
Energy-based learning
SCO colloquium, 13 May 2025

Henk van Waarde

Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence

Jan C. Willems Center for Systems and Control

University of Groningen

Based on joint work with: Anne-Men Huijzer, Tom Chaffey and Bart Besselink

Analog computing 2/24

Problem: digital computers consume enormous amounts of energy
ChatGPT: ±3 Wh per query, ±3 GWh per day

Alternative: analog computing
discrete values → analog signals (voltages/currents)

Prominent example: neuromorphic computing
aim: create circuit elements that behave like biological neurons

“the brain is a factor of 1 billion more efficient
than our present digital technology"
–Carver Mead1

1C. Mead, Neuromorphic electronic systems, Proc. IEEE, 78(10): pp 1629–1636, 1990.

Topic of this talk 3/24

This talk: learning from input-output data in resistive electrical circuits

pI1

pI2

pO3

pO1

pO2

The data: a pair of voltage potentials (pI , pDO)

Goal: Adjust the conductances of the resistors so that the circuit maps pI to pDO
Tool: Energy-based learning algorithms

Part 1 4/24

Problem formulation

Overview of energy-based learning

The algorithm

Convergence analysis

Illustrative example

Conclusions

Problem formulation 5/24

Graph theory:
G = (V, E) connected undirected graph
V = {1, 2, . . . , N} set of nodes
E ⊆ V × V set of B branches
D ∈ RN×B incidence matrix

Circuit theory:
p ∈ RN vector of voltage potentials at nodes
j ∈ RN nodal currents entering each node
v ∈ RB voltages across the branches
g ∈ RB vector of positive conductances
G := diag(g) ∈ RB×B diagonal matrix of conductances

Using the laws of Kirchhoff and Ohm, we get:

j = DGD>p

where DGD> is the Laplacian matrix of G.

Problem formulation 6/24

Partitioned matrices:
Input nodes VI and outputs VO such that V = VI ∪ VO and VI ∩ VO = ∅
Define NI := |VI | and NO := |VO|
Partition:

p =
[
pI
pO

]
, j =

[
jI
jO

]
, and D =

[
DI

DO

]
,

with pI , jI ∈ RNI , pO, jO ∈ RNO , DI ∈ RNI×B and DO ∈ RNO×B .

Assumptions on currents:
Sources at input nodes, leading to jI . Output currents: jO = 0.

Thus, [
jI
0

]
=
[
DIGD

>
I DIGD

>
O

DOGD
>
I DOGD

>
O

] [
pI
pO

]
,

leading to: pO = −(DOGD
>
O)−1DOGD

>
I pI .

Note: DOGD
>
O is invertible because G is connected (Laplacian has kernel im 1).

Problem formulation 7/24

Example:
g1

g3

g2
g4

pI1

pI2

pO1

pO2

jI1

jI2

D =

 1 0 0 0
0 1 1 0
−1 −1 0 1
0 0 −1 −1

 =
[
DI

DO

]

In this case,
[
pO1
pO2

]
=
[
g1 + g2 + g4 −g4
−g4 g3 + g4

]−1 [
g1 g2
0 g3

] [
pI1
pI2

]

Total power in the network:

v>Gv = p>DGD>p = (D>I pI +D>OpO)>G(D>I pI +D>OpO).

Fact: Given pI , the vector pO is the one minimizing the total power:

pO = arg min
x∈RNO

(D>I pI +D>Ox)>G(D>I pI +D>Ox).

Problem formulation 8/24

For ε > 0, define the set
Cε := {x ∈ RB |xk > ε, k = 1, 2, . . . , B}.

We will assume that g ∈ Cε can be adjusted

To emphasize dependence on g, we write pO(g) = −(DOGD
>
O)−1DOGD

>
I pI

By Kirchhoff’s voltage law:

v(g) = D>
[
pI

pO(g)

]
= D>

[
I

−(DOGD
>
O)−1DOGD

>
I

]
pI

Problem: Given pI and desired output potentials pDO , find a sequence
(
gt
)∞
t=0 in

Cε, where each gt+1
k is determined locally (using gtk and vk(gt)), such that

gt → g∗ as t→∞

for some g∗ ∈ Cε satisfying pO(g∗) = pDO .

Assumption: Throughout the talk we assume that such g∗ exists.

Part 2 9/24

Problem formulation

Overview of energy-based learning

The algorithm

Convergence analysis

Illustrative example

Conclusions

The energy-based learning paradigm 10/24

First proposed by Hopfield2 and Hinton et al.3

Ingredients of the energy-based learning model:
1 a parameter vector θ
2 a vector of input variables x
3 a vector of hidden variables h
4 a vector of output variables o
5 an energy function E, so that E : (θ, x, h, o) 7→ e ∈ R

Given θ and x, the hidden and output variable are defined as:

(h∗, o∗) := arg min
(h,o)

E(θ, x, h, o).

Training goal: Given input-output data (x, y), find θ so that o∗ = y.

