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Problem: digital computers consume enormous amounts of energy
ChatGPT: ±3 Wh per query, ±3 GWh per day

Alternative: analog computing
discrete values → analog signals (voltages/currents)

Prominent example: neuromorphic computing
aim: create circuit elements that behave like biological neurons

“the brain is a factor of 1 billion more efficient
than our present digital technology"
–Carver Mead1

1C. Mead, Neuromorphic electronic systems, Proc. IEEE, 78(10): pp 1629–1636, 1990.
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This talk: learning from input-output data in resistive electrical circuits
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pO3

pO1

pO2

The data: a pair of voltage potentials (pI , pDO )

Goal: Adjust the conductances of the resistors so that the circuit maps pI to pDO
Tool: Energy-based learning algorithms
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Graph theory:
G = (V, E) connected undirected graph
V = {1, 2, . . . , N} set of nodes
E ⊆ V × V set of B branches
D ∈ RN×B incidence matrix

Circuit theory:
p ∈ RN vector of voltage potentials at nodes
j ∈ RN nodal currents entering each node
v ∈ RB voltages across the branches
g ∈ RB vector of positive conductances
G := diag(g) ∈ RB×B diagonal matrix of conductances

Using the laws of Kirchhoff and Ohm, we get:

j = DGD>p

where DGD> is the Laplacian matrix of G.
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Partitioned matrices:
Input nodes VI and outputs VO such that V = VI ∪ VO and VI ∩ VO = ∅
Define NI := |VI | and NO := |VO|
Partition:

p =
[
pI
pO

]
, j =

[
jI
jO

]
, and D =

[
DI

DO

]
,

with pI , jI ∈ RNI , pO, jO ∈ RNO , DI ∈ RNI×B and DO ∈ RNO×B .

Assumptions on currents:
Sources at input nodes, leading to jI . Output currents: jO = 0.

Thus, [
jI
0

]
=
[
DIGD

>
I DIGD

>
O

DOGD
>
I DOGD

>
O

] [
pI
pO

]
,

leading to: pO = −(DOGD
>
O)−1DOGD

>
I pI .

Note: DOGD
>
O is invertible because G is connected (Laplacian has kernel im 1).
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Example:
g1

g3

g2
g4

pI1

pI2

pO1

pO2

jI1

jI2

D =

 1 0 0 0
0 1 1 0
−1 −1 0 1
0 0 −1 −1

 =
[
DI

DO

]

In this case,
[
pO1
pO2

]
=
[
g1 + g2 + g4 −g4
−g4 g3 + g4

]−1 [
g1 g2
0 g3

] [
pI1
pI2

]

Total power in the network:

v>Gv = p>DGD>p = (D>I pI +D>OpO)>G(D>I pI +D>OpO).

Fact: Given pI , the vector pO is the one minimizing the total power:

pO = arg min
x∈RNO

(D>I pI +D>Ox)>G(D>I pI +D>Ox).
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For ε > 0, define the set
Cε := {x ∈ RB |xk > ε, k = 1, 2, . . . , B}.

We will assume that g ∈ Cε can be adjusted

To emphasize dependence on g, we write pO(g) = −(DOGD
>
O)−1DOGD

>
I pI

By Kirchhoff’s voltage law:

v(g) = D>
[
pI

pO(g)

]
= D>

[
I

−(DOGD
>
O)−1DOGD

>
I

]
pI

Problem: Given pI and desired output potentials pDO , find a sequence
(
gt
)∞
t=0 in

Cε, where each gt+1
k is determined locally (using gtk and vk(gt)), such that

gt → g∗ as t→∞

for some g∗ ∈ Cε satisfying pO(g∗) = pDO .

Assumption: Throughout the talk we assume that such g∗ exists.
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First proposed by Hopfield2 and Hinton et al.3

Ingredients of the energy-based learning model:
1 a parameter vector θ
2 a vector of input variables x
3 a vector of hidden variables h
4 a vector of output variables o
5 an energy function E, so that E : (θ, x, h, o) 7→ e ∈ R

Given θ and x, the hidden and output variable are defined as:

(h∗, o∗) := arg min
(h,o)

E(θ, x, h, o).

Training goal: Given input-output data (x, y), find θ so that o∗ = y.

2J.J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. of the national academy
of sciences, 81(10):3088-3092, 1984.

