $\text{im } \begin{bmatrix} X_- \\ U_- \end{bmatrix} = \text{im } X_- \times \mathbb{R}^m$. ($\Rightarrow B_{\text{true}}$ can be recovered)

Recall: If \mathcal{D} are informative for stabilization (without prior knowledge), then

$$\text{im } X_- = \mathbb{R}^n.$$

Theorem (necessary and sufficient conditions): Suppose that

$(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{stab}}$. Then:

- If $\text{rank } X_- = n$, the following are equivalent:
 - (i) \mathcal{D} are Σ_{stab} -informative for stabilization.
 - (ii) \mathcal{D} are informative for stabilization.

Theorem (necessary conditions): Suppose that $(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{stab}}$ and \mathcal{D} are Σ_{stab} -informative for stabilization. Then the following statements hold:

- (a) $\text{im } X_+ \subseteq \text{im } X_-$.
- (b) If $\text{rank } X_- < n$, then $\text{im } \begin{bmatrix} X_- \\ U_- \end{bmatrix} = \text{im } X_- \times \mathbb{R}^m$. ($\Rightarrow B_{\text{true}}$ can be recovered)

Recall: If \mathcal{D} are informative for stabilization (without prior knowledge), then

$$\text{im } X_- = \mathbb{R}^n.$$

Theorem (necessary and sufficient conditions): Suppose that

$(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{stab}}$. Then:

- If $\text{rank } X_- = n$, the following are equivalent:
 - (i) \mathcal{D} are Σ_{stab} -informative for stabilization.
 - (ii) \mathcal{D} are informative for stabilization.
- If $\text{rank } X_- < n$ then \mathcal{D} are Σ_{stab} -informative for stabilization if and only if
 - (1) $\text{im } X_+ \subseteq \text{im } X_-$, and
 - (2) $\text{im } \begin{bmatrix} X_- \\ U_- \end{bmatrix} = \text{im } X_- \times \mathbb{R}^m$.

Example (revisited): Consider the data

$$U_- = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}, \quad X_- = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & 0 \end{bmatrix}, \quad \text{and} \quad X_+ = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 0 & 0 \end{bmatrix}.$$

Example (revisited): Consider the data

$$U_- = [1 \ 2 \ -1], \ X_- = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & 0 \end{bmatrix}, \ \text{and} \ X_+ = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$\text{im } X_- = \text{im } X_+ = \text{im } \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

Example (revisited): Consider the data

$$U_- = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}, \quad X_- = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & 0 \end{bmatrix}, \quad \text{and} \quad X_+ = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$\text{im } X_- = \text{im } X_+ = \text{im } \begin{bmatrix} 1 \\ 0 \end{bmatrix}. \text{ Also, } \text{im } \begin{bmatrix} X_- \\ U_- \end{bmatrix} = \text{im } \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} = \text{im } X_- \times \mathbb{R}.$$

Example (revisited): Consider the data

$$U_- = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}, \quad X_- = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & 0 \end{bmatrix}, \quad \text{and} \quad X_+ = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$\text{im } X_- = \text{im } X_+ = \text{im } \begin{bmatrix} 1 \\ 0 \end{bmatrix}. \text{ Also, } \text{im } \begin{bmatrix} X_- \\ U_- \end{bmatrix} = \text{im } \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} = \text{im } X_- \times \mathbb{R}.$$

So the data \mathcal{D} are Σ_{stab} -informative for stabilization!

Example (revisited): Consider the data

$$U_- = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}, \quad X_- = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & 0 \end{bmatrix}, \quad \text{and} \quad X_+ = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$\text{im } X_- = \text{im } X_+ = \text{im } \begin{bmatrix} 1 \\ 0 \end{bmatrix}. \text{ Also, } \text{im } \begin{bmatrix} X_- \\ U_- \end{bmatrix} = \text{im } \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} = \text{im } X_- \times \mathbb{R}.$$

So the data \mathcal{D} are Σ_{stab} -informative for stabilization!

