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Problem: digital computers consume enormous amounts of energy
m ChatGPT: £3 Wh per query, 3 GWh per day

Alternative: analog computing

m discrete values — analog signals (voltages/currents)

Prominent example: neuromorphic computing

m aim: create circuit elements that behave like biological neurons

“the brain is a factor of 1 billion more efficient
than our present digital technology"
—Carver Mead"

L. Mead, Neuromorphic electronic systems, Proc. IEEE, 78(10): pp 1629-1636, 1090.
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This talk: learning from input-output data in resistive electrical circuits

Pos

Pr, ’\W\/ po,

The data: a pair of voltage potentials (pr,p3)

Goal: Adjust the conductances of the resistors so that the circuit maps p; to pg
m Tool: Energy-based learning algorithms
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Problem formulation



Problem formulation

Graph theory:
mG=(V¢)
mV={12... N}
mECY XV
m DcRVXB
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connected undirected graph
set of nodes
set of B branches

incidence matrix

Circuit theory:
mpcRY
mjcRY
mveRB
mgcRE

m G = diag(g) € RB*B

vector of voltage potentials at nodes
nodal currents entering each node
voltages across the branches

vector of positive conductances

diagonal matrix of conductances

Using the laws of Kirchhoff and Ohm, we get:

where DGD'T is the Laplacian matrix of G.

j=DGDTp
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Partitioned matrices:

m Input nodes V; and outputs Vo such that V =V; UVp and VNV = @

m Define Nj := |V;| and No := [Vo|

m Partition:
pr| . JI Dy
— ,ji=1%"1, and D = ,
P [po} ! [Jo] " {Do]

with pr,jr € RN1 po,jo € RNo, Dy € RN1*B and Dy € RNox B,
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Assumptions on currents:
m Sources at input nodes, leading to j;. Output currents: jo = 0.

lhus,
Jr D[GDIT DIGDg pr
0] DOGDIT DOGD(T) PO

leading to: po = 7(D()GD;;)71 D()GD}F])].

Note: DoGD), is invertible because G is connected (Laplacian has kernel im 1).



Problem formulation & z 7/24
Example:
in g1
bo,
Ph 0 1 0 0 0
9 b_ |0 1 1 of_[Dr
‘ T |11 0 1| | Do
JI -1 —
2 PO, 0 O 1 -1
Pr,
-1
In this case |PO1| = [91 T 92+ 092 —a 91 92| |Pn1
" [po2 —g4 93+ g4 0 93] |pr2

Total power in the network:
UTG’U = pTDGDTp = (DITpI + Dgpo)TG(D}rpI + Dgpo).
Fact: Given py, the vector po is the one minimizing the total power:

po = argmin (D] p; + D3x) " G(D] p; + D).

zeRNo
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For € > 0, define the set
Cc={zeRP |z, >¢ k=1,2,... B}

We will assume that g € C. can be adjusted

To emphasize dependence on g, we write po(g) = —(DoGD/S) " 'DoGD] p;

By Kirchhoff's voltage law:
I
_ DT pr :| — DT |:
o) =07 | ~(DoGDy) ' DoGD] | !

Problem: Given p; and desired output potentials pg, find a sequence (gt):io in

Cc, where each g,tjl is determined locally (using g!. and vi(g")), such that

gt — g* as t —

for some g* € C, satisfying po(g*) = p5.

Assumption: Throughout the talk we assume that such g* exists.
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Overview of energy-based learning
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First proposed by Hopfield* and Hinton et al.?

Ingredients of the energy-based learning model:

1 a parameter vector 6

2 a vector of input variables x

3 a vector of hidden variables h

4 a vector of output variables o

5 an energy function E, so that E : (0,z,h,0) = e € R

Given 6 and z, the hidden and output variable are defined as:

(hy,04) :=argmin E(0, z, h, 0).
(h.0)

Training goal: Given input-output data (z,y), find 6 so that 0. = y.