2J.J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. of the national academy
of sciences, 81(10):3088-3092, 1984.

3G.E. Hinton et al., Boltzmann machines: constraint satisfaction networks that learn, technical report, Carnegie-Mellon University, Department of
Computer Science Pittsburgh, PA, 1984.

Energy-based learning algorithms 11/24

Different energy-based learning algorithms:
Contrastive learning4

Equilibrium propagation5

Coupled learning6

Leitmotif: contrast two states of the model and update θ iteratively

We focus on contrastive learning. Given θ, consider two states:
1 Free state: Fix x. This yields hidden and output variables (h∗, o∗)
2 Clamped state: Fix both input x and output y. Yields hidden variable

hCL∗ := arg min
h

E(θ, x, h, y).

Parameter update: For γ > 0, the learning rule for the parameters is:

θnew = θ − γ
(
∂E

∂θ
(θ, x, hCL∗ , y)− ∂E

∂θ
(θ, x, h∗, o∗)

)
4J.R. Movellan, Contrastive Hebbian learning in the continuous Hopfield model, Connectionist models, pp.10-17, Elsevier, 1991.
5B. Scellier and Y. Bengio, Equilibrium propagation: bridging the gap between energy-based models and backpropagation, Frontiers in computational

neuroscience, 11:24,2017.
6Stern et al., Supervised learning in physical networks: from machine learning to learning machines, Physical Review X, 11(2):021045, 2021.

Contrastive learning algorithm 12/24

Parameter update: Let γ > 0. The learning rule for the parameters is:

θnew = θ − γ
(
∂E

∂θ
(θ, x, hCL∗ , y)− ∂E

∂θ
(θ, x, h∗, o∗)

)
Interpretation: dE

dθ = ∂E
∂θ +

(
∂h
∂θ

)> ∂E
∂h +

(
∂o
∂θ

)> ∂E
∂o .

Thus, by definition of h∗ and o∗,
∂E

∂h
(θ, x, h∗, o∗) = 0 and ∂E

∂o
(θ, x, h∗, o∗) = 0.

=⇒ dE
dθ (θ, x, h∗, o∗) = ∂E

∂θ (θ, x, h∗, o∗). Also, dEdθ (θ, x, hCL∗ , y) = ∂E
∂θ (θ, x, hCL∗ , y).

The point: Define the contrastive function
Q(θ, x, y) := E(θ, x, hCL∗ , y)− E(θ, x, h∗, o∗).

Then the learning rule is:

θnew = θ − γ dQ
dθ

(θ, x, y).

So contrastive learning performs gradient descent on Q!

Part 3 13/24

Problem formulation

Overview of energy-based learning

The algorithm

Convergence analysis

Illustrative example

Conclusions

The algorithm 14/24

Inspired by the energy-based learning paradigm, we define the contrastive function:

Q(g) := (vD)>GvD − v(g)>Gv(g)

where vD := D>
[
pI
pDO

]
and v(g) = D>

[
pI

pO(g)

]
.

Using the fact that dQ
dg (g) = ∂Q

∂g (g) we obtain:

dQ

dg
(g) = (vD)2 − v(g)2,

where, for x ∈ RB , we define

x2 :=


x2

1
x2

2
...
x2
B

 .
The contrastive learning rule is thus:

g0 ∈ Cε, and gt+1 = gt − γ((vD)2 − v(gt)2) for t = 0, 1, 2, . . .

However, this does not ensure that gt+1 ∈ Cε...

The algorithm 15/24

Definition: Let C ⊆ Rn be nonempty, closed and convex. The projection
PC : Rn → C is defined as

PC(x) := arg min
x̂∈C

‖x̂− x‖.

Projected gradient descent algorithm: Let γ > 0 and g0 ∈ Cε. Define

gt+1 = PCε
(
gt − γ((vD)2 − v(gt)2)

)
for t = 0, 1, 2, . . .

gt+1 = PCε

(
gt − γut

)

circuit
(
v(gt)

)2
gt

(
vD
)2

ut

−

The algorithm 15/24

Projected gradient descent (PGD) algorithm: Let γ > 0 and g0 ∈ Cε. Define

gt+1 = PCε
(
gt − γ((vD)2 − v(gt)2)

)
for t = 0, 1, 2, . . .

gt+1 = PCε

(
gt − γut

)

circuit
(
v(gt)

)2
gt

(
vD
)2

ut

−

Comments:
1 Distributed algorithm using local update rules because:

gt+1
k = max{ε, gtk − γ((vDk)2 − vk(gt)2)}

for k = 1, 2, . . . , B.
2 Same circuit is used for training (i.e., updating gt) and inference

Main open question: does this algorithm converge (to something meaningful)?