Discussion: The conditions for the case $\text{rank } X_- < n$ are **very important** in situations where $(A_{\text{true}}, B_{\text{true}}) \notin \Sigma_{\text{cont}}$.

Example (revisited): Consider the data

$$U_- = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}, \quad X_- = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & 0 \end{bmatrix}, \quad \text{and} \quad X_+ = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$\text{im } X_- = \text{im } X_+ = \text{im } \begin{bmatrix} 1 \\ 0 \end{bmatrix}. \text{ Also, } \text{im } \begin{bmatrix} X_- \\ U_- \end{bmatrix} = \text{im } \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} = \text{im } X_- \times \mathbb{R}.$$

So the data \mathcal{D} are Σ_{stab} -informative for stabilization!

Discussion: The conditions for the case $\text{rank } X_- < n$ are **very important** in situations where $(A_{\text{true}}, B_{\text{true}}) \notin \Sigma_{\text{cont}}$.

Indeed, in this case, when $x(0) = 0$,

$$\text{rank } X_- < n$$

for any sequence of inputs $u(0), u(1), \dots, u(T-1)$.

Example (revisited): Consider the data

$$U_- = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}, \quad X_- = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & 0 \end{bmatrix}, \quad \text{and} \quad X_+ = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$\text{im } X_- = \text{im } X_+ = \text{im } \begin{bmatrix} 1 \\ 0 \end{bmatrix}. \text{ Also, } \text{im } \begin{bmatrix} X_- \\ U_- \end{bmatrix} = \text{im } \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} = \text{im } X_- \times \mathbb{R}.$$

So the data \mathcal{D} are Σ_{stab} -informative for stabilization!

Discussion: The conditions for the case $\text{rank } X_- < n$ are **very important** in situations where $(A_{\text{true}}, B_{\text{true}}) \notin \Sigma_{\text{cont}}$.

Indeed, in this case, when $x(0) = 0$,

$$\text{rank } X_- < n$$

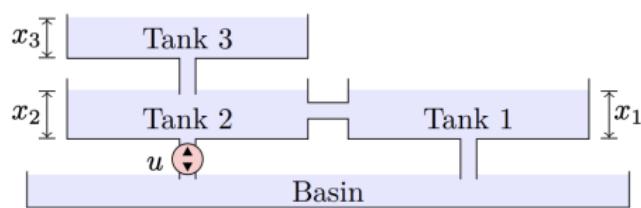
for any sequence of inputs $u(0), u(1), \dots, u(T-1)$.

Remark: In case $\text{rank } X_- < n$, there are also LMI methods² for constructing K !

²Shakouri, vW, Baltussen, and Heemels, "Data-Driven Stabilization Using Prior Knowledge on Stabilizability and Controllability", submitted, 2025.

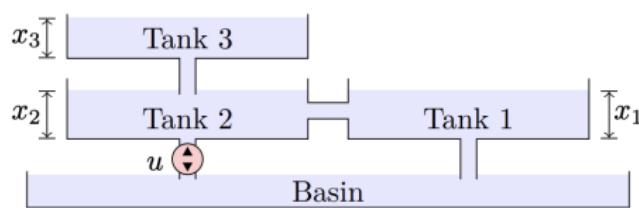
We consider a (discretized) model of a three-tank system:

$$A_{\text{true}} = \begin{bmatrix} 0.9429 & 0.0473 & 0.0012 \\ 0.0473 & 0.9524 & 0.0476 \\ 0 & 0 & 0.9512 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0.0024 \\ 0.0976 \\ 0 \end{bmatrix}.$$



We consider a (discretized) model of a three-tank system:

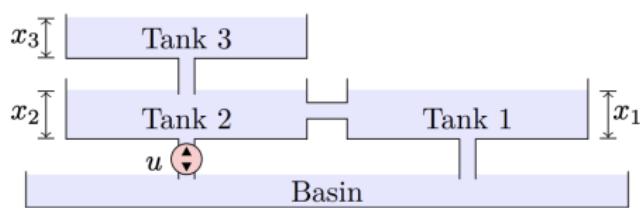
$$A_{\text{true}} = \begin{bmatrix} 0.9429 & 0.0473 & 0.0012 \\ 0.0473 & 0.9524 & 0.0476 \\ 0 & 0 & 0.9512 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0.0024 \\ 0.0976 \\ 0 \end{bmatrix}.$$



- 1 Monte Carlo simulations with 1000 scenarios;

We consider a (discretized) model of a three-tank system:

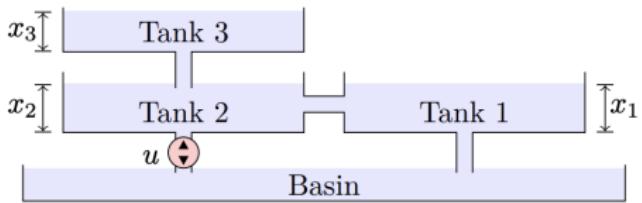
$$A_{\text{true}} = \begin{bmatrix} 0.9429 & 0.0473 & 0.0012 \\ 0.0473 & 0.9524 & 0.0476 \\ 0 & 0 & 0.9512 \end{bmatrix}, \quad B_{\text{true}} = \begin{bmatrix} 0.0024 \\ 0.0976 \\ 0 \end{bmatrix}.$$



- 1 Monte Carlo simulations with 1000 scenarios;
- 2 For each scenario,
 - ▶ we simulate the system from $t = 0$ to $t = 100$;
 - ▶ the input and initial condition \sim Poisson distribution with parameter $\lambda = 1$.
- 3 We use the first T samples for each round of analysis; $T = 3, 4, 5, 10, 100$.

$$A_{\text{true}} = \begin{bmatrix} 0.9429 & 0.0473 & 0.0012 \\ 0.0473 & 0.9524 & 0.0476 \\ 0 & 0 & 0.9512 \end{bmatrix},$$

$$B_{\text{true}} = \begin{bmatrix} 0.0024 \\ 0.0976 \\ 0 \end{bmatrix}.$$



$$A_{\text{true}} = \begin{bmatrix} 0.9429 & 0.0473 & 0.0012 \\ 0.0473 & 0.9524 & 0.0476 \\ 0 & 0 & 0.9512 \end{bmatrix},$$

$$B_{\text{true}} = \begin{bmatrix} 0.0024 \\ 0.0976 \\ 0 \end{bmatrix}.$$

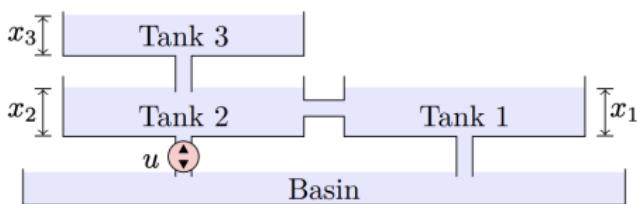


Table: Informativity of randomly generated data.

T	Informative for system identification	Σ_{pk} -informative for stabilization	
		$\Sigma_{\text{pk}} = \mathcal{M}$	$\Sigma_{\text{pk}} = \Sigma_{\text{stab}}$
3	0%	8.1%	42%
4	62.4%	63.2%	99.4%
5	62.8%	63.2%	99.8%
10	63.2%	63.2%	100%
100	63.2%	63.2%	100%

Background on data-driven stabilization

Problem formulation

Controllability as prior knowledge

Stabilizability as prior knowledge

Experiment design

Conclusions

Question: Given $x(0) \in \mathbb{R}^n$, how to choose $u(0), u(1), \dots, u(T-1) \in \mathbb{R}^m$ such that the resulting data $\mathcal{D} = (U_-, X)$ are Σ_{pk} -informative for stabilization?