2 .
J.J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. of the national academy
of sciences, 81(10):3088-3092, 1984.
3G.E. Hinton et al., Boltzmann machines: constraint satisfaction networks that learn, technical report, Carnegie-Mellon University, Department of
Computer Science Pittsburgh, PA, 1984.
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Different energy-based learning algorithms:
m Contrastive learning®

m Equilibrium propagation®

m Coupled learning®

Leitmotif: contrast two states of the model and update 0 iteratively

We focus on contrastive learning. Given 6, consider two states:
1 Free state: Fix . This yields hidden and output variables (h., 0,)
2 Clamped state: Fix both input = and output y. Yields hidden variable

hCt := argmin E(6, z, h,y).
h

Parameter update: For v > 0, the learning rule for the parameters is:

new __ oE . CL |, oE
" =0 7(89 (0,2z,h;,y) 50 <9ALL.,/1>;<,()*)>

4J.R. Movellan, Contrastive Hebbian learning in the continuous Hopfield model, Connectionist models, pp.10-17, Elsevier, 1991.

B. Scellier and Y. Bengio, Equilibrium propagation: bridging the gap between energy-based models and backpropagation, Frontiers in computational
neuroscience, 11:24,2017.

6Stern et al., Supervised learning in physical networks: from machine learning to learning machines, Physical Review X, 11(2):021045, 2021.
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Parameter update: Let v > 0. The learning rule for the parameters is:

OF
e = — (%g(e’x’ het ) — (())79(9 x, hy, a*)>

Interpretation: 4& = 98 4 (h )T 9E | (%)T 9
Thus, by definition of h. and o,
oE OE

o — (0,2, hs,0,) =0 and o (0,2, hy,0.) =0.
= L0, 2,h.,0.) =% (0,2.h.,0.). Also, (0,2, hy) = %—g(ﬁ,x,hf",y).

The point: Define the contrastive function

Qb,z,y) == E0,z,hS" y) — E(0, 2, h.,0.).
Then the learning rule is:

pnew — dQ

= 9—7@(97%9)-

So contrastive learning performs gradient descent on Q!
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The algorithm
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Inspired by the energy-based learning paradigm, we define the contrastive function:
Q(g) = (v7) " Gv” —u(g)" Gu(y)

here v” := DT pl]ad’v DT{ v }
where v s =071

Using the fact that %(g) = %(g) we obtain:

dQ ‘
9= (WP)? —v(g)?,
where, for z € RE, we define
7
x
2= |7
Th

The contrastive learning rule is thus:

g €C., and gt = g —y((vP)? —u(¢")?) for t=0,1,2,...

However, this does not ensure that ¢'** € C....



The algorithm

Definition: Let C C R" be nonempty, closed and convex. The projection
Pe : R™ — C is defined as

Pe(x) := argmin ||Z — x||.
zeC
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Projected gradient descent algorithm: Let v > 0 and ¢° € C.. Define

gt = Pe, (gt —~((vP)? - 7:(,(]’/)2)) for t=0,1,2,...

circuit
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Projected gradient descent (PGD) algorithm: Let v > 0 and ¢° € C.. Define

gttt = Pe, (gt — ’y((vD)z — 71(,(]’/)2)) for t=0,1,2,...

circuit

Comments:
1 Distributed algorithm using local update rules because:

gy = max{e, gi —((v)* —vnl9")?)}

fork=1,2,...,B.
2 Same circuit is used for training (i.e., updating g*) and inference

Main open question: does this algorithm converge (to something meaningful)?
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Convergence analysis
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Let C C R™ be nonempty, closed and convex. We view our PGD algorithm as a

fixed-point iteration:
e, = fah),

where f:C—Cand 2 €Cfort=0,1,....

Definition: The set of fixed points of f is defined as

Fixf:={zeC|z= f(z)}.

Definition: The function f is called Lipschitz continuous if there exists L > 0
such that

1F (@) = fF@)Il < Lllz =y

for all x,y € C. It is nonexpansive if it is Lipschitz continuous with L = 1.