Part 4 16/24

Problem formulation

Overview of energy-based learning

The algorithm

Convergence analysis

Illustrative example

Conclusions

Convergence analysis 17/24

Let C ⊆ Rn be nonempty, closed and convex. We view our PGD algorithm as a
fixed-point iteration:

x0 ∈ C, xt+1 = f(xt),

where f : C → C and xt ∈ C for t = 0, 1,

Definition: The set of fixed points of f is defined as

Fix f := {x ∈ C |x = f(x)}.

Definition: The function f is called Lipschitz continuous if there exists L > 0
such that

||f(x)− f(y)|| 6 L||x− y||

for all x, y ∈ C. It is nonexpansive if it is Lipschitz continuous with L = 1.

Definition: We say f is averaged if there exists a nonexpansive f̄ : C → C and
an α ∈ (0, 1) such that f(x) = αx+ (1− α)f̄(x) for all x ∈ C.

Theorem (Krasnosel’skĭı-Mann): Assume that f is averaged and Fix f 6= ∅.
Then, as t→∞, xt → x∗ for some x∗ ∈ Fix f .

Convergence analysis 18/24

Idea: Now apply this with C = Cε and f : Cε → Cε defined by

f(g) = PCε

(
g − γ dQ

dg
(g)
)
.

Note: This f is the composition of PCε and g 7→ g − γ dQdg (g).

Fact: Let f1, f2 : C → C be averaged. Then f1 ◦ f2 is averaged.

Fact7: PC is averaged for any nonempty closed convex set C.

Fact8: If Q is convex and dQ
dg is Lipschitz continuous with constant L, then the

function g 7→ g − γ dQdg (g) is averaged for any γ ∈ (0, 2
L).

Question: How to show convexity and Lipschitz continuity?
7H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics, New York,

NY: Springer New York, 2011.
8E. K. Ryu and W. Yin, Large-Scale Convex Optimization: Algorithms and Analyses via Monotone Operators, Cambridge University Press, 2022.

Convergence analysis 19/24

Lemma9: The function Q : Cε → R is convex.

Idea of the proof: The Hessian matrix

H =


∂2Q
∂g2

1

∂2Q
∂g1∂g2

· · · ∂2Q
∂g1∂gB

∂2Q
∂g2∂g1

∂2Q
∂g2

2
· · · ∂2Q

∂g2∂gB
...

...
. . .

...
∂2Q

∂gB∂g1

∂2Q
∂gB∂g2

· · · ∂2Q
∂g2
B


has the nice formula H(g) = 2 diag

(
v(g)

)
D>O(DOGD

>
O)−1DO diag

(
v(g)

)
.

This implies H(g) > 0 for all g ∈ Cε, thus Q is convex!

Lemma: The function dQ
dg is Lipschitz continuous on Cε with

L := 2
ε

(
‖DI‖+

√
NINO‖DO‖

)2
‖pI‖2.

9M.A. Huijzer, T. Chaffey, B. Besselink, and H.J. van Waarde, Convergence of energy-based learning in linear resistive networks,
https://arxiv.org/abs/2503.00349, 2025.

Convergence analysis 20/24

To summarize:
The function Q : Cε → R is convex
The function dQ

dg is Lipschitz continuous on Cε with

L := 2
ε

(
‖DI‖+

√
NINO‖DO‖

)2
‖pI‖2.

Corollary: The function g 7→ g − γ dQdg (g) is averaged for any γ ∈ (0, 2
L).

Theorem10: Let γ ∈ (0, 2
L) and g0 ∈ Cε. Define

gt+1 = PCε
(
gt − γ((vD)2 − v(gt)2)

)
for t = 0, 1, 2, . . .

As t→∞, gt → g∗ where g∗ ∈ Cε is such that pO(g∗) = pDO .

So the contrastive learning algorithm solves our problem!

10M.A. Huijzer, T. Chaffey, B. Besselink, and H.J. van Waarde, Convergence of energy-based learning in linear resistive networks,
https://arxiv.org/abs/2503.00349, 2025.

Part 5 21/24

Problem formulation

Overview of energy-based learning

The algorithm

Convergence analysis

Illustrative example

Conclusions

Illustrative example 21/24

Crossbar array: G is a complete
bipartite graph

Often used for matrix-vector
multiplication

We consider NI = 40, NO = 30, ε = 0.1

pI =
[
1 2 · · · 40

]>

Part 6 22/24

Problem formulation

Overview of energy-based learning

The algorithm

Convergence analysis

Illustrative example

Conclusions

Conclusions 23/24

Summary:
Applied energy-based learning to a linear resistive circuit
Proved convergence

1 Contrastive function Q is convex
2 Gradient dQ

dg
is Lipschitz continuous

Stochastic projected gradient descent in case of multiple samples:

(pI,k, pDO,k) for k = 1, 2, . . . , n.

Ongoing and future work:
Nonlinear resistors
Dynamics (capacitors/inductors)
Hidden layers

Thanks 24/24

Thank you!

	Problem formulation
	Overview of energy-based learning
	The algorithm
	Convergence analysis
	Illustrative example
	Conclusions