Question: Given $x(0) \in \mathbb{R}^n$, how to choose $u(0), u(1), \dots, u(T-1) \in \mathbb{R}^m$ such that the resulting data $\mathcal{D} = (U_-, X)$ are Σ_{pk} -informative for stabilization?

Let $X_{[0,t-1]} := [x(0) \quad \cdots \quad x(t-1)]$ and $U_{[0,t-1]} := [u(0) \quad \cdots \quad u(t-1)]$.

Question: Given $x(0) \in \mathbb{R}^n$, how to choose $u(0), u(1), \dots, u(T-1) \in \mathbb{R}^m$ such that the resulting data $\mathcal{D} = (U_{-}, X)$ are Σ_{pk} -informative for stabilization?

Let $X_{[0,t-1]} := [x(0) \quad \cdots \quad x(t-1)]$ and $U_{[0,t-1]} := [u(0) \quad \cdots \quad u(t-1)]$.

Algorithm 1 Online experiment design

Given: $x(0) \in \mathbb{R}^n$

```

1: set  $t \leftarrow 0$  and select  $u(0) \neq 0$ 
2: while true do
3:   apply  $u(t)$  to  $(A_{\text{true}}, B_{\text{true}})$  and measure  $x(t+1)$ 
4:   set  $t \leftarrow t + 1$ 
5:   if  $x(t) \notin \text{im } X_{[0,t-1]}$  then
6:     select  $u(t)$  arbitrarily
7:   else
8:     if  $\text{im } \begin{bmatrix} X_{[0,t-1]} \\ U_{[0,t-1]} \end{bmatrix} = \text{im } X_{[0,t-1]} \times \mathbb{R}^m$  then
9:       break
10:      else
11:        select  $\xi \in \mathbb{R}^n$  and  $\eta \in \mathbb{R}^m \setminus \{0\}$  such that
12:           $\xi^\top X_{[0,t-1]} + \eta^\top U_{[0,t-1]} = 0$ 
13:        select  $u(t)$  such that  $\xi^\top x(t) + \eta^\top u(t) \neq 0$ 
14:      end if
15:    end if

```

end while

Return: $T = t$ and $\mathcal{D} = (U_{[0,T-1]}, X_{[0,T]})$

Algorithm 1 Online experiment design

Given: $x(0) \in \mathbb{R}^n$

- 1: set $t \leftarrow 0$ and select $u(0) \neq 0$
- 2: **while** true **do**
- 3: apply $u(t)$ to $(A_{\text{true}}, B_{\text{true}})$ and measure $x(t+1)$
- 4: set $t \leftarrow t + 1$
- 5: **if** $x(t) \notin \text{im } X_{[0,t-1]}$ **then**
- 6: select $u(t)$ arbitrarily
- 7: **else**
- 8: **if** $\text{im } \begin{bmatrix} X_{[0,t-1]} \\ U_{[0,t-1]} \end{bmatrix} = \text{im } X_{[0,t-1]} \times \mathbb{R}^m$ **then**
- 9: **break**
- 10: **else**
- 11: select $\xi \in \mathbb{R}^n$ and $\eta \in \mathbb{R}^m \setminus \{0\}$ such that
$$\xi^\top X_{[0,t-1]} + \eta^\top U_{[0,t-1]} = 0$$
- 12: select $u(t)$ such that $\xi^\top x(t) + \eta^\top u(t) \neq 0$
- 13: **end if**
- 14: **end if**
- 15: **end while**