3G.E. Hinton et al., Boltzmann machines: constraint satisfaction networks that learn, technical report, Carnegie-Mellon University, Department of
Computer Science Pittsburgh, PA, 1984.



Energy-based learning algorithms 11/24

Different energy-based learning algorithms:
Contrastive learning4

Equilibrium propagation5

Coupled learning6

Leitmotif: contrast two states of the model and update θ iteratively

We focus on contrastive learning. Given θ, consider two states:
1 Free state: Fix x. This yields hidden and output variables (h∗, o∗)
2 Clamped state: Fix both input x and output y. Yields hidden variable

hCL∗ := arg min
h

E(θ, x, h, y).

Parameter update: For γ > 0, the learning rule for the parameters is:

θnew = θ − γ
(
∂E

∂θ
(θ, x, hCL∗ , y)− ∂E

∂θ
(θ, x, h∗, o∗)

)
4J.R. Movellan, Contrastive Hebbian learning in the continuous Hopfield model, Connectionist models, pp.10-17, Elsevier, 1991.
5B. Scellier and Y. Bengio, Equilibrium propagation: bridging the gap between energy-based models and backpropagation, Frontiers in computational

neuroscience, 11:24,2017.
6Stern et al., Supervised learning in physical networks: from machine learning to learning machines, Physical Review X, 11(2):021045, 2021.
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Parameter update: Let γ > 0. The learning rule for the parameters is:

θnew = θ − γ
(
∂E

∂θ
(θ, x, hCL∗ , y)− ∂E

∂θ
(θ, x, h∗, o∗)

)
Interpretation: dE

dθ = ∂E
∂θ +

(
∂h
∂θ

)> ∂E
∂h +

(
∂o
∂θ

)> ∂E
∂o .

Thus, by definition of h∗ and o∗,
∂E

∂h
(θ, x, h∗, o∗) = 0 and ∂E

∂o
(θ, x, h∗, o∗) = 0.

=⇒ dE
dθ (θ, x, h∗, o∗) = ∂E

∂θ (θ, x, h∗, o∗). Also, dEdθ (θ, x, hCL∗ , y) = ∂E
∂θ (θ, x, hCL∗ , y).

The point: Define the contrastive function
Q(θ, x, y) := E(θ, x, hCL∗ , y)− E(θ, x, h∗, o∗).

Then the learning rule is:

θnew = θ − γ dQ
dθ

(θ, x, y).

So contrastive learning performs gradient descent on Q!
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Inspired by the energy-based learning paradigm, we define the contrastive function:

Q(g) := (vD)>GvD − v(g)>Gv(g)

where vD := D>
[
pI
pDO

]
and v(g) = D>

[
pI

pO(g)

]
.

Using the fact that dQ
dg (g) = ∂Q

∂g (g) we obtain:

dQ

dg
(g) = (vD)2 − v(g)2,

where, for x ∈ RB , we define

x2 :=


x2

1
x2

2
...
x2
B

 .
The contrastive learning rule is thus:

g0 ∈ Cε, and gt+1 = gt − γ((vD)2 − v(gt)2) for t = 0, 1, 2, . . .

However, this does not ensure that gt+1 ∈ Cε...
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Definition: Let C ⊆ Rn be nonempty, closed and convex. The projection
PC : Rn → C is defined as

PC(x) := arg min
x̂∈C

‖x̂− x‖.

Projected gradient descent algorithm: Let γ > 0 and g0 ∈ Cε. Define

gt+1 = PCε
(
gt − γ((vD)2 − v(gt)2)

)
for t = 0, 1, 2, . . .

gt+1 = PCε

(
gt − γut

)

circuit
(
v(gt)

)2
gt

(
vD
)2

ut

−



The algorithm 15/24

Projected gradient descent (PGD) algorithm: Let γ > 0 and g0 ∈ Cε. Define

gt+1 = PCε
(
gt − γ((vD)2 − v(gt)2)

)
for t = 0, 1, 2, . . .

gt+1 = PCε

(
gt − γut

)

circuit
(
v(gt)

)2
gt

(
vD
)2

ut

−

Comments:
1 Distributed algorithm using local update rules because:

gt+1
k = max{ε, gtk − γ((vDk )2 − vk(gt)2)}

for k = 1, 2, . . . , B.
2 Same circuit is used for training (i.e., updating gt) and inference

Main open question: does this algorithm converge (to something meaningful)?
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Let C ⊆ Rn be nonempty, closed and convex. We view our PGD algorithm as a
fixed-point iteration:

x0 ∈ C, xt+1 = f(xt),

where f : C → C and xt ∈ C for t = 0, 1, . . . .