Definition: We say f is averaged if there exists a nonexpansive f : C — C and

an a € (0,1) such that f(z) = az + (1 — «) f(z) for all z € C.

Theorem (Krasnosel'skii-Mann): Assume that f is averaged and Fix f # &.
Then, as t — oo, 2/ — z* for some z* € Fix f.
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Idea: Now apply this with C = C, and f : C. — C. defined by

@)= re. (5-152@)

Note: This f is the composition of P¢, and g — g — fy%(g).

Fact: Let f1, fo : C — C be averaged. Then f; o f5 is averaged.

Fact” Pg is averaged for any nonempty closed convex set C.

Fact®: If ) is convex and % is Lipschitz continuous with constant L, then the

function g — g — 7%(9) is averaged for any v € (0, 2).

Question: How to show convexity and Lipschitz continuity?

"H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics, New York,
NY: Springer New York, 2011.

8E. K. Ryu and W. Yin, Large-Scale Convex Optimization: Algorithms and Analyses via Monotone Operators, Cambridge University Press, 2022.
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Lemma’: The function @ : C. — R is convex.

Idea of the proof: The Hessian matrix

9’Q 2°Q . 2’°Q
092 0991092 091098
2*Q 2°Q L. 2’°Q
H— 692-391 393 892?93
o 9 . 2%Q
0g9p0g1  9gpOg2 993

has the nice formula H(g) = 2diag(v(g)) D5 (DoGD/S) ™ Do diag(v(g)).

This implies H(g) > 0 for all g € C,, thus Q is convex!

Lemma: The function % is Lipschitz continuous on C, with

9 2
L= 2 (IDs]) + VNiNollDoll) x>

OM.A. Huijzer, T. Chaffey, B. Besselink, and H.J. van Waarde, Convergence of energy-based learning in linear resistive networks,
https:/ /arxiv.org/abs/2503.00349, 2025.
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To summarize:
m The function Q : Cc — R is convex
m The function ¢ T; is Lipschitz continuous on C, with

2 2
= = (ID1ll+ VNiNo|1Doll) " llpr

Corollary: The function g — g — ,de (g) is averaged for any v € (0, %)

Theorem™: Let v € (0, %) and ¢° € C. Define

(g —y(( 2—7:(9‘)2)) for t=0,1,2,...

Ast — 0o, g' — g* where g* € C. is such that po(g*) = p5.

So the contrastive learning algorithm solves our problem!

OM.A. Huijzer, T. Chaffey, B. Besselink, and H.J. van Waarde, Convergence of energy-based learning in linear resistive networks,
https:/ /arxiv.org/abs/2503.00349, 2025.
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lllustrative example



lllustrative example

= = 21/24

Crossbar array: G is a complete
bipartite graph

Often used for matrix-vector
multiplication

We consider Ny = 40, No = 30, ¢e = 0.1

5
---0.001
0.004
—0.007
---0.010
0.013

10 15 20
Iterations
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Conclusions



Conclusions =

Summary:
m Applied energy-based learning to a linear resistive circuit

m Proved convergence

1 Contrastive function @ is convex
2 Gradient % is Lipschitz continuous

m Stochastic projected gradient descent in case of multiple samples:

(Pf,k,ng) for k=1,2,...,n.

23/24

Ongoing and future work:

m Nonlinear resistors

m Dynamics (capacitors/inductors)
m Hidden layers
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Thank youl!

Convergence of energy-based learning in linear
resistive networks

Anne-Men Huijzer, Thomas Chaffey, Bart Besselink and Henk J. van Waarde

Abstract— Energy-| based learning algorithms are alterna-  in analog electronics was first investigated in the 1980s [14]—
tives to propag and are well-suited to dlstrlbuted [19], and has seen a recent resurgence. This is, in part, due
implementations in analog lie ! to the ability of analog circuits to perform inference many
rigorous theory of convergence is Iacklng We makeaflrsl timac factar than ranuantinnal nenral natwarke IN1_171
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