Return: $T = t$ and $\mathcal{D} = (U_{[0,T-1]}, X_{[0,T]})$

Algorithm 1 Online experiment design

Given: $x(0) \in \mathbb{R}^n$

```

1: set  $t \leftarrow 0$  and select  $u(0) \neq 0$ 
2: while true do
3:   apply  $u(t)$  to  $(A_{\text{true}}, B_{\text{true}})$  and measure  $x(t+1)$ 
4:   set  $t \leftarrow t+1$ 
5:   if  $x(t) \notin \text{im } X_{[0,t-1]}$  then
6:     select  $u(t)$  arbitrarily
7:   else
8:     if  $\text{im } \begin{bmatrix} X_{[0,t-1]} \\ U_{[0,t-1]} \end{bmatrix} = \text{im } X_{[0,t-1]} \times \mathbb{R}^m$  then
9:       break
10:      else
11:        select  $\xi \in \mathbb{R}^n$  and  $\eta \in \mathbb{R}^m \setminus \{0\}$  such that
12:           $\xi^\top X_{[0,t-1]} + \eta^\top U_{[0,t-1]} = 0$ 
13:        select  $u(t)$  such that  $\xi^\top x(t) + \eta^\top u(t) \neq 0$ 
14:      end if
15:    end if
16:  end while

```

Return: $T = t$ and $\mathcal{D} = (U_{[0,T-1]}, X_{[0,T]})$

Theorem: Let \mathcal{D} be generated by Algorithm 1. Then:

1 $T = \dim \mathcal{R}(A_{\text{true}}, [B_{\text{true}} \ x(0)]) + m \leq n + m.$

Algorithm 1 Online experiment design

Given: $x(0) \in \mathbb{R}^n$

```

1: set  $t \leftarrow 0$  and select  $u(0) \neq 0$ 
2: while true do
3:   apply  $u(t)$  to  $(A_{\text{true}}, B_{\text{true}})$  and measure  $x(t+1)$ 
4:   set  $t \leftarrow t+1$ 
5:   if  $x(t) \notin \text{im } X_{[0,t-1]}$  then
6:     select  $u(t)$  arbitrarily
7:   else
8:     if  $\text{im } \begin{bmatrix} X_{[0,t-1]} \\ U_{[0,t-1]} \end{bmatrix} = \text{im } X_{[0,t-1]} \times \mathbb{R}^m$  then
9:       break
10:      else
11:        select  $\xi \in \mathbb{R}^n$  and  $\eta \in \mathbb{R}^m \setminus \{0\}$  such that
12:           $\xi^\top X_{[0,t-1]} + \eta^\top U_{[0,t-1]} = 0$ 
13:        select  $u(t)$  such that  $\xi^\top x(t) + \eta^\top u(t) \neq 0$ 
14:      end if
15:    end if
16:  end while

```

Return: $T = t$ and $\mathcal{D} = (U_{[0,T-1]}, X_{[0,T]})$

Theorem: Let \mathcal{D} be generated by Algorithm 1. Then:

- 1 $T = \dim \mathcal{R}(A_{\text{true}}, [B_{\text{true}} \ x(0)]) + m \leq n + m.$
- 2 If $(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{stab}}$, then \mathcal{D} is Σ_{stab} -informative for stabilization.

Algorithm 1 Online experiment design**Given:** $x(0) \in \mathbb{R}^n$

```

1: set  $t \leftarrow 0$  and select  $u(0) \neq 0$ 
2: while true do
3:   apply  $u(t)$  to  $(A_{\text{true}}, B_{\text{true}})$  and measure  $x(t+1)$ 
4:   set  $t \leftarrow t + 1$ 
5:   if  $x(t) \notin \text{im } X_{[0,t-1]}$  then
6:     select  $u(t)$  arbitrarily
7:   else
8:     if  $\text{im } \begin{bmatrix} X_{[0,t-1]} \\ U_{[0,t-1]} \end{bmatrix} = \text{im } X_{[0,t-1]} \times \mathbb{R}^m$  then
9:       break
10:      else
11:        select  $\xi \in \mathbb{R}^n$  and  $\eta \in \mathbb{R}^m \setminus \{0\}$  such that
12:           $\xi^\top X_{[0,t-1]} + \eta^\top U_{[0,t-1]} = 0$ 
13:        select  $u(t)$  such that  $\xi^\top x(t) + \eta^\top u(t) \neq 0$ 
14:      end if
15:    end if
16:  end while
Return:  $T = t$  and  $\mathcal{D} = (U_{[0,T-1]}, X_{[0,T]})$ 

```

Theorem: Let \mathcal{D} be generated by Algorithm 1. Then:

- 1 $T = \dim \mathcal{R}(A_{\text{true}}, [B_{\text{true}} \quad x(0)]) + m \leq n + m$.
- 2 If $(A_{\text{true}}, B_{\text{true}}) \in \Sigma_{\text{stab}}$, then \mathcal{D} is Σ_{stab} –informative for stabilization.