Definition: The set of fixed points of f is defined as

Fix f := {x ∈ C |x = f(x)}.

Definition: The function f is called Lipschitz continuous if there exists L > 0
such that

||f(x)− f(y)|| 6 L||x− y||

for all x, y ∈ C. It is nonexpansive if it is Lipschitz continuous with L = 1.

Definition: We say f is averaged if there exists a nonexpansive f̄ : C → C and
an α ∈ (0, 1) such that f(x) = αx+ (1− α)f̄(x) for all x ∈ C.

Theorem (Krasnosel’skĭı-Mann): Assume that f is averaged and Fix f 6= ∅.
Then, as t→∞, xt → x∗ for some x∗ ∈ Fix f .
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Idea: Now apply this with C = Cε and f : Cε → Cε defined by

f(g) = PCε

(
g − γ dQ

dg
(g)
)
.

Note: This f is the composition of PCε and g 7→ g − γ dQdg (g).

Fact: Let f1, f2 : C → C be averaged. Then f1 ◦ f2 is averaged.

Fact7: PC is averaged for any nonempty closed convex set C.

Fact8: If Q is convex and dQ
dg is Lipschitz continuous with constant L, then the

function g 7→ g − γ dQdg (g) is averaged for any γ ∈ (0, 2
L ).

Question: How to show convexity and Lipschitz continuity?
7H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics, New York,

NY: Springer New York, 2011.
8E. K. Ryu and W. Yin, Large-Scale Convex Optimization: Algorithms and Analyses via Monotone Operators, Cambridge University Press, 2022.



Convergence analysis 19/24

Lemma9: The function Q : Cε → R is convex.

Idea of the proof: The Hessian matrix

H =


∂2Q
∂g2

1

∂2Q
∂g1∂g2

· · · ∂2Q
∂g1∂gB

∂2Q
∂g2∂g1

∂2Q
∂g2

2
· · · ∂2Q

∂g2∂gB
...

...
. . .

...
∂2Q

∂gB∂g1

∂2Q
∂gB∂g2

· · · ∂2Q
∂g2
B


has the nice formula H(g) = 2 diag

(
v(g)

)
D>O(DOGD

>
O)−1DO diag

(
v(g)

)
.

This implies H(g) > 0 for all g ∈ Cε, thus Q is convex!

Lemma: The function dQ
dg is Lipschitz continuous on Cε with

L := 2
ε

(
‖DI‖+

√
NINO‖DO‖

)2
‖pI‖2.

9M.A. Huijzer, T. Chaffey, B. Besselink, and H.J. van Waarde, Convergence of energy-based learning in linear resistive networks,
https://arxiv.org/abs/2503.00349, 2025.
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To summarize:
The function Q : Cε → R is convex
The function dQ

dg is Lipschitz continuous on Cε with

L := 2
ε

(
‖DI‖+

√
NINO‖DO‖

)2
‖pI‖2.

Corollary: The function g 7→ g − γ dQdg (g) is averaged for any γ ∈ (0, 2
L ).

Theorem10: Let γ ∈ (0, 2
L ) and g0 ∈ Cε. Define

gt+1 = PCε
(
gt − γ((vD)2 − v(gt)2)

)
for t = 0, 1, 2, . . .

As t→∞, gt → g∗ where g∗ ∈ Cε is such that pO(g∗) = pDO .

So the contrastive learning algorithm solves our problem!

10M.A. Huijzer, T. Chaffey, B. Besselink, and H.J. van Waarde, Convergence of energy-based learning in linear resistive networks,
https://arxiv.org/abs/2503.00349, 2025.
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Crossbar array: G is a complete
bipartite graph

Often used for matrix-vector
multiplication

We consider NI = 40, NO = 30, ε = 0.1

pI =
[
1 2 · · · 40

]>
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Summary:
Applied energy-based learning to a linear resistive circuit
Proved convergence

1 Contrastive function Q is convex
2 Gradient dQ

dg
is Lipschitz continuous

Stochastic projected gradient descent in case of multiple samples:

(pI,k, pDO,k) for k = 1, 2, . . . , n.

Ongoing and future work:
Nonlinear resistors
Dynamics (capacitors/inductors)
Hidden layers
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Thank you!
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