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Introduction 3/26

1 Data-driven control: Finding a controller directly from data.

I Less computations due to bypassing system identification.
I Finding a feedback law when identification is not feasible.

2 Data-driven stabilization: Finding a stabilizing controller directly from data.
I Using data generated by persistently exciting input (De Persis and Tesi, 2020).
I Necessary and sufficient conditions on the data (van Waarde et al., 2020).

3 Prior knowledge in data-driven control:
I Known bounds on the system parameters (Berberich et al., 2020).
I Some of the parameters are exactly known (Huang et al., 2025).

4 Prior knowledge in system identification:
I Stability (van Gestel et al., 2002, Lacy & Bernstein, 2003)
I Eigenvalue constraints (Miller & De Callafon, 2013)
I Positivity (De Santis & Farina, 2002)
I Passivity (Goethals et al., 2003, Shali & van Waarde, 2024)

This talk: data-driven stabilization using prior knowledge on
controllability
stabilizability
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Consider the discrete-time system

x(t+ 1) = Atruex(t) +Btrueu(t),

referred to as the true system, where x(t) ∈ Rn and u(t) ∈ Rm.

The system matrices (Atrue, Btrue) ∈M := Rn×n × Rn×m are unknown.

We have access to input-state data of the form

D :=
([
u(0) u(1) · · · u(T − 1)

]
,
[
x(0) x(1) · · · x(T )

])
.

Overall goal: Given the data D, find a state feedback controller u(t) = Kx(t)
such that

x(t+ 1) = (Atrue +BtrueK)x(t)

is asymptotically stable.

Equivalently: Given D, find K ∈ Rm×n such that Atrue +BtrueK is Schur.
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We define the data matrices

X− :=
[
x(0) x(1) · · · x(T − 1)

]
U− :=

[
u(0) u(1) · · · u(T − 1)

]
X+ :=

[
x(1) x(2) · · · x(T )

]
.

The true system satisfies

X+ = AtrueX− +BtrueU−.

We define the set of all data-consistent systems as

ΣD := {(A,B) ∈M | X+ = AX− +BU−}.

Data-driven stabilization problem: Given the data D, find K ∈ Rm×n such
that A+BK is Schur for all (A,B) ∈ ΣD.
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Definition: We say the data D are informative for stabilization if there exists a
K ∈ Rm×n such that A+BK is Schur for all (A,B) ∈ ΣD.

Proposition (vW et al., 2020): D are informative for stabilization if and only if
rankX− = n and there exists a right inverse X†− such that X+X

†
− is Schur.

In this case, K := U−X
†
− is a stabilizing feedback gain for all systems in ΣD.

Example: Consider the data X =
[
1 0.5 −0.25
0 1 1

]
and U− =

[
−1 −1

]
.

Thus, X− =
[
1 0.5
0 1

]
and X+ =

[
0.5 −0.25
1 1

]
.

The matrix X+X
†
− = X+X

−1
− =

[
0.5 −0.5
1 0.5

]
is Schur (eigenvalues 1

2 (1±
√

2i)).

The controller K := U−X
†
− =

[
−1 − 1

2
]
stabilizes all systems in

ΣD =
{([

1.5 + a 0.5a
1 + b 0.5 + 0.5b

]
,

[
1 + a
b

])
| a, b ∈ R

}
.
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rankX− = n and there exists a right inverse X†− such that X+X

†
− is Schur.

In this case, K := U−X
†
− is a stabilizing feedback gain for all systems in ΣD.

Example: Consider the data X =
[
1 0.5 −0.25
0 1 1

]
and U− =

[
−1 −1

]
.

Thus, X− =
[
1 0.5
0 1

]
and X+ =

[
0.5 −0.25
1 1

]
.

The matrix X+X
†
− = X+X

−1
− =

[
0.5 −0.5
1 0.5

]
is Schur (eigenvalues 1

2 (1±
√

2i)).

The controller K := U−X
†
− =

[
−1 − 1

2
]
stabilizes all systems in

ΣD =
{([

1.5 + a 0.5a
1 + b 0.5 + 0.5b

]
,

[
1 + a
b

])
| a, b ∈ R

}
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Definition: We say the data D are informative for stabilization if there exists a
K ∈ Rm×n such that A+BK is Schur for all (A,B) ∈ ΣD.

Proposition (vW et al., 2020): D are informative for stabilization if and only if
rankX− = n and there exists a right inverse X†− such that X+X

†
− is Schur.

In this case, K := U−X
†
− is a stabilizing feedback gain for all systems in ΣD.

Remark: If the data are informative, a suitable X†− may be computed as follows:
Find Θ ∈ RT×n solving the linear matrix inequality (LMI):

X−Θ = Θ>X>− and
[
X−Θ X+Θ

Θ>X>+ X−Θ

]
> 0.

Set X†− := Θ(X−Θ)−1.
Finally, K = U−X

†
− = U−Θ(X−Θ)−1.

Remark: There are alternative LMIs1 where size of variables is independent of T .
1vW and Camlibel, “A Matrix Finsler’s Lemma with Applications to Data-Driven Control", in IEEE CDC, 2021.
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Problem Formulation 10/26

Let Σpk ⊆M be a set capturing our prior knowledge of the true system, i.e.,

(Atrue, Btrue) ∈ Σpk.

Data-driven stabilization problem (with Σpk): Given D and Σpk, find
K ∈ Rm×n such that A+BK is Schur for all (A,B) ∈ ΣD ∩ Σpk.

Definition: The data D are called Σpk-informative for stabilization if there exists
K ∈ Rm×n such that A+BK is Schur for all (A,B) ∈ ΣD ∩ Σpk.