Remark: For certain A_{true} , B_{true} and $x(0)$, Algorithm 1 even returns the **shortest experiments** for stabilization!

Background on data-driven stabilization

Problem formulation

Controllability as prior knowledge

Stabilizability as prior knowledge

Experiment design

Conclusions

Take-away messages: For data-driven stabilization:

- 1 controllability as prior knowledge is **not helpful**

Take-away messages: For data-driven stabilization:

- 1 controllability as prior knowledge is **not helpful**
- 2 prior knowledge on stabilizability leads to **weaker conditions**

Take-away messages: For data-driven stabilization:

- 1 controllability as prior knowledge is **not helpful**
- 2 prior knowledge on stabilizability leads to **weaker conditions**
- 3 an **online experiment design** algorithm can generate informative data

Take-away messages: For data-driven stabilization:

- 1 controllability as prior knowledge is **not helpful**
- 2 prior knowledge on stabilizability leads to **weaker conditions**
- 3 an **online experiment design** algorithm can generate informative data

Future work:

- other types of prior knowledge

Take-away messages: For data-driven stabilization:

- 1 controllability as prior knowledge is **not helpful**
- 2 prior knowledge on stabilizability leads to **weaker conditions**
- 3 an **online experiment design** algorithm can generate informative data

Future work:

- other types of prior knowledge
- noisy data

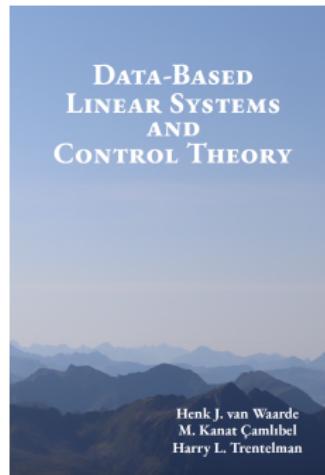
Take-away messages: For data-driven stabilization:

- 1 controllability as prior knowledge is **not helpful**
- 2 prior knowledge on stabilizability leads to **weaker conditions**
- 3 an **online experiment design** algorithm can generate informative data

Future work:

- other types of prior knowledge
- noisy data

Further reading:



Thanks to my collaborators: **Amir**, **Tren**, **Maurice** and **Kanat**!

Data-Driven Stabilization Using Prior Knowledge on Stabilizability and Controllability

Amir Shakouri, Henk J. van Waarde, Tren M.J.T. Baltussen, W.P.M.H. (Maurice) Heemels

Abstract—In this work, we study data-driven stabilization of linear time-invariant systems using prior knowledge of system-theoretic properties, specifically stabilizability and controllability. To formalize this, we extend the concept of data informativity by requiring the existence of a controller that stabilizes all systems

data-driven predictive control using frequency-domain data has also been studied in [11].

The majority of papers on data-driven control work in the setting where the parameters of the system are completely unknown, which

Experiment design using prior knowledge on controllability and stabilizability

Amir Shakouri* Henk J. van Waarde ** M. Kanat Camlibel*

* *Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands (e-mail: a.shakouri@rug.nl, h.j.van.waarde@rug.nl, m.k.camlibel@rug.nl).*

Abstract: In this paper, we consider the problem of designing input signals for an unknown linear time-invariant system in such a way that the resulting input-state data is suitable for identification or stabilization. We will take into account prior knowledge on system-theoretic

Thank you!