Learning Stabilizing and Optimal Controllers from Data: An Informativity Approach

Henk van Waarde

Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence and Jan C. Willems Center for Systems and Control

University of Groningen

Joint research with: Kanat Camlibel, Jaap Eising and Harry Trentelman

Introduction

Data-driven control

Goal: Find C using data $\mathcal{D} = \{(u(t), y(t))\}_{t=0}^{T-1}$

Question: when is this possible?

Common SysID wisdom: PE inputs, but

- Not tailored to control problem
- Not sufficient in presence of noise

The informativity framework

The point of view

Informativity and data-driven control

 $\begin{array}{l} \mathcal{M}: \mbox{ model class} \\ \mathcal{S}: \mbox{ unknown system} \\ \mathcal{D}: \mbox{ given data set} \\ \Sigma_{\mathcal{D}}: \mbox{ set of consistent systems} \end{array}$

 \mathcal{O} : control objective

- Data-driven control := use the data set D to find a controller C that achieves O for the unknown system S
- On the basis of D we cannot distinguish between systems in Σ_D so the only way to proceed is to find a controller that achieves O for all systems in Σ_D
- Data \mathcal{D} are informative for \mathcal{O} : $\iff \exists$ controller \mathcal{C} that achieves \mathcal{O} for all systems in $\Sigma_{\mathcal{D}}$

¹van Waarde et al. "Data informativity: a new perspective on data-driven analysis and control" (2020).

The point of view

Informativity and data-driven control

Note: \mathcal{D} may be informative for \mathcal{O}_1 but not for \mathcal{O}_2 .

Robust control problem, where uncertainty stems from imperfect data

Controllers are obtained directly from data (without model identification), in line with recent research efforts:

- Markovsky and Rapisarda, "Data-driven simulation and control" (2008).
- Coulson et al., "Data-Enabled Predictive Control: In the Shallows of the DeePC" (2019).
- De Persis and Tesi, "Formulas for data-driven control: stabilization, optimality and robustness" (2020).
- Berberich et al. "Combining Prior Knowledge and Data for Robust Controller Design" (2021).
- Steentjes et al., "On data-driven control: Informativity of noisy input-output data with cross-covariance bounds" (2022).
- Werner and Peherstorfer, "On the sample complexity of stabilizing linear dynamical systems from data" (2023).

Informativity for analysis/control

Problems tackled so far

Problem	Data	Problem	Data
controllability	E-IS	stability	N-S
observability	E-S	stabilizability	N-IS
stabilizability	E-IS	state feedback stabilization	N-IS
stability	E-S	state feedback \mathcal{H}_2 control	N-IS
state feedback stabilization	E-IS	dynamic feedback \mathcal{H}_2 control	N-IO
deadbeat controller	E-IS	state feedback \mathcal{H}_∞ control	N-IS
LQR	E-IS	dynamic feedback \mathcal{H}_∞ control	N-IO
suboptimal LQR	E-IS	stability	N-IO
suboptimal \mathcal{H}_2	E-IS	dynamic feedback stabilization	N-IO
synchronization	E-IS	dissipativity	N-ISO
dynamic feedback stabilization	E-ISO	model reduction (balancing)	N-ISO
dynamic feedback stabilization	E-IO	structural properties	N-ISO
dissipativity	E-ISO	absolute stabilization Lur'e systems	N-ISO
tracking and regulation	E-IS		1
model reduction (moment matching)	E-IO		
reachability (conic constraints)	E-IO		

Stabilization and \mathcal{H}_2 control with noisy input-state data

problem setup

Consider the system

$$\boldsymbol{x}(t+1) = A_s \boldsymbol{x}(t) + B_s \boldsymbol{u}(t) + \boldsymbol{w}(t),$$

where $\boldsymbol{x} \in \mathbb{R}^n$ is the state, $\boldsymbol{u} \in \mathbb{R}^m$ is the input and $\boldsymbol{w} \in \mathbb{R}^n$ is noise.

The matrices A_s and B_s are unknown but the following data are given:

$$X := \begin{bmatrix} x(0) & x(1) & \cdots & x(T) \end{bmatrix}$$
$$U_{-} := \begin{bmatrix} u(0) & u(1) & \cdots & u(T-1) \end{bmatrix}.$$

Goal: using the data (U_-, X) , find a feedback law $\boldsymbol{u} = K\boldsymbol{x}$ such that

$$\boldsymbol{x}(t+1) = (A_s + B_s K)\boldsymbol{x}(t)$$

is asymptotically stable (equivalently, $A_s + B_s K$ is Schur).

Henk van Waarde

assumption on the noise

The matrix

$$W_{-} = \begin{bmatrix} w(0) & w(1) & \cdots & w(T-1) \end{bmatrix}$$

is unknown but assumed to be bounded as:

$$\begin{bmatrix} I \\ W_{-}^{\top} \end{bmatrix}^{\top} \begin{bmatrix} \Phi_{11} & \Phi_{12} \\ \Phi_{12}^{\top} & \Phi_{22} \end{bmatrix} \begin{bmatrix} I \\ W_{-}^{\top} \end{bmatrix} \ge 0,$$
 (bound)

for known $\Phi_{11} = \Phi_{11}^{\top}$, Φ_{12} and $\Phi_{22} = \Phi_{22}^{\top} \leqslant 0$.