This talk: Σpk-informativity for Σpk = Σcont and Σpk = Σstab, where

Σcont := {(A,B) ∈M | (A,B) is controllable}
Σstab := {(A,B) ∈M | (A,B) is stabilizable}.

Recall: The pair (A,B) ∈M is called
controllable if R(A,B) := im

[
B AB · · · An−1B

]
equals Rn.

stabilizable if there exists F ∈ Rm×n such that A+BF is Schur.

Note: This is challenging because ΣD ∩ Σpk is not convex!
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Example: Consider the data

U− =
[
1 2 −1

]
, X− =

[
1 2 4
0 0 0

]
, and X+ =

[
2 4 3
0 0 0

]
.

We have
ΣD =

{([
1 α
0 β

]
,

[
1
0

])
| α, β ∈ R

}
.

Since rankX− = 1 6= 2, D are not informative for stabilization.

However, we have

ΣD ∩ Σstab =
{([

1 α
0 β

]
,

[
1
0

])
| α ∈ R, |β| < 1

}
.

It is evident that K =
[
−1 0

]
stabilizes all systems in ΣD ∩ Σstab.

Therefore, D are Σstab–informative for stabilization.
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We focus on two types of prior knowledge:

Σpk = Σcont and Σpk = Σstab.

Problem: Find necessary and sufficient conditions under which the data D are
(i) Σcont–informative for stabilization;
(ii) Σstab–informative for stabilization.
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Controllability as prior knowledge 14/26

Theorem: Suppose that (Atrue, Btrue) ∈ Σcont.

Then, the following statements
are equivalent:
(a) D are Σcont–informative for stabilization.
(b) D are informative for stabilization.
Moreover, if K is such that A+BK is Schur for all (A,B) ∈ ΣD ∩ Σcont, then
A+BK is Schur for all (A,B) ∈ ΣD.

Interpretation: Prior knowledge on controllability does not help!

Remark: The theorem is based on the following two lemmas:

Lemma 1: Let (M,N) ∈ Σcont and (M0, N0) ∈M. Then, the pair
(M + αM0, N + αN0) is controllable for all but at most n2 values of α ∈ R.

Lemma 2: Let ε ∈ R, F ⊂ R be a finite set, and M,N ∈ Rn×n be such that
M + δN is Schur for all δ ∈ [ε,∞)\F . Then, M + δN is Schur for all δ ∈ R.
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Stabilizability as prior knowledge 16/26

Theorem (necessary conditions): Suppose that (Atrue, Btrue) ∈ Σstab and D
are Σstab–informative for stabilization.

Then the following statements hold:
(a) imX+ ⊆ imX−.

(b) If rankX− < n, then im
[
X−
U−

]
= imX− × Rm. (⇒ Btrue can be recovered)

Recall: If D are informative for stabilization (without prior knowledge), then

imX− = Rn.

Theorem (necessary and sufficient conditions): Suppose that
(Atrue, Btrue) ∈ Σstab. Then:

If rankX− = n, the following are equivalent:
(i) D are Σstab–informative for stabilization.
(ii) D are informative for stabilization.
If rankX− < n then D are Σstab–informative for stabilization if and only if
(1) imX+ ⊆ imX−, and

(2) im
[
X−
U−

]
= imX− × Rm.
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Example (revisited): Consider the data

U− =
[
1 2 −1

]
, X− =

[
1 2 4
0 0 0

]
, and X+ =

[
2 4 3
0 0 0

]
.

imX− = imX+ = im
[
1
0

]
. Also, im

[
X−
U−

]
= im

1 0
0 0
0 1

 = imX− × R.

So the data D are Σstab-informative for stabilization!

Discussion: The conditions for the case rankX− < n are very important in
situations where (Atrue, Btrue) 6∈ Σcont.
Indeed, in this case, when x(0) = 0,

rankX− < n

for any sequence of inputs u(0), u(1), . . . , u(T − 1).

Remark: In case rankX− < n, there are also LMI methods2 for constructing K!
2Shakouri, vW, Baltussen, and Heemels, “Data-Driven Stabilization Using Prior Knowledge on Stabilizability and Controllability", submitted, 2025.
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We consider a (discretized) model of a three-tank system:

1 Monte Carlo simulations with 1000 scenarios;
2 For each scenario,

I we simulate the system from t = 0 to t = 100;
I the input and initial condition ∼ Poisson distribution with parameter λ = 1.

3 We use the first T samples for each round of analysis; T = 3, 4, 5, 10, 100.
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Question: Given x(0) ∈ Rn, how to choose u(0), u(1), . . . , u(T − 1) ∈ Rm such
that the resulting data D = (U−, X) are Σpk-informative for stabilization?

Let X[0,t−1] :=
[
x(0) · · · x(t− 1)

]
and U[0,t−1] :=

[
u(0) · · · u(t− 1)

]
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Theorem: Let D be generated by Algorithm 1. Then:
1 T = dimR(Atrue,

[
Btrue x(0)

]
) +m 6 n+m.

2 If (Atrue, Btrue) ∈ Σstab, then D is Σstab–informative for stabilization.

Remark: For certain Atrue, Btrue and x(0), Algorithm 1 even returns the
shortest experiments for stabilization!
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Take-away messages: For data-driven stabilization:
1 controllability as prior knowledge is not helpful

2 prior knowledge on stabilizability leads to weaker conditions
3 an online experiment design algorithm can generate informative data

Future work:
other types of prior knowledge
noisy data

Further reading:
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