Special cases:

- If $\Phi_{12} = 0$ and $\Phi_{22} = -I$ then $W_- W_-^\top = \sum_{t=0}^{T-1} w(t) w(t)^\top \leqslant \Phi_{11}$.
- If, in addition, $\Phi_{11} = 0$: noiseless data.
- The choices $\Phi_{22} = \frac{1}{T}(-I + \frac{1}{T}\mathbb{1}\mathbb{1}^{\top})$ and $\Phi_{12} = 0$ with $\mu := \frac{1}{T}\sum_{t=0}^{T-1}w(t)$ lead to $\frac{1}{T}\sum_{t=0}^{T-1}(w(t) - \mu)(w(t) - \mu)^{\top} = \frac{1}{T}W_{-}(I - \frac{1}{T}\mathbb{1}\mathbb{1}^{\top})W_{-}^{\top} \leq \Phi_{11}$. In other words, the sample covariance matrix of w is bounded by Φ_{11}

informativity for stabilization

Introduce the matrices:

$$X_{-} := \begin{bmatrix} x(0) & x(1) & \cdots & x(T-1) \end{bmatrix}, \quad X_{+} := \begin{bmatrix} x(1) & x(2) & \cdots & x(T) \end{bmatrix}.$$

The set Σ of systems explaining the data is given by:

 $\Sigma = \{(A,B) \mid X_+ = AX_- + BU_- + W_- \text{ for some } W_- \text{ satisfying (bound)}\}.$

Definition: The data (U_-, X) are called informative for quadratic stabilization if there exists a feedback gain K and a matrix $P = P^{\top} > 0$ such that

$$P - (A + BK)P(A + BK)^{\top} > 0$$

for all $(A, B) \in \Sigma$.

Problem: Find conditions for informativity, and provide a K (if it exists).

Feedback design from noisy data implications of QMI's

All systems explaining the data satisfy a quadratic matrix inequality (QMI):

$$\Sigma := \left\{ (A,B) \mid \begin{bmatrix} I \\ A^{\mathsf{T}} \\ B^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & -U_{-} \end{bmatrix} \begin{bmatrix} \Phi_{11} & \Phi_{12} \\ \Phi^{\mathsf{T}}_{12} & \Phi_{22} \end{bmatrix} \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & -U_{-} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} I \\ A^{\mathsf{T}} \\ B^{\mathsf{T}} \end{bmatrix} \ge 0 \right\}.$$

The Lyapunov inequality for stability of A + BK can be written as:

$$\begin{bmatrix} I\\ A^{\top}\\ B^{\top} \end{bmatrix}^{\top} \begin{bmatrix} P & 0 & 0\\ 0 & -P & -PK^{\top}\\ 0 & -KP & -KPK^{\top} \end{bmatrix} \begin{bmatrix} I\\ A^{\top}\\ B^{\top} \end{bmatrix} > 0,$$

which is also a quadratic matrix inequality in (A, B).

A fundamental question: When are all solutions (A, B) of one QMI also solutions of another QMI?

We solve this using a matrix version of the S-lemma².

 $^{^2}$ van Waarde *et al.*, Quadratic matrix inequalities with applications to data-based control, 2023.

necessary and sufficient conditions for informativity

Theorem: The data (U_{-}, X) are informative for quadratic stabilization if and only if there exist matrices $P = P^{\top} > 0$ and K and scalars $\alpha \ge 0$ and $\beta > 0$ such that

$$\begin{bmatrix} P - \beta I & 0 & 0 \\ 0 & -P & -PK^{\top} \\ 0 & -KP & -KPK^{\top} \end{bmatrix} - \alpha \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & -U_{-} \end{bmatrix} \begin{bmatrix} \Phi_{11} & \Phi_{12} \\ \Phi_{12}^{\top} & \Phi_{22} \end{bmatrix} \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & -U_{-} \end{bmatrix}^{\top} \ge 0.$$

The matrix K stabilizes all systems in Σ .

Note: the above inequality is equivalent to the feasibility of the LMI

$$\begin{bmatrix} P - \beta I & 0 & 0 & 0 \\ 0 & -P & -L^{\top} & 0 \\ 0 & -L & 0 & L \\ 0 & 0 & L^{\top} & P \end{bmatrix} - \alpha \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & -U_{-} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \Phi_{11} & \Phi_{12} \\ \Phi_{12}^{\top} & \Phi_{22} \end{bmatrix} \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & -U_{-} \\ 0 & 0 \end{bmatrix}^{\top} \ge 0.$$

The gain K can be recovered as $K = LP^{-1}$.

\mathcal{H}_2 control using noisy data

system and noise

Again consider an unknown system

$$\boldsymbol{x}(t+1) = A_s \boldsymbol{x}(t) + B_s \boldsymbol{u}(t) + \boldsymbol{w}(t).$$

In addition, a performance output y(t) = Cx(t) + Du(t) is specified by the designer, C and D are known matrices.

Under the feedback u = Kx, the closed-loop transfer matrix from w to y is: $G(z) = (C + DK)(zI - A_s - B_sK)^{-1}$.

Data-driven suboptimal \mathcal{H}_2 control: given $\gamma > 0$, find a gain K such that A + BK is Schur and $\|G\|_{\mathcal{H}_2} < \gamma$ for all $(A, B) \in \Sigma$.

Using a dualization step and the matrix version of the S-lemma, it is again possible to formulate necessary and sufficient LMI conditions for informativity for \mathcal{H}_2 control with performance γ .

Conclusions and discussion

Conclusions and discussion

- General framework of data informativity: find controller for all systems consistent with the data
- Besides results for input-state data, also applicable to input-output systems

$$P(\sigma)\boldsymbol{y} = Q(\sigma)\boldsymbol{u} + \boldsymbol{w},$$

where P and Q are polynomial matrices, and to classes of nonlinear systems such as those of the Lur'e type.

Ongoing work: experiment design

The informativity approach

TO DATA-DRIVEN ANALYSIS AND CONTROL

HENK J. VAN WAARDE, JAAP EISING, M. KANAT CAMLIBEL, and HARRY L. TRENTELMAN

Figure: Overview paper submitted to IEEE Control Systems (available on arXiv)

THANK YOU!